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The observed crystal-field magnetostriction and its complex temperature dependence have been calcu-
lated for the itinerant iron-rich uniaxial ferromagnet Y,Fe,;, using a simple, although highly efficient,
type of rigid-band Stoner model. We have evaluated the irreducible magnetostriction modes €' and
€2, which represent the volume and c-axis pure tetragonal strains, respectively, as well as their tempera-
ture dependencies. Good agreement with the available experimental results has been attained. As a re-
sult, values of the corresponding microscopic magnetoelastic coupling coefficients, M{, and M$;, have
been obtained. Those values are very large (around — 10° K/Fe atom), as expected for an intermetallic

compound with a 3d shell transition element.

I. INTRODUCTION

The calculation of spontaneous magnetostriction, ei-
ther of a volume or shape character, and in particular
their temperature dependence, is for itinerant electron 3d
metals and intermetallic compounds a more complex, and
less well established, matter than for localized 4f
magnetic-moment rare-earth systems. For these we
dispose of the standard model of magnetoelastic (MEL)
coupling of Callen and Callen,! which for single-ion
crystal-field- (CF) origin magnetostriction, namely, pre-
dicts a monotonic decrease of the strictions with temper-
ature. However, for 3d systems, as in the intermetallic
Y,Fe;; (Ref. 2), the striction modes depict complex tem-
perature dependencies, and they can be null or change
their sign below the Curie temperature. These facts have
no simple explanation within the standard localized-
moment MEL model, under the assumption of only in-
cluding second-order terms in the magnetoelastic CF-
origin Hamiltonian. However, nonmonotonic tempera-
ture variations of magnetostriction were also observed in
rare-earth (RE) intermetallics, e.g., in R Cos (Ref. 3) and
R,Fe,B (Ref. 4), where the magnetostriction associated
with the R3" ion needed to be explained, the introduc-
tion of higher-order terms in the magnetoelastic-CF
Hamiltonian.*

The calculation of magnetostriction in 3d metals and
alloys traces to the works of Brooks, Katayama, and
Fletcher (BKF model),’ based on the tight-binding ap-
proximation (TBA), and not much has been advanced
since then except for a crucial simplification introduced
by Kondorskii and Straube® and Mori and co-workers.’
A modified version of the BKF model was recently
developed® to explain the approach to technical satura-
tion of the CF magnetostriction in the hexagonal fer-
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romagnet Y,Fe;; (Ref. 9). The difficulty with the BKF
model is the need for a good knowledge of the system
band structure, and even an explanation of the nonmono-
tonic striction variation is unfeasible. Only a diagonali-
zation of the full Hamiltonian in a sufficient number of
k-space points would probably give the answer.

Recently a slightly more simplified but, in our opinion,
quite efficient model of magnetostriction for itinerant sys-
tems was proposed,'® which allows for the calculation of
the striction temperature dependence, within the rigid-
band approximation. The model was then limited to
amorphous isotropic!! and cubic!® systems, and it has
been presently extended to uniaxial ones, the case for the
Y,Fe,; model system.

The compound Y,Fe,; crystallizes in the Th,Ni,;-type
hexagonal space group P6;/mmc (Refs. 12 and 13). A
study of many magnetic properties of Y,Fe;; can be
found in Refs. 9 and 12. There are four nonequivalent Fe
sites (4f, 6g, 12j, and 12k) in the unit cell, with the 4f
dumbbell of Fe atoms supporting the 3m trigonal point-
group symmetry, the remainder sites being of lower sym-
metry.'>!* Within the 3d real atomic orbitals representa-
tion, ie., |xz)=[1), |yz)=12), Ixy)=[3),
[x2—yp2)=|4), and |2z2—(x%+y?))=]5), all sites, ex-
cept the 4f, support singlet-based representations, being
magnetostrictively inactive. For the 3m symmetry the
fivefold orbital degeneracy is lifted into a singlet, |5), and
two doublets, {[1),|2)} and {[3),[4)] (Ref. 1), and
therefore the 4f Fe atoms are potentially the only magne-
tostrictively active. However, notice that such a levels
splitting is also applicable to hexagonal symmetry sys-
tems, and we will take advantage of it when modeling the
magnetostriction as a result of the whole average magnet-
ic system.

Magnetostriction measurements, between 4.2 K and
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FIG. 1. Temperature dependence of the volume irreducible
strain €*! for the hexagonal Y,Fe,; intermetallic compound.
The points (@) are the experimental results (Refs. 2 and 8), and
the continuous line the model fit, for the microscopic magneto-
elastic coupling parameter M{, quoted in Table 1. The experi-
mental strains correspond to having the spontaneous magnetiza-
tion along the hard c axis.

near the Curie temperature, 7,=310 K (Ref. 12), were
recently performed by Garcfa-Landa et al.? in applied
fields up to 15 T, with a determination of the field and
temperature variation of all the modes of magnetostric-
tive deformation. Here we are only interested in the CF
origin irreducible strains, preserving the axial symmetry:!
6'1’1=6xx__+ €, t€,, the volume distortion, and
€*2=(V'6/2)[€,, —(1/3)e*'], the shape variation only
along the c axis (¢; are the Cartesian strains). In Figs. 1
and 2 we show the really quite complex temperature
dependencies for the measured spontaneous strains €*!
and €*? (Refs. 2 and 8), obtained when the spontaneous
magnetization rotates from the easy basal plane towards
the applied field direction, i.e., H||c, the hard axis.’

The interest of the present study stems from several
considerations: the number of noncubic 3d intermetallic
compounds with Y, La, or Lu, where magnetostriction
has been measured in single crystals or sintered pseudo-
crystals is quite reduced;'* in contrast with the only
theoretically investigated cubic Ni metal,’ within the
BKF scheme, magnetostrictive strains in the uniaxial
Y,Fe,; system are somehow larger than in Ni (and in Fe
as well'), an advantage for comparing with theoretical
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FIG. 2. Asin Fig. 1, but for the c /a axial tetragonal irreduc-
ible distortion €*2, for the Y,Fe,; intermetallic compound
(Refs. 2 and 8). The determined microscopic magnetoelastic
coupling parameter M$, is quoted in Table 1.

calculations. Such large strains should be sought in the
stronger CEF produced by the Y** nearest-neighbor ions
surrounding the dumbbell of the 4f Fe atoms.

Our task here is double: to explain the complex tem-
perature dependencies of the €*! and €*2 modes, and as
an important by-product to determine the second-order
microscopic MEL coupling coefficients. The paper is or-
ganized in the following way: in Sec. II we introduce the
system Hamiltonian and obtain its energy levels; in Sec.
III we develop a detailed presentation of the magneto-
striction model for uniaxial systems; in Sec. IV we ac-
count for the results, and in Sec. V we discuss our work
and extract the main conclusions.

II. MODEL HAMILTONIAN AND
ENERGY LEVELS CALCULATION

A. The model Hamiltonian

Our calculations are done within the tight-binding ap-
proximation (although this approximation is not essential
for the model), using Bloch functions of the usual kind,

)=k d Y=L ikl
(k) =k;A) \/NEI"" d(r—1), (1)

where [ are the Fe atom positions, k the wave vector, A
stands for the atomic orbital plus spin states and N is the
number of Fe atoms in the crystal. ¢, =|A) are atomic
wave functions, product of the orbital basis |1) to |5)
times the spinors, and a common radial, f(r), function.

The 3d itinerant electron Hamiltonian H at site [ is
modeled in the following way:!1°

H=H+HS+H'H, +H,,+H, , (2)

where the different Hamiltonian terms are as follows un-
derneath. All they refer to an unique ion: i.e., they are
translationally invariant. It is shown that such invari-
ance means that matrix elements of H are of the form
(k)M [H|kA)=(A'|H|A)8, , i€, k independent.
Therefore we can treat H as a localized-electron Hamil-
tonian. For the CF term we will initially take the one for
3m point symmetry,

Hep= z Bn06n0+B43643 » (3)
n=2,4
where B,,, are CF coefficients and O,,, and O,,,, orbital

angular momentum L, Stevens-Buckmaster—type opera-
tors.!S In particular,

0,4 =35L}—[30L(L+1)—25]L2

+3L(L+1)[L(L+1)—-2] .

We will neglect the nonaxial CF term in (3) because the
basal plane anisotropy is negligible in Y,Fe,; (Ref. 9), the
ensuing Hamiltonian having the full hexagonal symmetry
(point group 6/m,2/m,2/m). This approximation is
compatible with the 4f-site 3m-point symmetry of the
magnetostrictive atoms.  Within the {[1),]2)},
{I13),14)}, and |5) orbital basis, inclusion of remainder
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terms B,y0, +B,00, gives the splitting, A, +44,,
—(2850FtAy), 2850— 644, with A,y=—a;B,,{r?)y,
and A=~ (B4 /12)(r*);,, where a;,B, are Stevens
reduced matrix elements and ("), the Fe 3d shell radi-
al n moment.!® Notice that the perturbed energy level
gravity center remains invariant as Tr{O]"}=0
(m,n#0).'® Nothing is known about the values of the CF
parameters for Y,Fe,,;, which turns out to a determina-
tion of the CF level splitting, currently unfeasible. There-
fore, they must be adjusted within our magnetostriction
calculation, and in order to reduce the number (eight) of
adjustable parameters in our calculation we will make the
further simplifying approximation of keeping only
B,y0,, within the CF Hamiltonian. We will see that
such an approximation works quite well when comparing
our model results with magnetostriction experiments.

The Zeeman term is composed of spin and orbital con-
tributions, which within the mean-field approximation
and under an effective magnetic field of exchange origin,
H, ¢ (the external field is considered zero, inasmuch as we
are going to calculate spontaneous strictions), can be
written as

H3=—pup(od+aL)Hy, 4)

where o are the Pauli matrices and a a parameter, which
takes into account the effective quenching by the CF of
the orbital angular momentum L, and also the effect of
the orbital polarization by H ., likely through spin-spin
and spin-orbit interactions. However, a clear under-
standing of the origin of such a polarization has not yet
been fully achieved.!” The spin-orbit contribution has the
usual form,

H,=ALo , (5)

where A is the spin-orbit coupling constant.
The CF single-ion magnetoelastic coupling Hamiltoni-
an, up to second-order terms, has the form!

H,=— 3 |M§IL2+L}+L2)e
i=1,2
V3 .
+T3 alL2—IL(L+D]e% |,  (©

H.;lc(OX axis) :

where M (i,j=1,2) are the microscopic MEL coupling
coefficients and €', the irreducible strains defined in Sec.
I

Finally the classical elastic energy for hexagonal sys-
tems, keeping only the terms related to the a strains, is'

H,=1i[Cf (€12 +C% (e ]+ CHe*1e™? . (7)

B. Hamiltonian matrix elements
and energy levels calculation

The Hr Hamiltonian diagonal matrix elements have
already been considered in Sec. Il A. Accordingly with
the model outlined in Sec. II, for the Zeeman spin and or-
bit Hamiltonians we have to consider two situations, ei-
ther the spontaneous magnetization (i.e., the effective
magnetic field) being along the ¢ axis or within the basal
plane, and besides to obtain the matrix elements of the
MEL Hamiltonian (6). Now, in order to simplify the cal-
culations, we have neglected the matrix elements of the
spin-orbit interaction between the two doublets and be-
tween these doublets and the singlet. This approximation
is justified if the crystal-field energy is much greater than
the spin-orbit coupling one, which is the case here. In
this way, a nonzero orbital magnetic moment for our
model system is formed only within the two doublets.
Then the only nonzero matrix elements for both spin pro-
jections are

(xz,+1/2|H,,|yz,+1/2)
=(yz, F1/2|H, |xz, F1/2)=+i4A ,
(x2—y% £1/2|H,, |xp,£1/2)=F2iA . (8)

We will treat both strains €*! and €*? on the same foot
because the MEL Hamiltonians in (6) are identical, ex-
cept for the MEL coupling coefficients. This is reason-
able because both strain modes preserve the unit cell hex-
agonal symmetry. Consider, for instance, the modifying
¢ /a ratio strain €*? and cast together the spin and orbital
Zeeman Hamiltonians. We obtain the same matrix ele-
ments for the two doublets, and if, e.g., we consider the
doublet {[1),]2)}, we have for H.; applied either per-
pendicular or parallel to the hard ¢ axis the following.

(1, F12|HS T E1,+1/2) =2, 21 2|HS TE(2, F1/2) = —pugHY; , (9a)

(5|H7*HS)=—ppHYy ,
where HS "t=HS5+HL.
H4||c(OZ axis) :

(LE1/2|H T E1,£1/2) = FugH?, (2,+£1/2|H7 " E1,£1/2)=—ipgaH% ,

(5,21/2|HS*L|5,£1/2) = FuzH; .

(10a)
(10b)

Now, according to Eq. (6), the MEL Hamiltonian is diagonal and, for both spin projections (except for a common factor

#), becomes
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,\/_
(1HS2(1) = (2]HS22)=— |6M%, —T3M§’2 2
(3|HZ2(3)=(4|HZ 4)=—(6M$, +V3ME )e*? (1

(5|HZ25)=—(6M%, —V3M$E, )e®? .

As it was said before, the matrix elements involved in the volume strain, €*!, calculation are identical to the above
ones, just changing, in Eqgs. (11), M, and M%, by M{, and M$,, respectively. The diagonalization of Hamiltonian (2)
(making use of the above matrix elements) yields the eigenvalues underneath, which split the {|1),]2)}, {[3),]4} ), and
|5) energy levels in the form.

Heﬂlc N
X \2 2 a ‘/3 a a,2 (12a)
E1,2=E3,4=iv(uBHeﬁ) +A +A+ _6M21+TM22 € y a
Es¢=E;3=1V (ugH% P +442—20—(6M% +V3M%)e™? , (12b)
Eqo=tupH%+20+(—6M§ +V3M% )™ . (12¢)
Heﬂ'uc :
, . . « V3.0 a| an (13a)
E [;,£}=¥ﬂBHeﬂ-Zt(A:FalyBHeﬁ')+A+ _6M21+TM22 € N
E'\s6= FrpHeat(24 F2aupHig)— 28— (6M5 +V3M$)e™? (13b)
E'y 0= FugHig+2A+(—6M3% +V3ME, )e>? . (13¢)

[

In Eq. (13a), the upper and lower signs in front of the first  to magnetic anisotropy and magnetoelastic coupling
term and inside the second term correspond to the new  comes from those regions of the Brillouin zone (BZ)
(1,2) and (3,4) doublets respectively, and the signs in front =~ where symmetry is high enough. This simplifies the
of the second terms split those energy levels, fully lifting  problem of anisotropy and magnetostriction calculations
the degeneracy. The same rules apply to Eq. (13b). In  enormously, because such regions are in fact reduced to a
the case of the volume strain mode, €*!, the energy levels few k points of high symmetry in the BZ. Besides, in or-
obtained are, indeed, identical to those in Egs. (12) and  der to have any anisotropy and magnetostriction, those
(13), if we modify the MEL coupling coefficients in the  states must be degenerate or nearly so, as we have seen in
form above mentioned. Sec. II. This degeneration is lifted out by the strong spin

A calculation entirely identical to the done above, and orbit Zeeman interactions and by the, in comparison,
shows that for the { Ixy), |x2— yz)} doublet, the Zeeman weaker spin-orbit coupling, which is relatively small in 3d
Hamiltonian matrix elements are similar, except that now transition metals and intermetallics. An additional condi-
the orbital quenching constant a can be, in principle, tion must be fulfilled, and it is that the energy of those
different. high-symmetry Bloch states should be close enough to

The energy levels (12) and (13), constitute the centers  the Fermi level. This condition is required because
for the energy bands in the distorted crystal, before to  within our approach, the orbital magnetic moment is not

consider any itineracy effects or energy band k disper-  quenched for the states in those k regions, and it is com-
sion. This aspect will be treated in the next section, pletely quenched elsewhere. This quenching is well
which constitutes the core of the present model. known to be due to interband site hopping because the
Slater-Koster integral matrix elements for the hopping
IIL. MAGNETOSTRICTION MODEL Hubbard ¢; operator vanish by symmetry in the above-

FOR UNIAXIAL ITINERANT SYSTEMS mentioned regions of the BZ.'®

Our basis of one-electron states, in order to build the
The model presented here is an extension of an early Bloch functions (1), is limited here to the ten 3d states ob-

mode}oéfveloped for isotropic and cubic symmetry sys-  tained in Sec. II B, at high-symmetry points of the BZ,

tems, as it was mentioned before. Nevertheless we  plus two nonorbital states with spins up and down, com-
will now develop with more detail some of the previously  ing from band electrons of other characters. An even
obtained results, for the sake of transparency and also be- further simplification is to consider only a single k point
cause the obtention of the irreducible strains is more  in the BZ: either for the 4f site or for the whole hexago-
complex. nal cell, the BZ will have uniaxial symmetry. Then some

It is a well-known result®’ that the main contribution  particular k point within the axis and close to the Fermi
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wave vector kpy would likely be the most important in
determining the magnetic anisotropy and magnetoelastic
coupling interaction. The above assumed two nonorbital
states will not give any contribution to the magnetoelastic
coupling, i.e., their energies will not depend on the strain.
Then, our model function for the density of states con-
sists of ten narrow bands plus two wide bands, all of them
approximated by symmetrical elliptical functions but
with different bandwidths and filling capacities. The
centers of those narrow bands have been already deter-
mined and are given by Egs. (12) and (13). The energy
positions of the wide bands are determined by the spin
Zeeman term only. Now, the energy of the system is cal-
culated within the Stoner model," i.e.,

v=3 J' EpEVE (14)

where p;(E) is the density of states of the Ath subband
and given by the expression,

21122

] . (15)

26, E—-E,
7TW;\ Wk

CA and WA are the filling capacities and the half band-
width of the Ath subband, respectively, u is the chemical
potential, and E, are the A-subband energy centers, given
by Egs. (12) and (13). A constraint in the model is,
indeed, the condition of the constant number of 3d elec-
trons n within the ten subbands, where

pi(E)

n,= fprk(E)dE (16)

is the Ath subband number of electrons and

Enk—__n ’ (]7)
A

the constraint, which in turn determines the chemical po-
tential u, which becomes temperature dependent when
the spontaneous magnetization (or H ., proportional to
it) varies, as we shall see.

Our final goal is the calculation of the irreducible equi-
librium spontaneous strains €' and €2, in special their
temperature dependencies, for which we have experimen-
tal data at hand for the Y,Fe,, intermetallic compound®®
as was mentioned before. The calculation will be per-
formed within the rigid-band model.?® It means that
changes of shape of the density of states p,(E) due to the
magnetization (of orbital and spin origins) and, to a lesser
extent, to the deformation of the crystal, are neglected.
Therefore, within our model description the effect of the
magnetization (or of H ) and the strains on the electron-
ic structure is limited to mutual shifts of particular sub-
bands. Temperature effects on the irreducible strains are
taken into account through the temperature variation of
H 4, or equivalently of the system spontaneous magneti-
zation.!® We will now describe in some more detail such
calculations, which were early outlined in Ref. 10.

Under the external solicitation (effective field and/or
strain) each subband A should shift in AE, (H 4,€") un-
der the rigid-band hypothesis. Therefore, the Fermi level

has to change, by Ay, in order to fulfill the constraint
(17), or equivalently ¥,An; =0, where An, is the Ath
subband electron occupation variation due to the shift.
This variation, within the linear approximation for AE;,
assumed to be small enough, amounts,

An, =p;(p)Ap—p,(L)AE, , (18)

which under the above constraint yields,
Au(H 4,€*")= zp}‘(,u)AE;L/ > palp) . (19)
) A

Now, the overall energy variation of the system is,

AU(H €)= %(AU‘;H—AU&”—FAU&”) , o)

where each term in (20) has the following expression and
meaning: AU'!=—n, AE, is the energy subband gain
under a rigid-band shift, AU (AZ) =up,(1)AE, is the ener-
gy subband cost in order to keep the chemical potential u
the same for all polarized subbands, and
AU (13) = —plAup;(p) is the energy subband gain due to
the modification of p. Through the introduction of (19)
in (20) and using the energy variations AU'”, shows that
contributions i =2 and 3 cancel out, and therefore, the
net energy variation finally amounts to

AU(H g,6%)=— 3 n,AE, . @1)
A

This result means that, for a given spontaneous magneti-
zation (or H ), Eq. (21) gives the magnetoelastic energy
of the system, which becomes temperature dependent
through the modification of the Stoner gap
0=(M, —M_)H 4, where M. are the up and down spin
plus orbital magnetizations in the direction of H. and
My (T)=M_, —M_ is the spontaneous magnetization.
Notice that Eq. (21) keeps in well with the rigid-band as-
sumption, where the effect of the magnetization and
strain is limited to the mutual shifts of particular sub-
bands, although generally electron transfer among them
does occur.

Now, for a constant value of Mg (or H), if H is ap-
plied parallel and perpendicular to the c axis, the energy
difference

Uy =U(H,gllc)— U(H glc) (22)

[where U is given by Eq. (14)] represents the magneto-
crystalline anisotropy energy of the system, which for an
easy-plane system as Y,Fe,,;, must be a positive quantity.
Such a constraint was imposed to our calculation of the
magnetostrictive strains, as it will be shown in Sec. III.

Now the MEL energy given by Eq. (21) is a macroscop-
ic one, and we should relate it to the phenomenological
MEL energy expression for uniaxial systems, in terms of
Callen and Callen! phenomenological MEL coupling con-
stants M,-?(H o I') and irreducible strains. The MEL ex-
pression can be obtained from the microscopic Hamil-
tonian (6), in the form,!



50 MODEL CALCULATION OF THE CRYSTAL-FIELD . .. 239

— = V3 = _
U,,,e=—[M‘,’lea’l+M‘;1ea'2](a§+a§+a§)——éi[Mfze“'WMgzeaﬂ][ag—%(a%+a§)] , (23)

where (a,,a,,a;) are the cosine directions of the spon-
taneous magnetization, M, (or of H.4). In order to relate
Egs. (21) and (23) to obtain the phenomenological MEL
coupling parameters, we proceed to calculate the strain
derivatives of both expressions and to equate them.!°
However, in order to isolate the individual MEL parame-
ters we have to consider the energy differences for H ¢
parallel and perpendicular to the c axis, in the case of the
€*! and €*? modes. Proceeding in such a way we im-
mediately obtain for the phenomenological MEL parame-
ters the expression,

3E,
n "
2 g

3E,

"2 e

M5=V3

b

Hglc

Heﬁ"" B [%
(24)

with i =1,2. Notice that these parameters have been cal-
culated within our rigid-band assumption, i.e., changes of
the shape of the density of states due to the existence of
spontaneous magnetization and to the strains are neglect-
ed. It means that, within our model, the influence of
magnetization and strains on the electronic structure is
limited to mutual shifts of particular subbands, as said
before. On the other hand, in order to obtain the equilib-
rium irreducible strains we have to add to (23) the elastic
energy (7) and minimize the overall energy, obtaining in
such a way, for the equilibrium strains,

= M‘a Ma
e“’l(c)=ﬁ—£, e"’z(c)=ﬁ 2 (25)
3 Cllzl 3 C?Z

where Cjj are the symmetric elastic stiffness constants.
The strictions (25) correspond to the spontaneous magne-
tization along the hard c axis, which were the actual mea-
sured irreducible strains for Y,Fe;; compound.’ In the
derivation of Egs. (25) we have assumed that the different
strain modes are decoupled, i.e., each time the other
strain is assumed to be zero, which is, in fact, the experi-
mental result.>’ Equations (24) and (25) represent the
goal of our model.

IV. RESULTS

In Figs. 1 and 2, respectively, we present the experi-
mental temperature dependencies for the spontaneous
magnetostriction models €*! and €*? (Refs. 2 and 8).
These values were obtained from the magnetostriction vs
applied magnetic field isotherms at the anisotropy field
values Hy (of the order of 3T along the c axis), where the
rotational magnetization process against the anisotropy
torques is finished.® This field is indeed negligible com-
pared with the molecular one and was neglected in the
evaluation of H ;. In Fig. 3 we show the calculated tem-
perature variation of the reduced magnetocrystalline an-
isotropy energy Ug(T)/Ug(0), according to Egs. (22)
and (14). The positive sign of this energy was used to con-

trol that the basal plane was the easy one, at all tempera-
tures. In Figs. 1 and 2 we also represent the achieved
theoretical fits for the irreducible strictions temperature
variations, calculated according to Egs. (24) and (25). As
overall, the fits can be reputed as reasonably good. Noth-
ing is known about the Cartesian elastic stiffness con-
stants C;; for Y,Fe,, intermetallic compound, but consid-
ering that this compound is an iron-rich one, we have
taken for C;; the values for pure iron.?! At 0 K, they
amount C;;=2.41X10" Jm™3 and C,,=1.46X10"2
Im™3, being very weakly temperature dependent. Then
the relevant symmetry elastic constants for uniaxial sym-
metry, approximately are!

f1=3C+Cpl], CHL=3C,+C),], (26)

and then C% =0.86X10" Jm~3 and C%,=2.56%X10"
Jm™3, being very slightly temperature dependent be-
tween 0 K and T-=310 K. The values of the model pa-
rameters used in the above strain fits are collected in
Table I. The value of A was slightly different (=4%) for
the fits of €*! and 2. We fixed the total number of elec-
trons within the whole band to n=7.2 per Fe atom,??
and the 0-K Stoner gap 6 was taken from the polarized
band-structure calculations of Inoue and Shimizu.?? §
was allowed to vary with temperature according with the
spontaneous magnetization Mg temperature variation.'”
We allowed also the chemical potential u to vary with
temperature, as we explained before, in order to keep n
constant.

The second major result, which emerges from our work
is the determination of the microscopic magnetoelastic
coupling parameters M, and M$,. The values obtained
from the above fits are quoted in Table I. They are large
(between around one and two orders of magnitude larger)
when comparing with many strongly anisotropic rare-
earth intermetallics,?® as could be expected for a 3d shell
transition element intermetallic compound.

1 1 1 1
50 100 150 200
Temperature (K)

! h
250 300

Anisotropy energy, Uk (T)(reduced units)

FIG. 3. Temperature dependence of the calculated reduced
magnetocrystalline anisotropy energy Ug(T)=Ux(T)/Ug(0)
[see Eq. (22) in text], for the Y,Fe,; intermetallic compound.
The sign of Uy is positive at all temperatures.



240 K. KULAKOWSKI AND A. DEL MORAL 50

TABLE I. Values for the model parameters used for the Y,Fe,; intermetallic compound. The meaning of the parameters is the
following: R is the ratio between the filling capacities of the wide conduction and the five d-electron narrow bands; A is the axial
crystal-field energy shift for the {xy,yz} doublet; W, is the half-band width of the wide conduction electron band; W, the half-band
width for the 3d narrow bands; n is the total number of 3d electrons per Fe (Ref. 22); § is the Stoner gap (Ref. 22); a is the orbital
quenching and polarization parameter; 4 is the spin-orbit coupling parameter (Ref. 5); M{, and M$, are the determined microscopic
magneto- elastic coupling parameters (in degrees K per Fe atom).

R A (eV) W, (V) W, (V) n 5 (eV) a A (V) 7 M4,
1 1.23% 34 0.3 7.2 1.266 0.4 0.0468 —1.4X10° —0.8X10°
1.28°

*From the fitting of the €*' mode thermal variation (Refs. 2 and 8).
°From the fitting of the €*? mode thermal variation (Refs. 2 and 8).

V. DISCUSSION AND CONCLUSIONS

A model of magnetostriction for uniaxial itinerant fer-
romagnets has been developed, which gives a good ac-
count for the magnetoelastic behavior of the hexagonal
iron-rich intermetallic compound Y,Fe;;. In our model
calculations, some strong approximations have been
made, which do not allow us to consider the present re-
sults as fully quantitative ones. The most important of
them are the model density of states, taking into account
only one point of the Brillouin zone, the neglecting of
some matrix elements of the spin-orbit Hamiltonian, the
description of the complex axial crystal field (CF) poten-
tial by only one adjustable second-order CF parameter
and the lack of thermal excitations. Still, we believe that
our phenomenological description reflects the essential
features of the CF origin magnetoelastic coupling for the
Y,Fe;; hexagonal intermetallic compound. If first-
principles electronic structure calculations were per-
formed to obtain the magnetoelastic coupling parameters,
they should be based on the same physical picture of the
coupling of the crystal-lattice electric field to the spins
through the anisotropic 3d orbital states.

The main achievements of this work are as follows.
First of all, the fits of the complex temperature dependen-
cies of the volume €*! and ¢ /a distortion. €*? irreducible
strains (or equivalently of the M{, and M$, phenomeno-
logical magnetoelastic parameters) for the Y,Fe,; hexago-
nal ferromagnet. Such strictions, of pure crystal-field ori-
gin, could not be certainly explained within the localized
electron picture.! Second is the determination, for such
uniaxial system, of the microscopic magnetoelastic cou-
pling parameters M §, and M9,, respectively, related with
the €®! and €*? strains. These parameter values are sum-
marized in Table 1. The large values obtained (between
one and two orders of magnitude larger than for strongly
anisotropic rare-earth intermetallics) indicate, as expect-
ed, the strong crystal-field potential felt by the 3d shell
atoms in intermetallic compounds with Y or a rare-earth
partner. To our knowledge this is the first time that such
microscopic parameters are obtained for a uniaxial in-
termetallic compound, having as magnetic atoms a 3d
element only.

In order to fit the temperature dependencies of the an-
isotropic a-striction modes we keep the CF Hamiltonian

only up to second order, using only a single CF parame-
ter A, and we modify it very slightly (about 4%) in order
to fit the thermal dependence of the two modes €*! and
€2, Tt can be shown that the phenomenological MEL
coupling parameters, calculated according to Egs. (24),
are extremely sensitive to rather small variations in A
(around 1073). This means that the simple approach to
magnetostriction for itinerant electron ferromagnets,
developed in Sec. III, looks quite reliable.

The thermal dependence of the irreducible strictions
(or equivalently of the phenomenological magnetoelastic
parameters) was treated through their dependence on the
Stoner gap, which is believed to be proportional to the
spontaneous magnetization.” The Stoner model is
known to fail in the description of collective thermal exci-
tations.?%2* However, we would like to stress here that
we do not calculate the temperature dependence of the
magnetization. Instead, we use the experimental varia-
tion of this dependence, to compare the calculated Stoner
gap variation of the magnetostriction with the measured
thermal dependence of the irreducible magnetostrictive
strains. We should also add that the Stoner model has
been found to be equivalent to the more rigorous local-
spin-density approximation.!” The essential difference
between these two approaches is the energy dependence
of the Stoner gap. However, this dependence is not cru-
cial here because the main contribution to the magneto-
elastic coupling comes from narrow-band states, whose
energies are near to the Fermi level.
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