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First-principles calculations of the itinerant-electron magnetic form factor for ferromagnets which in-

clude both the spin and orbital contributions have been completed for ferromagnetic nickel and iron. To
our knowledge, these are the first calculations of this type for 3d ferromagnets. These calculations also
include, by necessity, the spin-orbit interaction. Numerical results based on spin polarized bands used

previously by Cooke et al. [Phys. Rev. B 21, 4118 (1980)] have been found to be in good agreement with

experiment while results based on local density bands were found to be in good agreement for iron but
not for nickel. In addition, it has been shown that if the energy dependence of the radial part of the
wave functions can be ignored then the dominant terms in the itinerant-electron form factor can be writ-
ten in a form almost identical to the atomic form factor. This provides an explanation for why fits to the
atomic form factor have been so successful.

INTRODUCTION

+F„„(K),
where M is the fraction of the total moment for each
case, F(K) is the corresponding form factor, and K is re-
stricted to reciprocal-lattice vectors. The numerically
significant contributions to the form factors used in this
analysis are given by
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The magnetic form factor measured by elastic
neutron-scattering techniques yields direct information
about the Fourier transform of the ground-state spin den-
sity and, therefore, about the electronic wave functions of
a solid. There are three distinct contributions to the form
factor. The largest component is essentially the Fourier
transform of the electronic spin density. The second
arises from the orbital motion of the electrons. The third
contribution results from the core electrons which occu-
py closed shells and are virtually unaffected by local envi-
ronmental effects. Because many techniques, such as x-
ray photoemission, do not probe solely the ground state,
form-factor measurements are of particular interest for
local spin-density theory. In the past, experimentally
determined form factors for magnetic solids have been
analyzed at least partially in terms of a theoretical ex-
pression derived for atomiclike systems. ' The atomic
theory is adapted to itinerant-electron magnets somewhat
arbitrarily by dividing the electronic system into "nonlo-
calized" and "localized" parts. The nonlocalized elec-
trons are assumed to be uniformly distributed throughout
the crystal, while the localized electrons combine to form
an appropriate atomic configuration. The total form fac-
tor, normalized to unity at K=0, obtained from this
model can be written in the general form

1
F(K)=M~LF~L {K}+—Mt FL(K)+M„bF„„(K)

FL, (K)=(jo(K) id+(-', y
—l)(j~(K) }d&(K),

F„b(K)= (go(K) )d
—

—,
' (gp(K) ),
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(4)

A (K ) =—,
'

[K„+Ky +K, ——,'],
where K indicates a unit vector. As shown by Watson
and Freeman, the core contribution results from rela-
tively small differences between the radial functions for
opposite-spin core electrons; there is, of course, no net
spin associated with the filled core. The magnitude of
this is term is comparable with experimental uncertainty
and will be neglected.

The first two terms in Eq. (1) comprise the spin contri-
bution. The form of the first term arises because of the
assumed uniform distribution of the "nonlocal" electrons.
The local term was first derived by Weiss and Freeman
and represents the contribution from the 3d electrons.
The orbital contribution was first derived by Blume and
was obtained by placing the 3d atomic configuration into
a crystal field consistent with the symmetry of the solid.
Blume obtained an additional asymmetry term (propor-
tional to A (K) in the orbital contribution [Eq. (4)]), but
this is srn. a11 and generally neglected.

The moment fractions are usually expressed in terms of
the atomic g factor and the fraction of the d-like spin mo-
ment which is nonlocal, u:
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where y is the Weiss-Freeman parameter (the fraction of
the 3d electrons in e orbitals) and

&jt(K)&d= fjt(«)Rd'(r)r'«,

(gt(K)}d= fgt(Kr)Rd(r)r dr .

Rd(r) is the atomic radial function for d symmetry. The
jt(x) are spherical Bessel functions and the gt(x) are simi-
lar functions originally defined by Trammell. The asym-
metry factor is
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MNL =2a/g,

ML =2(1—u)/g,

M„&=(g —2)/g . (10)

Inclusion of the spin-orbit interaction leads to complex
wave functions, a mixing of opposite-spin states, and a
reduction in symmetry.

The expectation values in Eq. (11) are evaluated in
terms of the single-particle band structure wave function

Excellent fits to experimentally determined form fac-
tors have been obtained for both nickel and iron by vary-
ing the atomic configuration and the parameters a and
g. ' There are, however, a number of conceptual prob-
lems which arise when this theory is applied to itinerant-
electron systems. These problems are all traceable to the
concept of using an atomic configuration to describe the
electronic properties of a metallic system. In addition,
because of its atomistic nature, the expression in Eq. (1)
cannot be used with any degree of certainty to test pro-
posed spin-polarized band structures for itinerant-
electron magnets.

A number of calculations of the spin part have been re-
ported for nickel and iron. ' The purpose of this paper
is to investigate the total magnetic form factor appropri-
ate for itinerant-electron magnets and to present some
numerical results for nickel and iron. The paper is divid-
ed into six parts. The first outlines the general theory,
the second and third give some results for the spin and
orbit terms, respectively, the fourth provides a compar-
ison with the atomistic theory, the fifth presents some nu-
merical results, and the last gives a summary and con-
clusions.

GENERAL THEORY

Simply stated, the derivation of the form factor for
itinerant-electron systems can be reduced to the evalua-
tion of

g„z(r)=ga„„(k)P„(r,E„z)y (16)

where

p„,(E)=—ga„„(k)a „(k)5(E—E„i,),1

nk

(18)

D„„(K,E)=fP„(rB)g O'y, g (rE)d,r„, ,

and f (E) is the Fermi occupation factor.
If the symmetry orbitals P„can be written in the gen-

eral form

where p is a symmetry index (p =l„,m„} which runs
over s, p, and d terms and cr is the spin index. The

f $„(r,E) ] are energy-dependent symmetry orbitals, y is
a spinor, and the (a„„(k)f are expansion coefficients.
For suitable choices of $„(r,E), this general form of the
wave function is valid for interpolation schemes such as
those proposed by Slater and Koster (SK) or Hodges,
Ehrenreich, and Lang (HEL). It is also appropriate,
within the muffin-tin sphere, for wave functions obtained
from KKR band-structure calculations.

Then, for any operator 0,
(O(K) ) =gJp„„(E)f(E)D„„(K,E)dE, (17)

pv

l—F(K)=F,p,„(K)+F„s(K),

F„;„(K)=[( &
—K(( & K)] ",

J

(12)

(13)

P„(r,E)=(i) "R„(r,E)Y„(r), (20)

e' '=4ng(i) "j& (Kr) Y„(r)Y„(K) (21)

where R„(r,E) is an energy-dependent radial function
and Y„(t)is a spherical harmonic, and the identity

i(KX (pz) ).m
a~K~

~pK} ye pj

(14)

(15)

where s. and p - are the spin and linear momentum opera-
tors, respectively, of the jth electron and m is a unit vec-
tor along the moment direction (m=(sz 0) }. This is
the quantity that is obtained from elastic neutron-
scattering experiments using polarization analysis. Usu-
ally, the moment direction is chosen to be perpendicular
to the scattering plarie, in which case the second term in
Eq. (12) is zero. This convention will be adopted
throughout this paper. The more general case can be
treated using similar techniques.

It is straightforward to show for cubic systems that the
so-called orbital term in Eq. (11) is zero unless the spin-
orbit interaction is taken into account. Since this interac-
tion is known to be non-negligible in many itinerant-
electron magnets, it must be included in the calculation.

is used, then D„„ in Eq. (15), can be evaluated in a
straightforward way for both the spin and orbital cases.
The Y„are chosen to be real spherical harmonics, which
makes the expansion coefficients in Eq. (16) complex.
The form for P„given in Eq. (20) will be used throughout
this paper.

Inclusion of the spin-orbit interaction affects the form
factor in two ways. First, the explicit form of the form
factor depends on the direction of the magnetic-moment
direction relative to the crystalline axes which is defined
by the conventional Euler angles 8 and P. If, for exam-
ple, the moment direction is restricted to the crystalline z
axis (8=0), the spin-orbit interaction reduces the crystal
symmetry for cubic ferromagnets from 0& to C4&, only
inversion symmetry remains for the general case.
Second, additional terms appear in the expression which
are generated by the spin-orbit interaction; these terms
depend explicitly on the complex nature of the electronic
wave functions. This can best be demonstrated by refer-
ring to some explicit results.
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SPIN FORM FACTOR

The spin part of the form factor is calculated from Eqs.
(12) and (17) with (0 ) = (s~) and

D&„(K,E)= f $&(r,E)e' '$„(r,E)d r,

D„,(K,E)=2m.m g(ji (K,E))) ( C„" Y„(K),

where

(j( (K,E))( I
=f r RI (r, E)j( (Kr)R( (r, E)dr

tI }M V P V

(24)

(25)

with
C„",=(i) " ' "f Y„(r)Y„(r)Y,(r)dr . (26}

m =+1 for o=1, l . (23)

By using the identity given in Eq. (21) and the form for
P„given in Eq. (20}, it follows that D, (K,E) can be
written in the form

The spin form factor can be numerically evaluated by cal-
culating each of the individual terms and summing over
the appropriate indices. Alternately, substitution of Eq.
(22) into Eqs. (17) and (12) and simplifying gives

F, ;„(K)= [1—(m k) ]g [I, (K,E)+I2(K,E)Y4 p(K)+Is (K,E)Y4 4(K)+ )f (E)dE, (27)

where

m. K=sin8 cosP K„+sin8 sing K +cos8 K, ,

9

I, (K,E)= g (Jp(K E) )( ) p»(E),
@=1

(Ps, s P6, s P7, 7+Ps, s+6P9, 9

(28)

(29)

(30)

non-d symmetry terms, then the non-d part of the form
factor reduces to the result given by HEL.

ORBITAL FORM FACTOR

Like the spin form factor, the orbital form factor can
be calculated from Eqs. (14) and (17), but with
&O&=&p &and

with D„„(K,E)= i fP„(r—)e' 'VP„(r)d r . (34)

Is (K,E)=2v'5m i7(ps s
—p, s) . (31)

The connection between the symmetry indices p in Eqs.
(28)—(31) and the symmetry orbitals is given in Table I.
The YI are real spherical harmonics:

The orbital form factor can be written in a more con-
venient form by making use of symmetry arguments, the
fact that the D„are real, and that only the s-d and d-d
terms are nonzero. It follows that

Y4 ()(K)=— —(35K, —30K, +3),
4~

' 1/2

(32) KX [D„,(K,E)+D,„(K,E)]=0

and, therefore,

315
Y4 4(K)=

256m
(K 6k K +Ky) (33) m [KXD„„(K,E)]

&f
~K~

f' }~V'E)"E

The series in Eq. (27) terminates after the third term if
the spin-orbit interaction is neglected. For this case it
follows from symmetry arguments that p„„(E)
=5„~&&(E)and only the terms given explicitly in Eq.
(27) are nonzero. If plane waves are used to describe the

TABLE I. Convention relating symmetry index p to the sym-
metry orbital 4S„(r,E)=R„(r,E)Y„(r).

Y„(r)

constant
x/r
y/r
z/r

xy /r'
yz/r
xz/r

(x 2 —y~)/r2
(3z —r )/r

(36)

where p„„(E) is the imaginary part of p„„(E). If the
spin-orbit interaction is neglected, all quantities are real
and the orbital contribution clearly vanishes.

As in the spin case, an expression for D„suitable for
numerical evaluation can be derived. Even though only
s-d and d-d symmetry terms are nonzero, this expression
is inherently more complex than the spin case. The d-d
contributions, which are significantly greater than the s-d
contributions, can be written in the form

F„b(K)=m.KXQS„(K,E}(J((K,E})df(E)dE . (37)

The various quantities are defined in the Appendix. Only
terms of order l„=1 and 3 contribute. Substitution of
Eq. (A13) into Eq. (37) and simplifying gives, for the
I„=1 terms,
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F„b(K)=B,(E)[sin8[sing(1 —K )—cosPK„K ]—cos8K K, ]

+Bz(K)[sin8[cosg(1 —K„)—sing K K„]—cos8 K„K,]

+Bs (X)[cos8( 1 —k, )
—sin8(cosg k„k~+sing K~ K, }], (38)

where

B;(G)=gf (J,(E,E))df(E)A, (E)dE

Comparison of the itinerant and atomic expressions
also yields explicit results for the various parameters in
terms of the electronic band structure. These are

&Ji)~ —&Jo)2,2+&~2&2,2 &

~ f«)=P7 s+Pe s+~3P9 7

~ 2 (E)=pe, a+ps, 7+ ~&pe 9

(i =1,3), (39)

(40)

(41)

(42)

(43)

2g g

mo b X(ps z+2pe i)

g=2 1+ ~ spin

A similar result can be derived for the 1„=3order terms,
few enough to work out by hand, but too many to repro-
duce here.

CONNECTION WITH THE ATOMIC MODEL

Calculations based on the atomic model outlined above
for conventional experimental geometry (8~0, K, ~O)
require as input various adjustable parameters, e.g., a, y,
and g, and the electronic wave function determined from
a given atomic configuration. The best fit to form-factor
data is obtained by varying the parameters and the atom-
ic configuration. The energy-dependent wave function is
usually evaluated at the Fermi energy.

Comparison of the itinerant spin and orbital results
given in Eqs. (27) and (38) with the atomic model results
given in Eqs. (1}-(7)reveals a number of similarities. In
fact, the expressions can be made identical in form pro-
vided three approximations are made for the itinerant
case. First, as in the atomic model, the energy depen-
dence of the wave functions is ignored, e.g., evaluated at
the Fermi energy. Second, the spin-orbit interaction is
neglected when calculating the spin part of the form fac-
tor. The system then has cubic symmetry, and it follows
that

ps, s=p6, 6 pv, v

and

where n, and n, are the number of electrons with spin
2g C

oand fzg and e~ symmetry, respectively. The third ap-
proximation is to neglect the non-d symmetry terms,
which are very small. Note that a=O here since the full
moment is included in the calculation. This leads to
identical forms for the spin part of the form factor. The
equivalence of the orbital contributions follows from the
identity

&go&d ', &g2&=&j—o-&d+&J2&d .

g (m /2}n,
y

mspin

The p„„and (jI )d are calculated from the electronic en-

ergies and wave functions obtained from the band struc-
ture. It could be argued that the fitting procedure used in
the atomic model works because the general structure of
the form factor is correct; i.e., the fitting procedure at-
tempts to mimic the results that would have been ob-
tained from the itinerant model. This argument, of
course, relies on the approximations used above. It also
assumes that the itinerant model can reproduce the ex-
perimental form factor. In order to determine if this is
the case, the form factor must be numerically evaluated.

NUMERICAL RESULTS

The calculation of the magnetic form factor for
itinerant systems requires as input the full self-consistent
spin-polarized band structure. Unfortunately, there are
at present no published band structures for transition-
metal magnets which include the spin-orbit interaction.
In order to proceed, we have incorporated the spin-orbit
interaction into published band structures by use of an in-
terpolation approach suggested by HEL. Although this
procedure is not exact, it does provide reasonable predic-
tions in the absence of first-principles results.

The expression for the form factor given in Eq. (11)
was evaluated using the general expression given in Eq.
(17) and results given in Eqs. (24)—(25) for the spin case
and in Eqs. (A5), (A6), and (A10) for the orbital case.
The Brillouin-zone sums were obtained using the
tetrahedron method. The Wigner-Seitz sphere approxi-
mation to the unit cell was used to evaluate the radial in-
tegrals, and the energy dependence of the radial integrals
was treated in two ways. First, the energy dependence of
the radial integrals was fitted to a polynomial in energy.
The second method was to evaluate the radial integrals at
the Fermi energy, which amounts to neglecting the ener-

gy dependence altogether. Twelve bands were used in the
calculation.

Two diferent types of spin-polarized band structures
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were used. One type consisted of energy bands used pre-
viously in calculations of the spin dynamics of nickel and
iron [Cooke, Lynn, and Davis (CLD)j. ' These bands
yielded excellent agreement with results from inelastic
neutron-scattering experiments as well as predictions of
unusual spin-wave behavior, which was subsequently
confirmed. The other type were spin-polarized bands
published by Moruzzi, Janak, and Williams (MLW). "
based on local density theory. The radial functions were
determined from appropriate potentials in each case.
Also, the bands were fitted to a HEL interpolation
scheme for nickel and a Slater-Koster interpolation
scheme for ions, and then the spin-orbit interaction was
included using the method proposed by HEL. The
spin-orbit parameter used for nickel was suggested by
HEL, and a suitably scaled parameter was used for iron.
These values are close to the point-charge predictions for
these materials.

Numerical results which include the energy depen-
dence of the radial functions for nickel are given in Figs.
1 and 2 for the CLD and MJW bands, respectively. Cor-
responding results for iron are given in Figs. 3 and 4. In
these figures, 8 is half the scattering angle and A, is the
neutron wavelength, and only data points corresponding
to the case where the moment direction is parallel to the z
axis of the crystal are given. The experimental and
theoretical form factors are normalized to unity at (000)
and the energy dependence of the wave function is in-
cluded. The results based on the band structures that
produced good agreement with the spin dynamics of
nickel and iron also yield good agreement with the form
factor. Another interesting result obtained from these
calculations is that the energy dependence of the wave
functions is important. A comparison of the form factor
for iron calculated with the energy-dependent wave func-
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FIG. 2. Comparison of theoretical and experimental form
0

factors normalized to unity at (000) for nickel (A, in A). Theory
result based on MJW local density bands; experimental results
from Mook (Ref. 12).

tions and with the wave functions evalauted at the Fermi
energy is shown in Fig. 5.

The bands based on local density theory yield good
agreement with iron, but not for nickel, at least for the
MJW bands. It is worth noting that the orbital contribu-
tion to the form factor is much less sensitive than the
spin part to the band structure used (see Tables II and III
for Ni; eff'ects of a similar magnitude also occur in Fe).
Furthermore, the orbital part contributes generally about
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FIG. 1. Comparison of theoretical and experimental form
0

factors normalized to unity at (000) for nickel (A, in A). Theory
resu1t based on CLD bands; experimental results from Mook
{Ref. 12).

FIG. 3. Comparison of theoretical and experimental form
0

factors normalized to unity at (000) for iron (A, in A). Theory re-
sult based on CLD bands; experimental results from Shull and
Yamada (Ref. 13).
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VÃssss(sass
1 sass/sass(as l s/as ~ s/sass TABLE II. Spin, orbital, and total magnetic form factor for

nickel calculated from CLD bands.
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hkl

200
220
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420
440
600
620
640
800

Spin

0.904
0.614
0.411
0.120
0.112
0.052

—0.034
—0.019

0.000
—0.058

Orbital

0.096
0.070
0.054
0.035
0.029
0.018
0.015
0.013
0.009
0.006

Total

1.000
0.684
0.465
0.155
0.141
0.070

—0.019
—0.006

0.009
—0.052

-0.2 s I a s s a I a s s a l s a s s l s a s a I a s a s 1 a s ~ a

0 0.2 0.4 0.6 0.8 1 1.2 1.4
slN(s)o,

FIG. 4. Comparison of theoretical and experimental form
0

factors normalized to unity at (000) for iron (A, in A). Theory re-
sult based on MJW local density bands; experimental results
from Shull and Yamada (Ref. 13).

experimental data (for both KSG and VBH) for values of
sine/A, smaller than -0.7 A, giving agreement compa-
rable to that obtained using CLD bands and considerably
better than the MJW (local-density-approximation)
values. For large values of sinelk„ the fit to the small
values of the form factor deteriorates considerably, how-
ever.

CONCLUSIONS

~ ] ~ I ~ s j 1 s s
1

s ~ s s
(

~ ~ s s ( ~ ~ s s
l

~ s I s

0.8—
K0
0 0.6 t-

L.

K0 04
O

X - CDL- FE: E=E

G - CDL-FE

(g 0.2—z X

10% of the form factor and, in some cases (e.g.,
400,420,440), in excess of 20%. This is hardly negligible
and needs to be borne in mind when evaluating ca1cula-
tions that include only the spin part. It is interesting to
reevaluate the calculations of Wang and Callaway in this
light. They present results using both Kohn-Sham-
Gaspar (KSG) and von Barth-Hedin (VBH) potentials.
The inclusion of an orbital contribution into their calcu-
lations (with suitable scaling so that the form factor is
normalized to unity at 000) actually improves the fit to

TABLE III. Spin, orbital, and total magnetic form factor for
nickel calculated from MJW local density bands.

Spin Orbital Total

Expressions for the form factor for itinerant-electron
systems have been derived and numerically evaluated for
ferromagnetic nickel and iron. To our knowledge these
are the first calculations based on itinerant-electron
theory for d-band magnets which include both the spin
and orbital parts of the form factor. Since the spin-orbit
interaction was included in an approximate way, no at-
tempt was made to find the "best fit" to the data. The re-
sults of these calculations do, however, indicate that
itinerant-electron theory can provide reasonable predic-
tions of the form factor for both nickel and iron.

At this stage the agreement is not as good as can be ob-
tained from the "best fits" to the atomic model. This
work gives some indication of why such good agreement
can be obtained from the atomic model. Because of the
equivalence of the dominant terms in the itinerant and
atomic expressions, if an atomic configuration can be
found which yields radial functions similar to those ob-
tained from band theory, then, obviously, good agree-

0—

0 0.2 0.4 0.6 Os8 1 ).2
ate(e)u

FIG. 5. Comparison of results for theoretical form factor
normalized to unity at (000) and calculated with and without

0
energy-dependent radial functions (A, in A).

000
200
220
400
420
440
600
620
640
800

0.904
0.533
0.345
0.102
0.090
0.042

—0.036
—0.020
—0.003
—0.057

0.096
0.072
0.055
0.034
0.028
0.017
0.014
0.012
0.008
0.006

1.000
0.605
0.400
0.136
0.118
0.059

—0.022
—0.008

0.005
—0.051
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ment can be obtained by varying the parameters which
appear in the atomistic expression. These parameters
cannot be obtained within the framework of the atomic
model and may, in fact, have no real meaning at the fun-
damental level.

A better test of the itinerant theory requires results
from a self-consistent spin-polarized calculation which in-
cludes the spin-orbit interaction. Local density theory,
however, may not be the way to proceed, particularly for
nickel. The results obtained for nickel based on local
density bands (Fig. 2) are not in good agreement with ex-
periment. This could be caused by a number of factors,
including the approximate way the spin-orbit interaction
was incorporated into the theory. This is an important
point, however, since the form factor is a ground-state
property for which local density is expected to yield
reasonable results.

The main purpose of this paper has been to evaluate
the relative contributions made by the spin and orbital
parts to the total form factor. Given that the orbital part
has been shown to contribute —10% and, in some case,
in excess of -20%, it can hardly be neglected. It would
be interesting to develop a fully relativistic calculation for
the form factor based on the type of development used,
for example, by Fritsche, No%re, and Eckardt' or
Krutzen and Springelkamp' for the g factor.
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APPENDIX

The derivation of expression relevant to the orbital
part of the form factor is given in this appendix. For s-d
and d-d symmetry terms, the D„,are clearly real. Then,
using the result in Eq. (35),

KXD„„(K,E)=KX —,'[D„„(K,E)—D„„(K,E)], (Al)

R( (r, E)
R( (r, E)= (A3)

Y„(r}=r'Y„(r).

Then

(A4)

D„'„(K,E)=i" " f e'+'p„'(rE)Vp„'(r, E)der . , (ee.2)
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+ e' 'RI r, ER& r, E Y„r Y, r —Y, r Y„r r

2i " —"[I,(K,E,p, v)+I~(K, E,p, v)]
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By making use of Eq. (21), it is straightforward to show that

I, (K,E,p, , )=4 g(j,' (I(:,E)), , h„",Y„( ), (A6)

where

dR& (r,E) dRI (r,E)
~jI (K,E))i,l„=f r jI (Kr) RP (r, E) '

R, (r, E} ' — dr (A7)

and

a'
r

The C„" are Clebsch-Gordan coeScients.
A similar expression can be derived by I2. This expression is based on the identity

1 /2

(A8)

V YI (r)= 4m

3
(21 +1)QCI,~".;t~ Y (A9)

Then
1/2

I~(K,E,p, ,v)=4m.4m
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where

(H„"'„) =
—,'[(2l„+1)h„"',—(21„+1)h,"'„]

and

~~t (E E}~t,t =f r Rt (r E)Rt (r E)[jt +i(+r)+jt t(+—r)]

The result given in Eq. (37}follows from the definition

S„(K,E)=gH„"'„p„„(E).
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