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In this work we study the Heisenberg XXZ antiferromagnetic model for spin S and dimension d in the

presence of an external longitudinal magnetic field. First, we essay a variational approach which uses as

trial function a version of the analytic expression for the ground state given by the paired nonmagnetic
excitation (PNME) theory [M. Lagos and G. G. Cabrera, Solid State Commun. 67, 221 (1988); Phys.
Rev. B 38, 659 (1988)], generalized in order to incorporate the external field. The ground-state energy,
sublattice magnetization, and magnetic susceptibility are obtained. Subsequently, we solve the problem
numerically for a chain of 12 spins (S =1 and S =

—,') using the Lanczos method [E. Dagotto and A.

Moreo, Phys. Rev. D 31, 865 (1985)]. The two approaches give excellent concordance over a wide range

of the parameters of the model. We show that our analytic trial function represents accurately the

ground state of the system for anisotropies ranging from the Ising limit to the almost isotropic Heisen-

berg model for all values of the field. Moreover, it accounts for the several antiferromagnetic and fer-

romagnetic phases occurring for different values of the magnetic field with the same precision. The criti-
cal fields of the transitions are predicted correctly. Also, results for various spin values S in two and

three dimensions are presented.

I. INTRODUCTION

In one dimension, for S =
—,', the antiferromagnetic

XXZ Heisenberg Hamiltonian was completely solved by
the Bethe ansatz, ' but for larger spin or higher dimen-
sion no exact analytical solution is known. Numerical
solutions become more difficult as well, as the dimension
or the spin size increase. The study of the spin dynamics
in real lattices thus resorts to approximate approaches.
Among them, spin-wave theory has shown to describe ac-
curately the magnetic excitations of a number of antifer-
romagnetic crystals. The minimum error for the
ground-state energy of spin-wave theory is obtained for
the isotropic case which corresponds to an anisotropy pa-
rameter a= 1 (3 and 2% error in one and two dimen-
sions, respectively), and the error rapidly increases as a
departs from unity.

In order to focus our discussion we study a magnetic
system that can be divided into two sublattices, one asso-
ciated with vectors R and the other with vectors (R+5),
where 5 connects nearest neighbors of different sublat-
tices. Thus we have the following Hamiltonian:

&=J—g [S+(R)S (R+5)+S+(R+5)S (R)]
R, 5

+J g S'(R)S'(R+5)
R,5

p„gH g[S'(R)+—S'(R+5o)],
R

where S(R) is the spin at the site R, J is the exchange
coefficient, and H is the magnetic field.

Recently, an approximate solution for the Hamiltonian
was proposed for the S =

—,';d =1 case. This solution was

based in a variational version of the "paired nonmagnetic
excitation theory" (hereafter PNME). ' This denom-
ination deserves a comment: actually the PNME excita-
tion operators are not "nonmagnetic, " because although
they conserve the z component of total spin, they do not
commute with the other components of the total spin.

The PNME method applies in the quasi-Ising limit
(a(0.5) and renders excellent agreement (much better
than spin-wave theory) when compared with numerical
calculations for the ground-state energy and correlation
functions. The ground state proposed by the PNME
method is a coherent state even for very high anisotropy
and the apparent structure is disordered similar to the
Anderson' solution but on the average the antiferromag-
netic order is preserved. Then, it is not surprising that
the theory fails when a sufficiently high magnetic field is
applied; in this case a ferromagnetic phase is expected
which is well beyond the capability of the simple version
of the PNME theory.

In this work we address the Heisenberg antiferromag-
netic model for spin S and the anisotropic exchange in
the presence of an external longitudinal magnetic field.
First, we essay a variational approach which uses as trial
function a version of the analytic expression for the
ground state given by the PNME theory, generalized in
order to incorporate the external field. The calculations
are done for arbitrary dimension. The matrix elements
are calculated as a power series in the anisotropic param-
eter a up to fourth order. The ground-state energy, sub-
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lattice magnetization, and magnetic susceptibility are ob-
tained. Subsequently we approach the problem numeri-
cally and solve it for a chain of 12 spins (S =1 and S =—', )

using the Lanczos method.
The two approaches give excellent concordance over a

wide range of the parameters of the model. We show
that our analytic trial function represents accurately the
ground state of the system for anisotropies ranging from
the Ising limit to the almost isotropic Heisenberg model
for all values of the field. Moreover, it accounts for the
several antiferromagnetic and ferromagnetic phases
occurring for different values of the magnetic field with
the same precision. The critical fields of the transitions
are also predicted correctly.

II. THE MODEL

We consider the trial variational state

~g(8„8„a')& =R,(8„8,)Ig( ') &,
where the unitary operator

(2.1)

R„(8„8)= +exp —[H,S (R+5,)+8 S~(R)]
R

(2.2)

is simply a rotation in 8, (sublattice R) and 82 (sublattice
R+5) around the y axis (the angles are measured from
the antiferromagnetic state along the z direction). Finally

I

~g(a') & =exp — g [S+(R+5)S (R)—S+(R)S (R+5)] ~iV&
(2zS —1) Rs

(2.3)

corresponds to the PNME ground-state solution, ~iV & the
Neel state (spin up in the R sublattice and down in the
R+5 sublattice}, a' is a variational parameter which
measures the degree of disorder from the ordered Neel
state, and z is the number of nearest neighbors.

In our calculations only two variational angles are con-
sidered, each one corresponding to a sublattice mean spin
direction. This poses a limit to the possible magnetic
structures which can be obtained; for example, an helical
phase with arbitrary pitch is disregarded. Nevertheless,
antiferromagnetic, ferromagnetic, or spin fiop phases are
obtained as a minimum of the energy functional. a' is a
variational parameter which controls the magnitude of
the sublattice magnetic moment; then in principle, a
paramagnetic phase is also an accessible solution.

The energy functional is

S"~cosHS"—sinHS', (2.5)

Sy Sy (2.6)

S'~sinHS" +cosHS' . (2.7)

Taking advantage of the unitary character of the
operators R (8) one can view Eq. (2.4) as the expectation
value of the transformed operator R t&R with respect to
the state ~g(a') &. To accomplish the transformation just
substitute in Eq. (1.1)

F(8&,Hz, a')=(g(a')~R (8„8z)&R (8„8z)~g(a') & .

(2.4)
I

Then replace the resulting expression in place of R &R
in Eq. (2.4). Recalling that S"=(S++S )/2 and
S~=(S+—S )/(2i) one readily arrives at

F(8„8z,a') Jz ASM,
[Hl (cosH, cosHz+ a sinH, sin82)+ —,'Hz„(sinH, sin82+ a cosH, cosHz+ a ) ]

— (cosH, —cos82),
2

(2.8)

where h =gpbAH is the reduced longitudinal magnetic
field. The coeScients

mean values presented in Eqs. (2.9)—(2.11) are known ex-
actly in one dimension ' for S =

—,':

HI= (g(a') ~S'(R+5)S'(R) ~g(a') &,

H„„=(g(a') ~S"(R+5)S"(R)

+S~(R+5)SqR) ~g(a') &,

(2.9)

(2.10}

HI = —
—,
' [Jo(2a')+Jf(2a')],

H„=—
—,
' J,(2a'),

M, =Jo(2a'),

(2.12)

(2.13)

(2.14)

M, =—(g(a') ~S'(R) ~g(a') &

1
(2.1 1)

do not depend on the angles 0;, but only on a'. The

where J„(x)are the Bessel functions of integer order.
For arbitrary dimension d and spin values S the matrix

elements are not known in a closed analytical expression.
In the Appendix we show a method to obtain them as a
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power series in the anisotropy parameter cz. The results
are

zS a'
2 2Sz —1

g4a
3{2Sz—1)

(a) The sublattice magnetizations point along the same
direction against the magnetic Geld and obviously
represent a maximum of energy. In fact the rotation an-
gles are 0&=m, 02=0.

(b) The two sublattice magnetizations point against the
direction of the field and represent a minimum of energy.
The rotation angles are 0& =0, 02 =m.

2S IX (Sz —2) 4Sz —1—

+3S z {2.15)

p,g ASHM,
sing=

Jz(1+a)(1/2H„+HI )

(3.2)

2zS a' a' 2S I
2zS —1 3(2Sz —1) z

where

5,5b, 5,5d

5(5, +5„+5,+5d ),

M, =1— Sza' + Sza'
4Sz —1 —2S P

(2Sz —1 ) 6(2Sz —1 ) z

(2.16}

(2.17)

This solution represents a spin-Bop configuration in
which the sublattice magnetizations point along direc-
tions symmetric with respect to the z axis. Here the rota-
tion angles are given by

p,g AS'HM,

2 Jz(1+a}(1/2H„„+H;)

2 Jz(1+a)(1/2H„@+Hi)

For a small magnetic field the two sins are oriented an-
tiferromagnetically in the x direction.

is the number of closed loops which can be constructed
with four steps between nearest neighbors. Our problem
then is reduced to minimizing with respect to 8, , and a .
The extremum equations are

pgASHM,

Jz (1—a)( —1/2H„„+HI )

(3.5)

[ 4B sing+P —sing]cosg=O,

[ —4A sing+ P sing]cosset =0,

, F(8„82,a')=0,a
Ba'

where we have defined the quantities

Jz
A = (1—a}[HI ,'Hx„], ——

(2.18)

(2.19)

(2.20)

(2.21)

2
'

In this solution the sublattice magnetizations point
along the same direction; the rotation angles are

B= (1+a)[HI+ ~Hxr]
Jz

(2.22)

P =hM, S

and the new variables g and g as

q= —,
' [8,+8,],

0= -,
' [8i—8&i .

(2.23)

(2.24)

(2.25}

-2

III. THE RESULTS

The set of minimization equations has four types of
solution:

I

3 4

P.QAHz

cosy=0,
cosg=0 .

This solution represents two configurations:

(3.1)
FIG. l. Energy curves in one dimension, associated with

values of the anisotropy a=0.5, 1.0 for spin S =1. The solid
line represents results from the Lanczos method, and the varia-
tional approach is given by the scattered line.
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-3—

-6—
-7-
-8-
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-10—
-11

-12—

x/2
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a=0.5

I I

7 8

-13—

0 1

I

5 6 7

P,ghHz

I I

9 10 FIG. 4. Variational angles 8& and 82 as functions of the
strength of the magnetic Seld for S=

2 in a linear chain.

FIG. 2. Energy curves in one dimension, associated with the
values of the anisotropy a=0.5, 1.0 for spins S = z. The solid

line represents results from the Lanczos method, and the varia-
tional approach is given by the scattered line.

pg ASHM,

2 Jz(1—n)( —I /2H„y +Hr )
(3.6)

2 Jz(1—a)( —I/2H„@+Hi)

and obviously represent a maximum. For a small mag-
netic field the two spins are oriented ferromagnetically in
the x direction.

Finally

(iv) g=rI=O . (3.8)

In this case the spins remain oriented antiferromagneti-
cally along the z axis and the energy is minimum. In this
case the ground-state energy, sublattice magnetization,
and correlation functions are the same as the case in

which there is no magnetic field and the susceptibility is
zero.

The minimization equation for a' has a known closed
form only for the special case of d =1, S =

—,'. For gen-

eral spin S and dimension d, as a consequence of the
length of the calculations, the mean values of the quanti-
ties involved are known as a series expansion in a' only to
fourth order, and is necessary to solve numerically the
resultant polynomial equation. It is also expected that as
a' goes from zero to unity, the series expansion becomes
less exact.

We solved Eqs. (2.20) numerically for different values
of the reduced magnetic field h, and spin S. Also we have
developed numerical solutions for spin S =1 and S =

—,
' in

chains of 12 and 10 spins, respectively, using the modified
I.anczos algorithm. ' The energy and the rotation angles
were then evaluated for each case.

Figures 1 and 2 show energy curves in one dimension,
associated with different values of the anisotropy a for
spin 1 and —,

' (see Ref. 7 for an S =
—,
' chain). The agree-

ment is excellent especially near the Ising limit.
Figure 3 shows the field-dependent magnetization as

given by our variational approach (continuous lines) and
by the computer simulation (black circles), for two values

(Sz)

-0.4

-06—

-0.8—

-1 .0—

-1 .2—Z
LU

-1 .4—

~ ~ t ~ ~ ~ ~ ~~ .J y ~ ~ ~

a=1.0

a=0.5

6 0 10

-1 .8—

-2.0—
I

FIG. 3. Magnetization curves in one dimension, associated
with values of the anisotropy a=0.5, 1.0 for spin S=1. The
solid circles represent the numerical simulation with a 12-site
chain. The variational approach is given by the solid line.

FIG. 5. Energy per bond as a function of the strength of the
magnetic fie1d, for the S= 2, d =2 case, for a =0.5, 1.0.
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FIG. 6. Magnetization in the direction of the z axis as a func-
tion of the strength of the magnetic field for the S =

—,', d =2
case, for a=0.5, 1.0.

FIG. 8. Magnetization in the direction of the z axis as a func-
tion of the strength of the magnetic field for the S=1, d =2
case, for a =0.5, 1.0.
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of the anisotropy parameter a. The computer calculation
assumes a chain of 12 sites, which explains the stepped
shape of the numeric results. But for this technical as-
pect both approaches exhibit very good agreement.

The character of the several phases that the model goes
through at T=0 as the strength of the external field is
varied, can be visualized from the values assumed by 8&

and 82. These are the mean angles subtended by the spins
in the two sublattices with respect to a perfect antiferro-
magnetic configuration oriented along the z axis. This
way, for example, 8&

= 8& and 8, = —
8& =m /2 correspond

to an antiferromagnetic and a ferromagnetic situation, re-
spectively.

Figure 4 plots 8& and 8z as functions of the strength of
the magnetic field for S =—', in a linear chain (for an S = —,

'

linear chain, see Ref. 7); The behavior for anisotropies
toward the Ising (a=0.5) and isotropic (a=1.0) limits
exhibit interesting differences. For example, Ui the case
S =—'„a=0.5, the system has three phases and two tran-
sitions. For low parallel fields the spins persist in an anti-
ferromagnetic configuration oriented along the z axis.
When the reduced magnetic field increases up to about
h, =2.6 the spins jump abruptly to a new configuration,

which may be thought of as an antiferromagnetic align-
ment of the spin components in the x-y plane together
with ferromagnetic order of the z components. The mag-
netization along the z axis increases with h, and the sys-
tem keeps in this regime until the reduced parallel field
reaches the point h, =4.5, where the x-y antiferromag-
netic component disappears and the system goes through
a ferromagnetic phase oriented in the z direction. While
the first transition is abrupt the second is continuous.
For a=1.0, that is, for an isotropic system, the system
behaves quite differently. In agreement with previous re-
sults, ' at h, =0 the system has antiferromagnetic order
in the x-y plane. As h, increases, the field increases the
ferromagnetic magnetization along the z axis. Close to
h, =6.0 the system enters a new phase, in which the spins
fluctuate around a perfect ferromagnetic configuration.

In the two-dimensional isotropic case at zero field and
S =

—,', a Monte Carlo treatment by Barnes, Kotchan, and
Swanson' gives, for eo the value —0.669, agrees with our
result of —0.667 within a difFerence of 0.3%. For the
two- and three-dimensional cases our results are essential-

ly new, and we do not have reliable results with a nonzero
magnetic field for comparison. Figure 5 displays the en-

ergy for the S =
—,', d =2 case, for a=0.5 and for the iso-

topic case a=1.0. Figure 6 shows the magnetization in
the direction of the magnetic field in the same cases.

Figure 7 displays the energy for the S =1, d =2 case,
for two representative values of a. Figure 8 shows the
magnetization in the direction of the magnetic field in the
same case. The value of the energy for zero field and a = 1

estimated by a real-space renormalization-group treat-
ment by Mattis and Pan' is —1.907, and our result gives
the value —2.32, lower than that result. Although our
approach is a variational one, the truncation of the ex-
pansion series for the matrix elements introduces error as
a grows.

0 1 4 5 6

p,ghH&

7 8 9 10
IV. CONCLUSIONS

FIG. 7. Energy per bond as a function of the strength of the
magnetic field, for the S = 1, d =2 case, for a =0.5, 1.0.

Our main objective in this paper is to show a method
that constitutes a valuable tool in the study of the Heisen-
berg model with magnetic field in one or more dimen-
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sions, for spin arbitrary. Beside its precision and
mathematical simplicity, the method has the important
advantage of accounting for the difFerent magnetic phases
at T =0 and their transitions with a single trial function
having a compact mathematical expression. Whenever it
has been possible, our results had been compared with
the existing literature, giving a good agreement. We also
developed —due to our need for reliable numerical
data —numerical methods for solving the one-
dimensional Heisenberg Hamiltonian in the presence of a
magnetic field for the S= 1 and S =

—,
' cases.

& [[f",~],~] & =2&~'f —~f& &,

(A3)

(A4)

it becomes clear that if we need a series expansion to the
nth power in a', then we have to calculate the nth nested
commutator between f and k, and in principle the reduc-
tion of that to simpler commutators between S' and S*
constitutes a formidable task. We approached this prob-
lem from another point of view: taking advantage of the
characteristics of the operators involved, is easily shown
that
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APPENDIX: CALCULATION OF MATRIX ELEMENTS

The calculation of matrix elements for arbitrary di-
mension d and spin values S are not known in a closed
analytical expression, except in the d=l, S =

—,
' case.

Here we show a method to obtain them as a power series
in the anisotropy parameter a.

The qualities to calculate are the expressions (2.9),
(2.10), and (2.11). Except for (2.10), they are of the form [f ~] [f ~'] (A7)

([[[[f,u],S],k],S])= 2(4k—'fS 3k f—J S f )—,

(A6)

where the mean values are taken in the Neel state.
The determination of the efFect off over the Neel state

is immediate because it conserves S' locally and in conse-
quence its efFect is to multiply the ket by a constant.
Thus the nontrivial part of the work is reduced to calcu-
late

I

(f)=(A exp I f"exp
2zS —1

a'
(2zS —2) j '

(Al)

After a lengthy but straightforward work in this way, one
can derive the expressions (2.15, 2.17).

The case of (2.10) is diFerent. Here we note that

[S+(R),S]
where f is a Hermitian operator that conserves S, locally,
S is the anti-Hermitian PNME ground-state operator:

= —g [S+(R+5)S (R)+S+(R)S (R+5)]

S= g [S (R+5)S (R)—S+(R)S (R+5)],
R,5

and
~
JV) is the Neel state.

Using the identity

e "fe =f"+[f",g]+ 2, [[f,gl, gl

+
3, [[[f,g l g l g ]+ (A2)

(2Sz —1),(g(a')~S'(R)~g(a'))Ba'

= (g(a') ~S"(R+5)S"(R)

+S~(R+5)S~(R)~g(a') ) . (A9)

(A8)

and thus derive (2.11)with respect to a' to obtain (2.16):
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