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Impurity scattering in mesoscopic quantum wires and the Laguerre ensemble
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A maximum-entropy model describing the conductance statistics of disordered mesoscopic quantum
wires is presented. The model, closely related to the Laguerre ensemble of random matrices, predicts a
weak localization effect and universal conductance fluctuations, in qualitative agreement with micro-
scopic theory. A simple interpretation of the maximum-entropy model is given and the relation with

other maximum-entropy models is discussed.

I. INTRODUCTION

This paper is concerned with a statistical description of
the electrical conductance of disordered mesoscopic
quantum wires. A statistical approach is appropriate be-
cause the conductance G of a mesoscopic sample depends
not only on the mean impurity concentration but also on
the exact positions of the impurities within the sample.
As a result, over an ensemble of macroscopically similar
samples, G fluctuates from sample to sample. The magni-
tude of the conductance fluctuations is independent of
the mean conductance provided that this is large, a
phenomenon referred to as universal conductance fluc-
tuations (UCF).! If UCF’s are to be observable, the elec-
tron motion within the sample must be phase coherent.
For this reason experiments are usually performed on
very small (um) metal or semiconductor samples at very
low temperatures (mk) in which the dominant scattering
mode is elastic. Under such conditions the conductance
can be related to the elastic-scattering properties of the
system by the Landauer formula.>3 Imry* was the first to
suggest that random matrix theory might provide a very
natural and general explanation of UCF’s. This sugges-
tion prompted the formulation of two different random
matrix theories of scattering in disordered mesoscopic
systems: the so-called local’~’ and global®~'® maximum-
entropy models. In these models the elastic scattering of
electrons by the sample is described by a transfer matrix
T (defined in Sec. II). Underlying both theories is the ob-
servation that, as a consequence of current conservation,
the transfer matrices T form a Lie group under matrix
multiplication.

The local maximum-entropy model predicts a weak-
localization effect and conductance fluctuations in exact
quantitative agreement with those of microscopic calcula-
tions for “long” mesoscopic quantum wires. (By “long”
we mean that the length of the wires is much greater than
its diameter. For short wires there are qualitative
differences with microscopic calculations.) In the local
theory the central quantity P(7), the probability distri-
bution of the transfer matrix, appears as the solution of a
Fokker-Planck equation describing the evolution of P(T)
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with the length of wire. Unfortunately the exact solution
of this equation is known only for a wire in an applied
magnetic field.!! In contrast, the global maximum-
entropy theory yields immediately a very simple expres-
sion for P(T) as a maximum-entropy distribution on the
group formed by the transfer matrices under multiplica-
tion. The disadvantage is that the global model makes no
prediction concerning the weak localization effect and is
only in qualitative agreement with microscopic calcula-
tions concerning the conductance fluctuations.

In this paper we describe in detail a maximum-entropy
model'? which is simple in that it is also a maximum-
entropy theory on a Lie group and yet predicts not only
conductance fluctuations but also a weak-localization
effect in qualitative agreement with microscopic theory.
The starting point for the model we present is the ex-
istence of a second group structure in the transfer matrix
description of the elastic scattering. We propose a
maximum-entropy distribution not on the group formed
by the transfer matrices T under multiplication but that
formed by the matrices (), defined by Q=lnTTT, under
matrix addition. The two group structures, which we
denote by (T, X) and (Q, +), respectively, are not iso-
morphic and the corresponding maximum-entropy mod-
els are not equivalent. In addition to the qualitative
agreement with microscopic theory we find that the mod-
el describes, to a very good approximation, the conduc-
tance statistics of numerically simulated quantum wires.

The model we describe is related to the Laguerre en-
semble of random matrices (see Appendix A). Even
though the matrix Q is Hermitian, the relevant ensemble
turns out to be the Laguerre rather than the Gaussian en-
semble because current conservation imposes an addi-
tional symmetry constraint on ). The Laguerre ensem-
ble can be defined equivalently both as a maximum-
entropy distribution on a Lie group or by the require-
ments that the distribution be invariant under certain
types of transformation and that matrix elements not oth-
erwise related by symmetry be statistically independent
(see Appendix A). This equivalence makes possible a
clear statement of the assumptions underlying the
maximum-entropy distribution on (Q,+) and allows us to
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understand in a simple way the origin of the difference
with the maximum-entropy distribution on (T, X).

II. SCATTERING THEORY

In this section we outline the scattering theory for a
quantum wire. This is done first in order to define the
transfer matrix T and second to derive two relations
which T must satisfy as a consequence of current conser-
vation and time-reversal symmetry. Though these rela-
tions have been derived previously in Ref. 5, we rederive
them here for model (1), taking explicit account of
nonpropagating (evanescent) states and the more compli-
cated structure of the wave functions in magnetic field,
details which were not considered in the original deriva-
tion. Later we shall compare the maximum-entropy
model with a numerical simulation of model (1).

We consider the scattering of electrons by a disordered
mesoscopic system in the two-probe geometry depicted in
Fig. 1 in which impurity free contacts supply an electric
current to a disordered sample. We shall suppose that
the spin and spatial degrees of freedom of the electrons
are uncoupled. We shall ignore inelastic effects within
the sample and consider only the elastic scattering of
electrons at the Fermi energy E,. As a physical model of
the system we take a tight-binding Hamiltonian

H=3¢,, |xyz){(xyz|+|xyz }(x +1yz]|

xyz
+|xyz Y xyt1z|+|xpz ) ( xyz + 1] e 272>

+|xyz ) (xyz —1]e ~12m* (1
The coordinates are chosen so that electrons are confined
in the transverse directions within —(L,—1)/2<x
<(L,—1)/2 and 1=y =L,. The potential € is random
in the sample 1<z <L, and zero outside. Lengths are
measured in units of the lattice spacing and energies are
measured in units of the nearest-neighbor hopping ener-
gy, both taken as unity. As shown in Fig. 1, there is a
magnetic flux in the y direction. The gauge is chosen so
that the vector potential 4 =(0,0, —Bx). The strength
of the field is given in terms of the number a of magnetic
flux quanta ¢,=e /h penetrating each lattice cell. Note
that the magnetic field is applied both in the contracts
and in the sample so that there is no discontinuity in the
field at the sample boundaries.

In the contact to the left we decompose the wave func-

L
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FIG. 1. An idealization of a two-probe measuring geometry
for transport measurements on a mesoscopic sample.
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tion in terms of the Bloch states at the Fermi energy E
L XL
< ik, z
Y(x,p,2)= 3 [ci,¥,(x,p)e
n=1
—ik z
+e_, ¥, (—x,y)e "]

Here we have made use of the fact that for our symmetri-
cal choice of x coordinates the Bloch states occur in pairs
of opposite wave number k, more precisely if
W(x,y,z)=1(x,p)e* is a solution of HY=EVY, so is
W(x,y,z)=1(—x,y)e "**2. As a boundary condition in
the left contact we require that the wave function
remains finite as z— — oo, which is achieved by setting

¢y, =0 if Im[tk,]>0. 2)

From the time derivative of the probability to find an
electron in some given volume we derive the following ex-
pression for the total electric current in the left contact:

J(z) =< > ;i[‘lf*(x,y,z)\ll(x,y,z +1)eiex

L

—W(x,y,2)¥*(x,p,z+1)e ~i*] .

After a lengthy but elementary calculation this can be re-
duced to'?

J= 2

n,Im[k, ]=0

lesnl>=lc_,I*.

The boundary condition (2) ensures that the only contri-
butions to the total current in the contact come from
states with Im[k]=0. For these states we can show that
the state +k, has an exactly opposite current to the state
—k,. In writing the expression for the total current we
therefore assume a labeling and normalization such that
+k, has a unit current in the +z direction and —k, a
unit current in the —z direction. The number of states
for which Im[k]=0 we denote as N. In the right contact
we expand the wave function in the same way as in the
left contact, but with primed coefficients ¢’,, and ¢’_,.
We impose the boundary condition that ¥ remain finite
as z— + oo, which is satisfied if

¢,y =0 if Im[+k,]<0 . 3)

Proceeding as before we find an exactly analogous expres-
sion for the total current in the right contact.

A knowledge of the N incoming and N outgoing flux
amplitudes (¢ ,,c_,; Im[k, ]=0) in the left contact and
the boundary conditions (2) and (3) uniquely determines
the corresponding flux amplitudes in the right contact
through a linear relation of the form

cy=tc,tr'c’ , c_=rc,+t'c_ . (4)

Here ¢ is the N component vector with components
{c4+,; Imk, =0} and c_ is the N component vector with
components {c_,; Imk,=0}. This defines two N XN
transmission matrices ¢ and ¢’ and two N XN reflections
matrices 7 and r’. The zero temperature dc conductance
in the two-probe geometry can be obtained from the
transmission matrix by using the Landauer formula?
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g=tr(rt?) . (5)

Here g is a dimensionless conductance related to the ac-
tual conductance G by G =2(e?/h)g, where a factor of 2
is included to take account of spin degeneracy. Only
propagating states of the contacts with Im[k]=0 contrib-
ute to the conductance, as is made clear in the derivation
of the Landauer formula from the Kubo formula.? We
can now define a 2N X 2N transfer matrix T by rewriting
(4) as

(6)

In terms of transmission and reflection matrices T has the
form

T=

[t'f']—l rrt/—l
. (7

__t/—lr tl—l

We now examine the general restrictions on the form of T
due to the requirements of current conservation and
time-reversal symmetry. First we discuss current conser-
vation. We rewrite the current in the left contact in the
form

1y ©
0 —1y

¢+
J=(cteh) ,

Cc_

where 1, is the N XN unit matrix. Thus if the currents
in the right contact and left contact are always to be
equal, T must satisfy

0 —1,|- ®

T's, 7=3,, T=,T'=3, = =

Second we discuss time-reversal symmetry. In the ab-
sence of any applied magnetic flux (¢ =0) the Hamiltoni-
an (1) is real and commutes [ H, 7]=0 with the operation
T of complex conjugation TW=W*. This is referred to
as time-reversal symmetry. It follows that if ¥ is a solu-
tion to the scattering problem, then TV must also be a
solution. Looking at the left contact we have

—ik
V= 2 l/}m(—x’y)e lmzzdm,nc:n
m,Im[k]=0 n
ik, z *
+d}m(x7y)e Edm,ncvn
n
k |z
+ 3 etrxe
nRe[k]=0

where d is an N X N symmetric unitary matrix with ele-
ments

dpn =8 & S UYL (—x,p) .
X,y

Note that when B =0, the wave numbers k are either
purely real or purely imaginary. There is an analogous
expression for the right contact. Thus if H and 7 com-
mute and we have a set of flux amplitudes satisfying (6),
then the flux amplitudes corresponding to the time-
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reversed state must also satisfy (6). This can only be true
in general if T satisfies

0 d
d 0

0 d

r d o0

Since d is a symmetric unitary matrix we can decompose
it as d =eeT, where e is unitary, and then make the trans-
formation

e 0

T—E'TE, E= 0
e

after which T satisfies
0 1y

1y 0" 9)

S, TS,=T* 3,=

The important point is that the form of the current con-
servation condition is not changed by this transformation
so that we may choose a representation of the states in
which T satisfies both (8) and (9) at the same time.

Following the general symmetry classification intro-
duced by Dyson,'* we identify two symmetry classes ap-
plicable for zero and nonzero applied magnetic fields: or-
thogonal if [H,T]=0 and T?=-+1 and unitary if
[H,T]##0. These are the only two possibilities which
need to be considered if there is no interaction between
the spin degrees of freedom of the electron and its spatial
motion. We shall not consider here materials in which
spin-orbit scattering is important and the electron spin
and spatial motion are coupled. We then need to consid-
er the possibility that 72= —1, referred to as symplectic
symmetry, and the time-reversal condition on the transfer
matrix takes a different form.’

III. MAXIMUM ENTROPY ON (Q, +)

The set of 2N X2N complex matrices satisfying (8)
forms the group U(N,N) of pseudounitary matrices un-
der matrix multiplication.'® Matrices satisfying both (8)
and (9) form a subgroup of U(N,N). This group struc-
ture, for which we shall use the notation (7T, X ), underlies
both the local and global maximum-entropy models. As
stated in the Introduction, this is not the basis of the
theory we present here. Rather we identify a second
group structure in the scattering theory and develop a
maximum-entropy model on this.

We shall first identify the elements of this group.
These are not the transfer matrices T themselves, but the
set of related matrices () defined by

Q=InTT" .

As a consequence of the definition  is Hermitian. Con-
servation of current imposes an additional symmetry con-
ditional on Q, which we can derive from the correspond-
ing condition (8) on T as follows. From (8) we have
TTTEC TTT—_—ZC. We may rewrite this in the form
3. exp[Q]Z,=exp[—Q]. Since 2, is unitary, we may
take the logarithm immediately and obtain

3,03.=—Q. (10)
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Hermitian matrices satisfying this condition form a
group under matrix addition. We shall use the notation
(Q, +) for this group structure. It is not isomorphic to
(T, X) since (Q,+) is Abelian and (T, X) is not. The
general form of the group elements is

0 w

o

Q= (1n

b

where o is an arbitrary N XN complex matrix. The
decomposition (11) defines an isomorphism of (Q,+) with
the group of arbitrary N X N complex matrices under ad-
dition. The group elements may be parametrized by 2N?
real parameters {oX ol ;n,m=1,...,N}, where R
and I refer to real and imaginary parts. The group com-
position law can be written in the form
Qo]+ Qo' ]=0[x(0,0')] with Y(0,0' )=+’ clearly
an analytic function. This is sufficient to show that
(Q,+) is a Lie group. From (10) it is possible to show
that the 2N real eigenvalues of Q occur in pairs of oppo-
site sign. We shall refer to them by the notation {tv;;
i=1,...,N}.

In a similar way to that presented above, the time-
reversal condition on T can be shown to imply the follow-
ing condition on :

3,05, =0%. (12)

Matrices satisfying both (10) and (12) also form a Lie
group. The general form of the group elements is as be-
fore, but with @ now symmetric ®=w”. The group ele-
ments are now parametrized by N (N + 1) real parameters
{@R ., 0% s n=m}. Regardless of whether we are refer-
ring to matrices satisfying (10) alone or both (10) and (12)
we shall refer to the group structure as ({),+), making an
explicit distinction only when necessary.

Given a probability distribution P(Q)=p(Q)du(Q) on
the group, we define an entropy S [p(Q)] by

S=— fm L du@p(Q)np(Q) .

Here du(Q) is the invariant measure on the group which
is (see Appendix B)

du(@)=T] doX , [[ d@h,, »

n,m n,m

where R and I refer to real and imaginary parts. For the
subgroup of matrices satisfying both (10) and (12) the in-
variant measure is

du(Q)= ] dok, I dol .

n>m nzm

(since w is then symmetric and not all elements may be
considered independent, see Appendix B). For our pur-
poses it is more useful to rewrite the measures in terms of
the eigenvalues of ). This is done by noting that the N
positive eigenvalues {v,, ..., vy} of Q are also the singu-
lar values which occur in the singular value decomposi-
tion'® of w as

o=uvul . (13)

Note that any complex matrix can be decomposed in this
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way as product of two unitary matrices u; and u, and a
real positive diagonal matrix v with elements
{vi»--.,vy}. For an arbitrary complex matrix the
singular value decomposition is not unique since any
transformation of the form u, —u,e’®, u,—u,e'® with @
real diagonal leaves  unchanged. In terms of these pa-
rameters the invariant measure may be rewritten (see Ap-
pendix B)

du(Q)=[] v.dv, II V2412 dpu)dp(u,) ,

n>m

where any one of the measures on #, or u, may be taken
to be the invariant measure on the unitary group U(N)
and the measure on the remaining matrix must be
modified to take account of the degeneracy in the singu-
lar value decomposition (see Appendix B). For matrices
satisfying both (10) and (12) » is symmetric and the
singular value decomposition is unique

o=uvul . (14)
The invariant measure becomes

dp(Q)= [ v,dv, I1 Iv2—v%4ldulu,),

n>m

where the measure on u, is the invariant measure on
U(N).

In principle the probability density p(Q) could be
determined directly from the probability distribution of
the Hamiltonian. However, in practice this is at least
very difficult if not impossible. A simple alternative, bor-
rowed from statistical mechanics, is to make an unbiased
guess for the probability density using a maximum-
entropy procedure. This requires us to define an entropy
S and then to choose one or more constraints subject to
which we then maximize S. In the present context the re-
sulting probability density depends not only on the choice
of the constraints but also on which group (T, X) or
(Q,+) we decide to define the density and the entropy.
Here we shall assume that density p(Q) on (Q, +) is such
as to maximize the entropy S[p(Q)] defined on (Q,+).
The group is not compact, so at least one constraint, in
addition to the normalization of the probability distribu-
tion, must be imposed. Perhaps the simplest choice
would be a constraint on the trace {trQ)); however, since
this is exactly zero by virtue of (10), this is already
satisfied. We therefore maximize S subject to

(tro2)=1BNN—D)+2N] (15)
Ba '
The result is
P@)=Cyexp |~ BLtr0? |apa), (16)

where Cy g is a normalization constant. Maximizing the
entropy does not introduce any correlations between the
unitary matrices #, and u, in the decomposition and the
parameters {v,,..., vy} since no constraint is imposed
on either u, or u,. This being the case the integration
over u; and u, is trivial and we obtain the joint probabili-
ty distribution of {v, ..., vy}



2384

—Bav2
Pvy,...,vy)=Cypg I1 V2 —V5IFTI vee = "dv, .

n>m n
17

Making the transformation x,,=2avf,, the distribution
can be identified as that of the Laguerre ensemble (see
Appendix A)

X)) =Cyp II |x,—x,, P11

n>m n

e —B(x,/2)

P(x’,... dxn.

(18)

The two symmetry classes =1 and 2 are referred to as
the Laguerre orthogonal ensemble (LOE) and the
Laguerre unitary ensemble (LUE), respectively. In com-
mon with the Gaussian and circular ensembles there is a
characteristic dependence of the eigenvalue repulsion on
the symmetry of the ensemble: linear (8=1) for the LOE
and quadratic (8=2) for the LUE.

To make the significance of the maximum-entropy as-
sumption clearer it is helpful to observe that (16) is the
only distribution, for example, for unitary symmetry
(B=2), satisfying the following two conditions.

(i) All elements of € not otherwise related by symmetry
are statistically independent.

(ii) The probability distribution P({)) is invariant un-
der transformations of the form

u O

'=yaut vu= 0 u
u

P(Q')=P(Q),

?

where u and u' are arbitrary N X N unitary matrices.

This follows from a corresponding statement for the
LUE. Analogous conditions for orthogonal symmetry
(B=1) can be deduced by reference to those for the LOE.
Unfortunately condition (i) has no obvious physical inter-
pretation. Condition (ii), as we discuss in more detail
later, is equivalent to the assumption that scattering
among the various channels is statistically equivalent.
Whether these are reasonable assumptions must be deter-
mined by comparison with microscopic models. It is in-
teresting to note that the local maximum-entropy model,
which is in exact quantitative agreement with the micro-
scopic theory for long quantum wires, incorporates an as-
sumption equivalent to (ii). As we shall show in Sec. IV,
with the model we present here we achieve only qualita-
tive agreement with microscopic theory so that it would
seem that (i) is only approximately satisfied in practice.

Having derived a distribution for the eigenvalues of (2
it remains to relate them to the dimensionless conduc-
tance g. From the current conservation condition on T
(8) and the decomposition of T in terms of transmission
and reflection matrices (7) we can derive the relation

' o

2[coshQ+1,y] = o e

This tells us the relationship between the conductance
and the eigenvalues of ()
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N
DI 2
=trit ' = _—
g n§1 1+coshv,

IV. COMPARISON OF THE MAXIMUM-ENTROPY
MODEL WITH MICROSCOPIC MODELS

In this section we discuss the extent to which the pre-
dictions of the maximum-entropy model are in agreement
with those of more traditional microscopic models. First
we compare with the results of calculations of weak local-
ization and conductance fluctuations for electrons in a
random Gaussian white noise potential.! Second we
compare the eigenvalue density and correlations of the
maximum-entropy model with those obtained in a numer-
ical simulation of the Hamiltonian (1) using a numerical
method.!’

A. Weak localization

First we examine the prediction of the theory concern-
ing the weak-localization correction to the mean conduc-
tance. The mean conductance (g ) is

(g)= fowdvg(v)a(v) ,

where o is the eigenvalue density defined as

- N
U(v)=fo p(v,vy, v ) [T dv,
n=2

-2
1+coshv ~

The simplest way to extract the weak-localization correc-
tion predicted by the theory is to calculate the change in
the conductance, to leading order in the large N limit,
when time-reversal symmetry is broken by the applica-
tion of a weak magnetic field. The weak-localization
correction 8g should thus be equal to

glv)

agz fodeg(V)[aLOE(Nya’V)_ULUE(N,G,V)]

with N >>1. We assume here that a is independent of
magnetic field at least for weak fields. The eigenvalue
density for the LOE (Ref. 18) is

o10E(N,a,v)=2avS(av*,av?) ,

where S (x,y) is the function

N=1
S(x,y)=2exp(—x)exp(—y) ¥ L,(2x)L,(2y)

n=1
+exp(—x)exp(—y)Ly _(2x)Ly(2y)
—exp( —y)foxexp( —z)Ly_,(22)dzLy(2y) .
For the LUE the density has a simpler analytic form!®
ULUE(N,a,v)=4avK(2av2,2av2) "

where

N—1
K (x,y)=exp(—x/2)exp(—y/2) ¥, L,(x)L,(y) .
n=0
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Making use of asymptotic forms for the Laguerre polyno-
mials the density in the bulk is found to be quarter circle
independent of symmetry in the limit as N —

0(v)=%\/(2aN—-a2v2) ) (19)

There is thus no contribution to &g from the bulk of the
spectrum. There is, however, a nonzero contribution
from the region v~O(V'1/N ). In this region the asymp-
totic forms of the densities are!®

p(v)=2Nav |J}(V'Na v)—J(2V'Na v)J,(2V'Na v)
N Jo(2V'Na v)J (2V'Na v)
2V'Na v
for the LOE and!’
p(v)=2Nav |J}(2V'Na v)—J(2V'Na v)J,(2V'Na v)

Jo(2V'Na v)J (2V'Na v)
2 ——
2V Na v

for the LUE. Taking the difference and making a suit-
able change of variable we find

sg=—1[ “dz Iy (2)=—1 .

This is in qualitative agreement (the correction has the
correct sign and is independent of parameters such as sys-
tem size and mean free path, etc.) with microscopic cal-
culations. There is, however, a quantitative discrepancy,
with the latter yielding g = — 1.

B. Conductance fluctuations

In common with the global maximum-entropy theory
the Laguerre ensemble provides a natural explanation for
the phenomena of universal conductance fluctuations.
This follows from the Dyson-Mehta theorem® concern-
ing the asymptotic values of linear statistics of random
matrix ensembles and its generalization to positive
definite ensembles.?! A linear statistic of the spectrum is
any function F of the eigenvalues which has the form

N
F=3 fv,).

n=1
The variance of a linear statistic may be calculated as

Var[F]= [dvdv f(»)f(+')

X[o(v)d8(v—v')—T,(v,v')] .

This requires a knowledge of both the density and the
two-point correlation function

N
R,(v,V)=N(N=1) [ pv,v',v3, ... ,vy) I[ dv,
n=3

to which the two-level cluster function T, is related by
R,(v,v')=0c(v)a(v')—T,(v,v'). We are interested in
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particular in the value of the invariance in the limit that
N— o« with a fixed. We calculate the variance in this
limit using the functional derivative method of Ref. 21;
however, in order to put the final result in a very simple
form, the derivation we give here differs somewhat in de-
tail from that of Ref. 21. Suppose that the distribution of
the eigenvalues has the general form

P(vy,...,vy)=CygII W2—v%I°

n>m
N
X T exp[ —BV(v,)]ldv, .
n=1
(20)
The variance is evaluated by noticing the following rela-

tionship between T,, o, and the functional derivative of
o with respect to the potential V(A):

1 8a(v)

B 8V(v')
The functional derivative is determined with the aid of an
approximate relation between V(A ) and o

V(iv)+V,= fowdv'lnlvz—v’zla(v’) .

=T,(v,v')—o(v)d(v—v') .

Here V is a constant chosen so the density is normalized
to N. The use of this relationship restricts the analysis to
smooth functions f and the asymptotic limit N— . We
deduce that the change 8o (v) in the function o(v) due to
a change §V(A) in V(A) satisfies

8V(v)+Vy= [ “dvinly’—v?Iso(v) .
The constant ¥y is chosen so that
[ Tavsov=o.
The solution of this equation is of the form
so(v)= [ “Ovv 8V (),

where the kernel © is clearly the functional derivative we
require

_ ba(v)

SV(v)
The only difficulty in solving the integral equation is the
range of integration which prevents a straightforward
solution by Fourier transform. We surmount this

difficulty by observing that © can be related to the solu-
tion of the integral equation

SV(v)+Vy= f_+wdv’1n|v—v’l80(v') ,

O(v,v')

where V' is the same constant as before [and ensures that
8o (v) integrates to zero over the full real axis]. Denoting
the solving kernel of this equation as 6(v,v'), it is possible
to show by direct substitution that

O(v,v')=0(v,v')+6(v,—v') .

This gives a relation between the correlation function for
the positive random matrix ensemble with the distribu-
tion (20) and a random matrix ensemble with eigenvalues
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on the full line distributed according to

P(vy, ..., vy)

N
=Cyp Il vy, =V P I1 exp[—BV(v,)]dv, .

n>m n=1
We now solve this related problem by Fourier trans-
form. Assuming that V=0, which we justify later, we
find 8o (k)=—(|k|/m)6V (k). We deduce that 6(v,')
=6(|]v—+'|) and that 8(k)=— |k| /m. The normalization

condition is equivalent to

[ dvsav)=lim — = [kI8¥ (k)
— k—0 27T

and so the assumption that V=0 is correct provided
8V (k) is not singular at the origin. Returning to the
original problem we find in the asymptotic limit a simple
formula for the variance

Varlf1=

where f (k) is the Fourier transform of f (v),

fk)=[" dk explikx)f(x) .

[ 7 dk faf(—klkl, (21)

The asymptotic value is seen to be independent of the
choice of ¥V and has a characteristic dependence on the
symmetry class. For the conductance fluctuations we set
f(v)=g(v) and find

A}im Var[g]=0.148/8 .

The Laguerre ensemble thus predicts the correct qualita-
tive behavior: the sample to sample fluctuations in the
conductance are independent of the sample average con-
ductance provided this is much greater than unity. There
is, however, a quantitative discrepancy with the micro-
scopic theory for a quantum wire!

Nlim Var[g]=0.133/8 .
We shall discuss this discrepancy later.

C. Eigenvalue density

In this and the next section we compare the transmis-
sion statistics predicted by the Laguerre ensemble with
those obtained in a numerical simulation of the Hamil-
tonian (1). The transmission matrix is calculated using a
standard Green’s-function iteration technique described
in Ref. 17. The eigenvalue densities for the LOE and
LUE are evaluated using the formulas already given and
the correlation functions with the aid of formulas given
below.

In Fig. 2 we show the density o(v) obtained in a simu-
lation of a long thin wire. The length of the wire is much
longer than the mean free path /, but much shorter than
the localization length so that the motion of the electron
is diffusive along the direction of the wire.??> Good quan-
titative agreement between the LOE and the microscopic
model is obtained and the tendency to converge to a
quarter circle [see Eq. (19)] in the asymptotic limit is
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FIG. 2. The eigenvalue density of the matrix () obtained in a
numerical simulation of model (1) of a quantum wire with pa-
rameters L, =6, L,=6, and L, =100. The Fermi energy is at
the band center E =0 and zero magnetic field. For these param-
eters N=24. The site energies €,,, are random with a rectangu-
lar distribution of W=2 and mean zero. The mean free path
and localization length are estimated to be / ~11-5 and £~280,
respectively. A comparison is made with the density of the
Laguerre orthogonal ensemble for which the free parameters
has been determined from the value of {trQ?) obtained numeri-
cally.

clearly demonstrated. We find that this agreement per-
sists provided that the length of the wire is not shorter
than or comparable to the mean free path or longer than
the localization length.® In addition differences between
the LOE and the microscopic density also became ap-
parent for sufficiently strong disorder.?*

In Fig. 3 we show the density when a magnetic field is
applied to the wire in the direction perpendicular to that
of current flow. For a field strength large enough that
several flux quanta penetrate the wire we expect that
time-reversal symmetry is broken and that the LUE is the
appropriate ensemble. The oscillations in the density ob-

1 1 " 1

0 5 10 15 20 25 30
v

FIG. 3. The eigenvalue density for the quantum wire studied
in Fig. 2, but in an applied magnetic field of a=1%;. A compar-
ison is made with the eigenvalue density of the LUE.
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servable here in contrast to Fig. 2 are a consequence of
the stronger eigenvalue repulsion expected for unitary
symmetry (and the infinite value of N).

D. Eigenvalue correlations

We evaluate the correlation functions for the Laguerre
ensemble using the following standard expressions: for
the LOE

T,(v,v')=4a*w'S(a+?,av'*)S(av'?,av?)
—D(av},av'®)I(avtav'?) ,

where S (x,y) has already been defined and
d
D b = b b
(x,y) ™ S(x,y)

I(x,y)=—fyS(x,z)dz—e(x -y),

1+, x>0
e(x)=10, x=0
-1, x<0,
and for the LUE

T,(v,v')=16a*»w'K (2av?*,2av"?) .

In Fig. 4 we show some typical results for the diffusive
quantum wire whose eigenvalue density was shown in
Fig. 2. The expected linear short-range eigenvalue repul-
sion typical of systems with orthogonal symmetry is ap-
parent and the LOE describes quite accurately the short-
range eigenvalue correlations. In Fig. 5, after breaking
time-reversal symmetry by applying a magnetic field, we
find an equally satisfactory agreement with the LUE for
the short-range eigenvalue correlations. The linear repul-
sion of the orthogonal symmetry is transformed into the
quadratic repulsion typical of unitary symmetry.

Taken together the results for the correlation function

FIG. 4. The eigenvalue correlation function R,(v,v’) for the
quantum wire whose density is shown in Fig. 2. A comparison
is made with the correlation function of the LOE. Here v'=1.
Similar results are obtained for other values of v'.
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FIG. 5. The eigenvalue correlation function for the wire
whose density is shown in Fig. 3. The comparison is with the
correlation function of the LUE, as opposed to the LOE in Fig.
4.

and the conductance fluctuations seem to be somewhat
contradictory. Looking at Figs. 4 and 5 it seems reason-
able to expect not just qualitative but also quantitative
agreement for the magnitude of the conductance fluctua-
tions with microscopic theory. Why is this not the case?
One possible explanation is that the behavior of the mod-
el (1) is different from that of the random white-noise po-
tential studied in Ref. 1. To rule this out we present in
Fig. 6 the conductance fluctuations obtained in numerical
simulations of wires of various lengths. The most notice-
able feature is a sharp increase (roughly a factor of 2
compared with a longer wire) in the magnitude of the
conductance fluctuations for a short wire whose length is
comparable to its diameter. This is exactly the behavior
predicted in Ref. 1 for the random white-noise potential.
Also shown are the magnitudes of the fluctuations pre-
dicted by the LOE. For long wires the LOE slightly

0.30 :
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0.20 F o 1

Var (g]
o
a
oe

0
®0
®0

0.05
Or J
0 50 100 150 200

Lz

FIG. 6. The conductance fluctuations (solid circles) obtained
in numerical simulations of quantum wires of various lengths
and all other physical parameters as in Fig. 2. Also shown
(empty circles) are the conductance fluctuations calculated for
the LOE with N =24 and the parameter a determined using nu-
merical values of (trQ?).
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FIG. 7. The A statistics, defined in the text, for the wire stud-
ied in Fig. 2 (circles) and for the LOE (line).

overestimates the conductance fluctuations, in agreement
with the asymptotic results in Sec. IV B. We believe the
origin of the discrepancy to be the failure of the Laguerre
ensemble to describe accurately enough the long-range ei-
genvalue correlations of the microscopic model. (Such a
discrepancy would not be evident in Figs. 4 or § since it is
only possible to probe the short-range eigenvalue correla-
tions with the type of histogram plotted there.) To try to
make this at least plausible we present in Fig. 7 some re-
sults for the so-called A statistic of random matrix theory

=(min [~ — Ay —BJ?),
A(n) (rf}lg fo dy[N(y)— Ay ]>
where

y(v)‘—‘f0 dvio(v')
and

N
Ny)=3 6y—y,).

m=1

The A statistic describes the tendency of the eigenvalues
to deviate from a regular array or, more roughly speak-
ing, the long-range rigidity of the eigenvalue spectrum.
The value of the statistic at » is sensitive to the form of
the eigenvalue corrections up to a range of n levels. The
deviations visible at large » indicate that the spectrum of
the wire is more rigid than predicted by the LOE. This is
in agreement with the idea that the LOE fails to describe
the long-range correlations exactly.

V. COMPARISON WITH OTHER
MAXIMUM-ENTROPY THEORIES

There are two alternative maximum-entropy models to
the Laguerre ensemble presented here. We shall discuss
first the global maximum-entropy model. This is a
maximum-entropy distribution on the group (7T, X)
formed by the transfer matrices T under multiplication.
In the absence of time-reversal symmetry (7, X) is the
Lie group U(N,N) of 2N X2N pseudounitary matrices
and if time reversal applies it is a subgroup of U(N,N).
Given a probability distribution on the group
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P(T)=p(T)du(T) the entropy S[p(T)] is defined in the
usual way.

S[p(T)] f( .
where du(T) is the invariant measure on (7, X). This
may be derived as follows: taking the differential of (8) we
have d TTEC T+T'SdT=0. We define an anti-Hermitian
infinitesimal matrix d4 by d4 =dT'S,T. For unitary
symmetry there are no further restrictions on d 4 and we
may define a measure on (7, X) as a product over the
4N? independent elements of d 4 by

du(T)= [[ dAR,dA.,[1dA,, .

n>m

du(T)p(T)lnp(T) ,

Here R and I refer to real and imaginary parts. If we
take any fixed T, € U (N, N), we have

dA'=d(T,D)'S(T,T\dA=dT'T}> T,T=dT's,T
=dA ,

so that du(T)=du(T T) VT €U(N,N), which proves
that this measure is the invariant measure of the group.
It is convenient to rewrite the invariant measure in terms
of the parameters occurring in the polar decomposition
of T as

u, O

0 u,

v; O
0 v,

V1i+Ar VA

r= Vi VIFA

Here u, and u, are the unitary matrices which appeared
in (13), v, and v, are N XN unity matrices, and A is an
N XN real positive diagonal matrix with elements A, re-
lated to the v, by A, =(coshv, —1)/2. After calculation
of the required Jacobian we find

N
du(D)= 1T A, — A, > T dA,du(u,)du(u,)

n>m n=1

Xdu(v,)du(v,) ,

where measures on u, and u, are the same as those in the
corresponding expression for du(€) and on v, and v, are
the invariant measures on U(N). A similar calculation is
possible for orthogonal symmetry.

We now follow® and maximize the entropy on (T, X)
subject to a fixed mean density o (A ) for the A and obtain

N
PM=Cys T IAy—Anl? IT expl —BV(RA,)]dA, , (22)

n>m n=1

where V(A) is a Lagrange multiplier chosen to reproduce
the density and with S=2 for unitary symmetry and f=1
for orthogonal symmetry. Since the eigenvalue density
enters as the constraint, the theory makes no prediction
concerning either the density or the weak-localization
correction. Using the same argument as that for the
Laguerre ensemble the asymptotic value of the conduc-
tance fluctuations is independent of V(A). Evaluating
(21) we find

A}im Var[g]=0.125/8,

which is different from both the microscopic theory and
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the maximum-entropy theory on (Q, +). The calculation
of the correlation function requires a prior knowledge of
the density o(A) and is in practice only possible for uni-
tary symmetry.?> In previous work a comparison was
made between the correlations predicted by the theory
and those obtained in numerical simulations of quantum
wires in magnetic fields, the numerically simulated densi-
ty function o(A) being used as the input to the theory. In
general the quality of the agreement obtained is similar to
that obtained with the maximum entropy on ({2, +).

The maximum-entropy distributions on (7, X) and
(Q,+) make a common assumption about the statistical
equivalence of different channels. This can be understood
by noticing that the maximum-entropy distribution on
(T, X ) satisfies the following condition.

(iii) The probability distribution P(T) is invariant un-
der transformations of the form

0
0 u'

v O

P(T")=P(T), T'= Ty o

b

where u, u’, v, and v’ are arbitrary N XN unitary ma-
trices.

Using the decomposition of T we can derive from this
very similar conditions on the distributions of the
transmission ¢ and reflection » matrices: P(z)=P(t’),
where t'=utv, and P(r)=P(r’'), where r'=urv. These
must hold for any arbitrary N X N unitary matrices u and
v. Since condition (iii) on P (T) implies (ii) on P({2) this is
also a property of the maximum-entropy model on
(Q,+). This assumption is intuitively reasonable for long
wires and is supported by numerical work.!® However,
the two models involve different assumptions about sta-
tistical correlations among the elements of (). The
maximum-entropy model on (Q,+) assumes that these
are, apart from symmetry, statistically independent. The
correlations implied by maximizing the entropy on
(T, X) depend on the choice of V(A); however, there is
no choice of ¥ (A) which implies statistical independence
of the elements of ().

It is interesting to ask if there is some simple assump-
tion about the statistical independence of the elements of
T which could reasonably be made in analogy with (i) for
P(Q). This would of course imply some particular form
for V(MA). This seems, however, to be difficult. The sym-
metry relations among the elements of () are particularly
simple and there is an obvious subset, the elements of w,
which can be assumed to be statistically independent.
Moreover, the product of the differentials of these ele-
ments is also the invariant measure on ({,+) so that the
assumptions of statistical independence and invariance
under transformations are equivalent to the maximum-
entropy assumption. The symmetry relations among the
elements of T are much more complicated and there is no
obvious choice for statistically independent subset. It is
for this reason that we defined an infinitesimal matrix d 4
in deriving the invariant measure on (7, X ) rather than
first parametrizing 7" and then using the standard formula
in Appendix B.

The distribution (17) is sometimes presented?® as an ap-
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proximation to (22), the argument being as follows. We
assume that all the v, <<1 and make an expansion
A,=v2/4+0(v%). Making this approximation, chang-
ing variables in (22) and assuming that V(A)=aA, we ob-
tain (17). Within the approximation that all the v, <<1,
this choice of V is equivalent to maximizing the entropy
on (T, X) subject to a constraint on the ensemble average
of the total reflection

N
<rr*>=<2 A, +O(A2 )> .
i=1
(This condition is used below to define a mean free path
in the local maximum-entropy theory.) However, we do
not see in this way that (17) has a more fundamental ori-
gin as a maximum-entropy distribution on the Lie group
(Q,+). In addition the necessary condition for the ap-
proximation v, <<1 is not met unless the length of the
conductor is much shorter than the mean free path.

A simple multiplicative composition law is often as-
sumed for the transfer matrix so that the transfer matrix
T4 +p) of a sample formed from two samples [ 4] and
[B] connected in series is simply

T+ =T Tim »

where T 4; and T'; are the transfer matrices of samples
[ 4] and [B]. The group operation on (7, X ) then has an
obvious physical interpretation as the composition rule
when two samples are placed in series whereas the group
operation on ({Q,+) does not. It might therefore be ar-
gued that a maximum-entropy model on (T, X) is more
physically meaningful. In defense we point out that the
multiplicative combination law for transfer matrices
holds only under special circumstances and not at all in
general. Referring to Sec. II we see that the boundary
conditions (2) and (3) are crucial in constructing a
transfer matrix which refers only to the propagating
states of the contacts, which are the only states which
contribute to the conductance, and which at the same
time conserves current. In general these conditions will
not be satisfied at the junction of two samples connected
in series and the multiplicative composition law will not
hold. The only exception occurs when all the states of
the contacts are propagating, which for model (1), for ex-
ample, happens only rarely at very special values of the
parameters. In general then, the group operation on
(T, X) has no more physical significance than that on
(Q,+).

The local maximum-entropy theory is based on two as-
sumptions. First the mesoscopic sample is imagined to
be divided into sections of length AL. Then the transfer-
matrix distribution for each section is assumed to maxim-
ize the entropy on (T, X) subject to the constraint that
(3N_,A;)=NAL /I, where the length of each section AL
is assumed to be much less than the mean free path /.
Under this condition the definition is equivalent to
(trrr’)=NAL /I, so that 1/I is the probability of
reflection per unit length per channel. Second a multipli-
cative composition law is assumed for the transfer ma-
trices so that the transfer matrix of the whole sample is
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then the product of those of the sections. From these two
assumptions it is possible to develop an evolution equa-
tion, as a function of the length L of the wire, for the
probability distribution of the transfer matrix. Though a
maximum-entropy distribution for each slice is assumed,
this property is not conserved when two transfer matrices
are multiplied together so that the solution to the evolu-
tion equation is not the maximum-entropy distribution
on (7T, X). The solution must, however, satisfy condition
J

P(Vl"'

N
) =TT A=A llve = v [ TT exp
n=1

n>m

The eigenvalue interaction turns out to be the geometric
mean of that arising from the invariant measures on
(T, X) and (Q,+). It seems that the action of multiply-
ing transfer matrices together introduces correlations
among the matrix elements of T which are somewhat in-
termediate between those of the maximum-entropy distri-
butions on (7T, X ) and (Q,+).

Before concluding we mention that the weak-
localization effect and conductance fluctuations are
different for short quantum wires. None of the
maximum-entropy models we have discussed so far are
able to describe the behavior in this regime and it is
speculated that it is assumption (iii) [or equivalently (ii)
for T] which is then questionable. This has prompted
some efforts to develop a maximum-entropy model which
does not incorporate this assumption.?’

VI. CONCLUSION

A maximum-entropy model describing the conduc-
tance statistics of disordered quantum wires was present-
ed in detail. A simple expression for the distribution of
the matrix ), where Q=InTT" and T is the transfer ma-
trix of the conductor, was derived. This distribution was
shown to be closely related to that of the Laguerre en-
semble of random matrices. It was shown that a weak-
localization effect and universal conductance fluctuations
are predicted, which are in qualitative agreement with
microscopic theory. Further we find that the model de-
scribes to a good approximation both the global (eigen-
value density) and local (eigenvalue correlations) spectral
properties of (0 found in numerical studies of a tight-
binding model of a quantum wire. It was shown that the
maximum-entropy model is equivalent to the assumption
that P () is invariant under certain transformations and
that elements of Q not related by symmetry are statisti-
cally independent.

Note added in proof. The asymptotic eigenvalue densi-
ty and average conductance for the Laguerre ensemble
has also been considered by Chen et al., J. Phys. Con-
dens. Matter 5, 177 (1993).

APPENDIX A: THE LAGUERRE ENSEMBLE

The Laguerre ensemble is less familiar to physicists
than the more well-known Gaussian and circular ensem-
bles.?® These later ensembles are appropriate for matrices
with Hermitian symmetry such as Hamiltonians and ma-

1

v, N
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(iii) since this condition is satisfied by the distributions for
each slice and this property is not destroyed by multipli-
cation. What then is the specific form of the distribution
implied by these assumptions and does it resemble either
of the maximum-entropy distributions on the two Lie
groups? For orthogonal symmetry we do not know since
no solution has so far been possible. For unitary symme-
try a solution has recently been obtained which reduces
to the following, in the diffusive regime [ << L << NI:

Vv v,sinhv,dv, .

trices with unitary symmetry such as scattering matrices.
Though Q is Hermitian there is an additional symmetry
constraint which arises as a consequence of current con-
servation so that the Gaussian ensembles are not ap-
propriate. As shown in the main text there is, in the ab-
sence of time-reversal symmetry, an isomorphism be-
tween the group (Q, +) of 2N X2N matrices and the
group of N XN complex matrices under addition. The
appropriate ensemble for matrices @ with this symmetry
is the Laguerre unitary ensemble. If time-reversal sym-
metry applies, then the isomorphism is with the group of
N XN complex symmetric matrices under addition and
the relevant ensemble is the Laguerre orthogonal ensem-
ble. In this appendix we give a precise definition of these
ensembles.

The LUE of N X N complex matrices can be defined by
the following two requirements.

(i) All the elements w;; of  are statistically indepen-
dent (including real »f; and imaginary o/, parts of the
same element).

(i) The probability P(w)=p(w)dul(w) that a member
of the ensemble is in the volume du(w)

du(w)=[] dof; [] do};
ij ij

near w is invariant under transformations of the form
P(w)=P(w'), where ' =UwV and U and V are arbitrary
N X N unitary matrices.

Using arguments similar to that in Ref. 28 for the Gauss-
ian unitary ensemble it is possible to show these two pos-
tulates restrict p(w) to the generic form

plow)=Cexp(—a trow')

with a a real constant. In applications it is more useful to
rewrite the probability density in terms of the parameters
appearing in the singular value decomposition
o=u,;Vxu, Hereu, and u, are unitary matrices and x
is real positive diagonal matrix whose elements are the ei-
genvalues {x,...,xy} of the matrix wo'. We emit the
full calculation (since it is almost identical to the calcula-
tion in Appendix B) and simply give the result

P(@)=Cyg I Ix,—x,?

n>m

XTI e P /Z)dx,,dy(ul ddulu,) .

n
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The measures on the unitary matrices are given in Ap-
pendix B. Integrating out both of them we obtain (18)
with f=2.

Just as for the GUE the LUE can be derived from a
maximum-entropy argument. The matrices @ form a
group (w,+) under matrix addition. We may define an
entropy on the group

S[p(co)]=—f(w +)d,u(a))p(a))lnp(m) .

Here the measure du(w) is the invariant measure of the
group which (see Appendix B) has the form already given
in (i) above. If the entropy is now maximized subject to
the constraint

2
(troo')= NT ,
2a

we arrive at the LUE distribution.

The LOE is an ensemble of N X N complex symmetric
matrices satisfying the following conditions.

(i) All the elements o; ; of  not related by symmetry
are statlstlcally independent (including real mf‘l and
imaginary o} i, parts of the same element).

(ii) The probablhty P(w)=p(w)dulw) that a member
of the ensemble is in the volume du(w)

du(o)=]] da)ffjn d(o,{j
izj izj
near o is invariant under transformations of the form
P(w)=P(w'), where @' =UwUT and U is an arbitrary
N XN unitary matrix.

In an analogous manner to the discussion above for the
LUE it is possible to derive from these two conditions the
joint probability distribution (18) for the eigenvalues with
B=1. The LOE may also be defined in an exactly analo-
gous way as maximum-entropy ensemble on the group of
N XN complex symmetric matrices under addition.

APPENDIX B: LIE GROUP PROPERTY
AND THE INVARIANT MEASURE ON (Q, +)

We recall the definition of a Lie group. A Lie group G
is a set of elements {g} on which there is a well-defined
binary composition law which satisfies, in addition to the
usual conditions for a group, the following two condi-
tions. First the elements of G={g[a]} must be com-
pletely parametrized by n real parameters {a,...,a,}
varying in a continuous range. Second the group compo-
sition law must be of the form g[alg[b]=g[c(a,b)] with
¢ an analytic function of both a and b. These conditions
are easily verified for (Q, +).

The concept of the invariant measure arises in defining
integrals on a Lie group. If f(g) is a function and du
some measure on the group, then the integral of f over
the group is

I= deu(g)f(g)

The measure dp is said to be left invariant if
du;(g)=du;(gyg) for all gEG and any fixed g,EG.
This ensures that the value of integrals is independent of
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the choice of parametrization of the group elements.
There is also a right invariant measure satisfying
dug(g)=dug(gg,) for all g in the group. The left invari-
ant measure is unique up to a multiplicative constant and
can be shown to be equal to

dc,(a,b)

det 3 bﬁ

-1
d‘uL(g)= ] Hdan
b=0 n

Similarly the right invariant measure is also unique and a
there is a corresponding expression. Since (,+) is
Abelian, the left and right measures are by definition
identical and applying this formula we find immediately
the expressions given in the main text.

As stated in the main text the invariant measures may
be rewritten in terms of the eigenvalues of (). We take
the case with @ symmetric first. The differential of the
singular value decomposition (14) is

do=duvul+uvdul +udvul .

We define a matrix da by da=u ){du 1- Since u is unitary,
da is anti-Hermitian da=—da’. We use this to obtain
the invariant measure du(u;) on U(N) the group of
N XN unitary matrices under multiplication

d;u(ul)—Hda,, I1daX 1 da/; .

i>j i>j

The invariance within the unitary group is easily estab-
lished from the definition of da. We now rewrite the
differential in terms of da

do=u,(dv+dav—vda*)ul .

We will calculate the Jacobian of the outer transforma-
tion first. The transformation is of the form dw'=udwu’
with u unitary. We rewrite the transformation in terms
of a direct product do'=[u Xu]dw. The Jacobian of this
transformation is clearly just the determinant of u Xu.

Making use of the matrix identity [a Xc ][b Xd]
=agbXcd we can show that [uXu]u Xu] =[u
Xu][uTXuT]=I and hence that the determinant of the
transformation is unity |det[# Xu]|=1. This means that
we can ignore the outer transformation and consider only

do=dv+dav—vda*
Equating real and imaginary parts we have
dwf,- =dv, , da){,- =2v,-da,-{,- ,

dof;=(v;—v,)dal; , dol;=(v;+v,)da]; .
The Jacobian of this transformation is the determinant of

a diagonal matrix and so we easily find

du(Q)=Cc H vidv; TT Wi —v3lu(du,) ,
i>j
where C is a constant.

For complex matrices the singular values decomposi-
tion (13) is not umque smce it may be rewritten in many
ways as @ =u,e'%(u,e’®)’ where 6 is any N XN real di-
agonal matrix. There is thus an N-fold phase degeneracy
in the singular value decomposition. To obtain the in-
variant measure we first take the differential
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do=d(u,eWue®) +(u,e0)dv(u,e'®)’
+(u, e’ vd(u,e'®)’ .

We define da=(u,e®)'d (u,e’) and
db=(u,e'®)'d(u,e'®). As before da and db are anti-
Hermitian. The differential can be rewritten in terms of
these matrices as

do=u,e'%dav+dv-+uvdb ) (u,e®) .

Since o is independent of 6 we may make any convenient
choice. We use this freedom to make the singular value
decomposition unique by choosing the variation of the N
real elements of 8 in such a way that
~i6, . i0,
db;;=e ' ([uldu,);;+id6;)e" =0,

leaving only N2— N free parameters in (u,e'%). As before
the outer transformation may be ignored and we need to
consider only
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do=dav+dv—vdb .
Equating real and imaginary parts (j > i)
dwf,—=dvi , dm,{i=v,-da,{,- ,

R _ g R, _ R I — g 1. _ I
dw;;=da;;v;—v;db;; , dwj;=da;;v;—v;db;; ,

R _ _ 7 R R I g 1. _ I
dwj),- dal-’jv,--{—vjdbi,j, da)j,,- da,-‘jv,- vjdb,-yj.

The Jacobian is a product of 2 X2 determinants, which is
easily calculated giving the result

du(Q)=T] vidv, [TIv;—v;’uldu  )u(du,) .

i>j

Here wp(du,) is the invariant measure on the unitary
group and

dp(uy)=T] dbX L b, -

i>j i>j
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