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We present an extensive study of the current response of isolated mesoscopic rings (noninteracting
electrons in the diffusive regime) to a small ac Sux superimposed on a dc Aharonov-Bohm Sux.
This response can be very different from the conductance of the same ring connected to a voltage
source. We emphasize the importance of the inelastic rate p compared to the level spacing 6
and the driving frequency u. We essentially focus on the discrete-spectrum limit p (( A. The
conductivity has an imaginary component which, at low frequency, is related to the Bux derivative
of the persistent current through the ring; as previously shown this quantity presents an ensemble
average which is zero in the grand canonical case but which is finite in the canonical statistical
ensemble. At frequencies larger than p we show evidence of an extra contribution to the imaginary
conductivity which is finite and temperature independent in the grand canonical ensemble, and
increases with temperature in the canonical case. The real part of the average conductivity exhibits
Co/2-periodic Sux oscillations which are also very sensitive to the statistical ensemble: for the
canonical ensemble, these oscillations can assume either sign compared to the Altshuler, Aharonov,
and Spivak oscillations observed in long cylinders and connected arrays of rings. We indeed identify
different contributions giving rise to Qux oscillations of opposite sign. An off-diagonal contribution
related to interlevel transitions which is connected with the Sux dependence of the level statistics
and gives rise to a negative low-field magnetoconductance, and a diagonal contribution related to
the Bux dependence of the occupation of the different levels. This last quantity is proportional to the
average square of the single-level persistent current and to the inelastic scattering time, and gives
rise to a positive low-field magnetoconductance. It can be much larger than the Drude conductance.
Our results rely on numerical simulations; most of them are also justified analytically.

I. INTRODUCTION

Mesoscopic metallic rings present a spectacular ther-
modynamic property: they carry a persistent nondissi-
pative current when they are threaded by a magnetic
Hux. ~ s This current is a periodic function of the Hux,
whose periodicity is the Hux quantum e'o ——h/e; in the
presence of disorder giving rise to elastic scattering, its
typical value is e/r~, where rD is the diffusion time of
an electron along the circumference of the ring. 4

The existence of such a persistent current is a conse-
quence of the coherence of the electronic wave functions
along the ring, but unlike a superconductor, a mesoscopic
ring presents a finite Ohmic conductivity when it is con-
nected to a current source. The average value of this
conductivity is given by the Drude formula which reads,
in the zero-frequency limit, o'o ——ne r, /m, where n is
the volume concentration of electrons and v, the elas-
tic scattering time. Inelastic processes do not appear in
this formula; however the sample is implicitly coupled to
a thermodynamic reservoir, realized for instance by the
macroscopic measuring leads, where the dissipation takes
place. Thus the mechanism of dissipation is not intrinsic
to the sample.

Such a strong coupling with a reservoir of electrons
can be avoided when studying the current response of a
mesoscopic ring to a time-dependent Bux, which induces
an electric field along the ring. This problem was first
studied by Biittiker, Imry, and Landauer. They found

that the current response to a magnetic Hux varying lin-
early with time (i.e., a constant electromotive force V),
presents Bloch like current oscillations of frequency eV/h.
An Ohmic-like behavior is recovered only if some inelas-
tic processes are explicitly accounted for, and the con-
ductivity estimated in the linear response limit explicitly
depends on these inelastic processes.

One can alternatively study the linear response to a
small ac Bux superimposed on an Aharonov-Bohm static
one. In this case a nondissipative response associated
with the Hux derivative of the persistent current through
the ring is expected. Furthermore, in the presence of in-
elastic scattering this reactive response is expected to
coexist with a dissipative one. This problem has al-
ready been addressed in the purely one-dimensional limit
by several authors. They have pointed out striking
difFerences between the conductivity of an isolated ring
and the Drude behavior. In particular, the conductiv-
ity explicitly depends on the phenomenological relaxation
rate of the electronic-level occupancy probabilities (den-
sity matrix) toward equilibrium. Furthermore, the aver-
aged conductivity presents a dc Bux dependence which
strongly difkrs from the Altshuler, Aharonov, and Spi-
vak (AAS) oscillations~ observed experimentally in long
cylinders and connected arrays of rings. ' However,
the one-dimensional case is very particular, since there
is no intermediate regime between. the ballistic and the
localized one, depending on the circumference of the ring
compared to the elastic mean &ee path.

This is why our aim in this work is to compute the
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ac conductivity of a realistic multichannel metallic ring
in the difFusive regime l, & L & (, where the localiza-
tion length f is approximately equal to Ml„and M is
the number of transverse channels Sk~ /4vr. In the one-
electron picture such a system is described by an energy
spectrum which presents correlations on an energy scale
E, = hD/L2 large compared to the level spacing. A
preliminary account of this work is given in Ref. 14. In
particular we have emphasized the importance of the pa-
rameter p/6 where p is the relaxation rate of the density
matrix of the system and 4 the average level spacing. In
the continuous-spectr»m lixnit (p » 6) the conductivity
at zero frequency is essentially given by the Drude con-
ductivity and exhibits 4s/2-periodic Hux oscillations of
relative amplitude b, /p. xx Differences of the order (b, /p)

2

between canonical and grand canonical statistical ensexn-

bles persisting up to temperatures of the order of E, have
been pointed out. ' 5 In the present paper we focus on
the opposite, discrete-spectrum limit (p « 6). Most of
the results presented here are based on numerical sim-
ulations on the Anderson model; most of them are also
justified analytically. They can be summarized as fol-

lows:
The real part of the conductivity consists of two pieces:

one which involves interlevel processes, O'ND, and one
which involves intralevel processes, o'D. The average
value of OND exhibits Hux oscillations periodic in Oo/2
but whose sign is opposite from the AAS oscillations.
The relative amplitude of these oscillations, directly re-
lated to the change of rigidity of the spectrum induced
by the magnetic Hux, becomes of the order of unity in
the limit p « 6 in the canonical ensemble.

Contrary to crND, which essentially depends on the
elastic scattering time r„nD is proportional to 1/p.
This quantity is also directly proportional to the average
square of the single-level persistent current. In the grand
canonical case (and in the canonical case for T » b, ), the
flux oscillations of oD added to the flux-dependent part
of o.ND give rise to AAS-like oscillations. However, in
the limit p « 6 the amplitude of the oscillations of o.D,
which scale like 0'06/p, can become very large compared
to the Drude conductivity. In the canonical ensemble,
the temperature plays a crucial role: oD is indeed zero
at T = 0 and reaches a value which is nearly temper-
ature independent for T & E,. This strong tempera-
ture dependence does not exist in the grand canonical
ensemble. Therefore, in the canonical case at T = 0
the total conductivity is given only by the nondiagonal
contribution o.ND. The flux oscillations reverse sign at
higher temperature when the diagonal contribution o.~
becomes dominant (the Hux oscillations of the total real
conductivity at T = 0 are of opposite sign for the grand
canonical and the canonical statistical ensembles).

The conductivity exhibits an imaginary part which in
the 1ow-frequency limit is just proportional to the Qux
derivative of the persistent current through the ring. In
the frequency range ~ && p, there is an extra diagonal
contribution to the imaginary part of the conductivity.
This contribution is 6nite and temperature independent
in the grand canonical ensemble, and increases with tem-
perature in the canonical case.

II. THE MODEL

Our study is based on a model already used by '7rivedi

and Browne for the computation of the conductivity of
a one-dimensional (1D) disordered ring driven by an ac
electromotive force. Let us 6rst recall this model and
point out the underlying assumptions. The ring is de-
scribed by a one-electron Hamiltonian in the presence
of a magnetic Hux 4(t) = 4g, + b4(t). If we assuxne
that there is no magnetic field in the ring, the vector po-
tential can be taken orthoradial: A(t) = Ao+ bA(t) =
A(t)es with the function A(t) uniform through the ring,
A(t) = C(t)/L. The disorder is described by a potential
V(r, 8, z):

[p+ eA(t)] + V(r, &, z).
2m

The periodic boundary conditions imply V(r, &, z)
V(r, g+ 27x, z) and [4(r, 8, z)) = ~4(r, 0+ 2z', z)) for any
eigenstate ~4') of H

The disorder is not necessarily small and will not be
treated ~ a perturbation. On the other hand the time-
dependent part of the Hux is supposed to be suHxciently
small compared to 40 to be treated within linear response
theory:

The eigenstates of Ho are labeled: Ho[ex) = e [n).
Let us now concentrate on the coupling of the system of

electrons to an external thermal bath. If the system were

completely isolated, the matrix density p of the system
would evolve according to the Liouville equation

i =[H, p]. —.Bp
Bt

In the opposite limit if the electronic gas were instanta-
neously thermalized its density matrix would be

N exp[—PH (t)]
Tr exp[ —PH(t)]

' (4)

where N is the number of electrons in the ring.
In the case of a finite relaxation time, the evolution

of the density matrix can be described by a master
equation which includes free evolution and relaxation to
equilibriuxn:

i =[H, p] —ip(p —p,q„—),
.Op

where p is the relaxation time toward equilibrium. The
origin of the existence of p is the coupling of the sample
with a thermal bath (this is done by inelastic scattering
of the electrons of the ring). For the sake of simplicity we

suppose that p is temperature independent. If this is not
the case, one has to replace p by p(T) in all results, which
can change our conclusions, depending on the mechanism

H = Ho+ bH(t) where Ho —— (g7+ eAo) + V(r, 8, z) .
2m
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of thermalization involved in p(T). However, these mech-

anisms generally have a temperature dependence which
is smoother than what we predict for the conductance, so

that our results would not be qualitatively altered. More-
over we suppose that g is energy independent. This could
be specially important for T, u « 6 where the shape of
p(E) could lead to uncontrolled consequences. Let us
point out the nontrivial assumption underlying Eq. (5):
the equations describing the time evolution of the density
matrices of the system and the reservoir can be decou-
pled, giving rise to an effective evolution equation for the
density matrix of the system alone. Moreover, since the
coupling with the reservoir is supposed to be weak, its
presence affects only the dynamics of the electrons, the
static properties remaining unchanged. Hence we are al-
lowed to consider the Hamiltonian of the pure system,
and calculate the matrix elements of the operators we

consider in the basis of the eigenstates of the pure system.
This assumption is correct only if p « A. An important
consequence follows: Since the stationary solution of Eq.
(5) is p, q t

——p,~„,all the equilibrium quantities (like the
persistent current) are insensitive to the presence of the
reservoir.

What remains now is to specify the constraint on the
number of particles according to the considered statistical
ensemble, canonical or grand canonical. By decomposing
the different quantities into their stationary and time-
dependent parts, we can write

p(t) = po(@s )+~p(t)
with po —— exp(P(HO —ps)) + 1

In the grand canonical case the chemical potential is
considered constant; on the other hand, in the canonical
case, where the number of electrons is kept fixed in the
system, the chemical potential depends both on time and
magnetic Hux:

p(C'(t)) = &o(@s ) + ~&(t).

The constraint on the number of particles in the system
appears at two levels:

(i) For the stationary problem described by Ho, one
must have Trpp ——N which can be described in terms of
an implicit equation allowing one to calculate po (N, 4~,):

) f = N with f = [expP(e —yo) + 1]

(ii) For the time-dependent problem one must have
both Trp(t) = N [equivalent to TrJp(t) = 0] and
Trp ~ (t) = N with

p.~„(t)= [exp(p[H(t) —p(t))) + I]

These two last conditions are equivalent and allow us
to calculate bp, (t) in a pertubative way, so that the con-
ductivity can be expressed in terms of the eigenstates and
energies of the unperturbed stationary Hamiltonian Ho.
As a result, according to Trivedi and Browne,

o (~) = oper + oND + +D

L B ~ Be~

V u) B4 B4'
a

- f- —
A

with q oND
V YR e~ —ep e~ —ep —(d —xp

~WP
1 L Bf Be

V p —iu B4 B4 '
a

where V denotes the volume of the sample and Pg the
orthoradial component of the kinetic momentum opera-
tor J7. Let us now make a few remarks concerning these
three terms:

(a) The orbital susceptibility of the persistent current,
the first term o~„is purely imaginary, i.e., nondissi-
pative, and is directly related to the existence of a fi-

nite dc magnetic orbital susceptibility for the ring, gp ——

lim uo(u), which is the fiux derivative of the persistent
w~O
current through the ring:

PCT ) fcl B4

As shown in Refs. 18—23, the grand canonical ensemble
average of I~„for independent electrons is nearly zero,
while it is 6nite in the canonical ensemble and related to
the Hux-dependent chemical potential through

1 Bbpz(4)
B4 (10)

In Sec. III, we show that our numerical simulations al-
low a precise check of this relation. We also study the
temperature dependence of the canonical average of the
persistent current and of the typical value (I „)and com-
pare them with the analytical predictions.

(b) The nondiagonal conductivity involves interlevel
transitions. In the limit of a continuous spectrum (cor-
responding either to an infinite system or to a finite dis-
ordered system connected to infinite measuring leads),
its real part becomes identical to the classical Kubo-
Greenwood conductivity, which is the starting point of
diagrammatic theory. ' A priori the ensemble aver-
age of oND contains the Drude conductivity plus weak-
localization corrections, which according to AAS give
rise to 4o/2-periodic fiux oscillations. In Sec. IV we
present the numerical results we obtained and show that
the Qux dependence of oND is always opposite in sign
compared to the predictions of weak localization (AAS
oscillations); these results can be understood using sim-
ple arg»~ents coming &om random matrix theory.

(c) The diagonal part of the conductivity, unlike O~D,
does not involve interlevel processes and is directly re-
lated to the finite relaxation time of the Qux-dependent
populations toward equilibrium. o D is also related to the
presence of the persistent currents through the quantities
Be /B4, and so it is only present in the loop geometry. It
vanishes in zero fiux and for every multiple value of Oo/2
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a slower decay below E,. The characteristic tempera-
tures of the high-temperature exponential decay are the
following (see Fig. 2):

I&2 T oc exp —T T*,
(I2(T)) oc exp( —2T/T'),

I2~ T oc exp —2T T*,

where T' is of the order of E,/3 (see Appendix B for the
determination of E, &om our numerical results. ) These
expressions are significantly different &om the diagram-
matic calculation results where the high-temperature
expansion of the typical squared current is predicted to
vary like

(I„)oc T exp( 2vrpL/LT) oc—T exp( —gT/T'). (16)

More precisely, we tried to fit our results with the whole
analytical expressions of Ref. 29 but we did not succeed
in finding a value of E, which would be suitable for the
whole range of temperature for Ityp.

Although the average current is not really exponential
at low temperature, one can force an exponential fit in
order to compare our results with experimental data. If
we restrict this fit to the first decade of I„,the only rnea-

surable part, one obtains a characteristic temperature of
T' (instead of T'/2 in the high-temperature regime, see

Fig. 2), i.e. , E,/3, to be compared to the experimentally
determined value E~/2. Let us emphasize that the tem-

perature dependence we find is much slower than the pre-
diction of the diagrammatic calculation given in Ref. 23,
which leads to T' = E /9. As a consequence, the dis-

crepancy concerning the temperature dependence of the
average current between the one-electron and interacting-
electrons pictures is not so important as claimed in Ref.
30.

IV. NONDIAGONAL CONDUCTIVITY

A. Zero temperature

One can see on Fig. 3 the &equency dependence of both
imaginary and real parts of the average nondiagonal con-
ductance (gND) = (8/L)(2z'h/e )(0ND) = 2n(GND)e /h
One can distinguish on this figure the important char-
acteristic &equency scales: the Thouless energy below
which the conductance exhibits a fiux dependence esti-
mated to be E, = 5b, (see Appendix B), and the inverse
elastic scattering time h/7; 20 above which the real
part of the conductance decays like 1/A&2. Note that for
&equencies below E, the imaginary part of the nondiag-
onal conductance is negligible compared to the real part.
In the following we will mainly focus on the real part of
oND which reads

)- f- —fp l(~lpsl&) I'~
fA V e~ —ep (e~ —ep —QJ) +

~WP

Our numerical results for the Hux dependence of the
real part of gND (in the following we will identify gNn with
its real part) at zero &equency and zero temperature are
depicted in Fig. 4 for different values of p. It is also im-
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(18)

portant here to distinguish between canonical and grand
canonical averages. In both cases the Qux dependence of

(gND} exhibits flux maxima at multiple values of 4o/2
(which is its periodicity); these maxima become sharper
when p gets smaller and they are more pronounced in
the canonical than in the grand canonical case.

Following Gor'kov and Eliashberg and Shklovskii
we show that this behavior is a direct consequence of
the transition between orthogonal and unitary statistics
for the energy-level spectrum. We assume that matrix
elements l(alPslp)l = lP pl are independent of a and

P, and equal to lPl . According to our numerical re-

sults (see Fig. 16 below), this is a reasonable assumption
when e —ep is smaller than the Thouless energy. [Note
that this assumption is quite different from the ansatz of
Refs. 31, 35, and 36 which stated that the matrix element

lX pl = lP pl2/(e —ep)2 was independent of e~ —ep.
This is due to the difference between the open bound-

ary conditions of their problem compared to the periodic
boundary conditions of ours. ] It is then possible to write
oND in terms of the function R(s), which is the probabil-
ity function to have two levels separated by energy s in
the spectrum. When performing a grand canonical aver-

age we can use the fact that (f —fp}„=(e —ep)/b, p
where Ap, is the range of averaging of the chemical po-
tential; as a result,

FIG. 4. Flux dependence of the nondiagonal conductance,
expressed in units of e /2xh, for the canonical and the grand
canonical statistical ensembles, at zero frequency for two dif-

ferent values of p: Q, p = 1; x, p = 0.3. These results are
obtained from numerical simulations on the Anderson model
on a 30 x 4 x 4 ring with disorder W' = 2; they are averaged
respectively on the number of particles and on the chemical
potential between 1/4 filling and 3/4 filling for two different

disorder con6gurations.

(a P)/b, N, and the ene—rgy denominator does not disap-
pear in the expression for the conductivity, which reads

R(s)
(+ND} = IPI

[
.
( )]

ds. (19)

According to random matrix theory, the small-
argument expansion of R(s) reads

R(s) = s~, (20)

(o. )(4' = 0) ~ Oo(v/&) ioglo( /+)I

( ..')(C = ~./4) ~/&
(21)

where p = 1 (2) in the orthogonal (unitary) ensembles

corresponding to 4 = 0 [@o & & C' ( @o(2 a )

moduio CIo/2]. s7 At T = 0 the results for the real par«f
awD»e:

(i) For the grand canonical case

On the other hand, when performing a canonical av-

erage, as already noted, by Shklovskii, (f —fp)~ =
( „)(e=0) .( /&),

A )) ~ )) f
( Gc}(O @ /4) ~ g ~2/Q2 (22)
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(ii) For the canonical case,

(0gD) (4 = 0) oc op,
(~gD)(@' = 4'o/4) ~ ~p(~/&) iogip(&/~)

(ogD) (C = 0) oc o.p,
)(C' =@o/4) o( /&).

(23)

(24)

We give in Ref. 14 a more precise determination of these
expressions using the analytical expression for R(s).ss

These formulas are strictly valid only in the limit where

7 « b, ; they yield a conductivity in the limit ~ &) b,
which is smaller in the grand canonical case than in the
canonical one by a ratio of the order of ur/b, ; note also
that the quantity lim ~~p(0 gD) (4 = 0) is finite. In both
cases the fiux dependence of the conductivity gives rise
to oscillation which are opposite in sign from the AAS
ones. Our numerical simulations results displayed in Fig.
5 are in reasonable agreement with these expressions, in
the limit where p, u & h. If one then considers the range
of frequency where ur & 6, from Fig. 5 it is possible to
see that differences between canonical and grand canoni-
cal statistical ensembles tend to disappear at frequencies
larger than E, when the flux dependence of the conduc-
tivity becomes negligible .

Concerning now the p dependence of (gND) at zero
&equency, surprisingly one can note on Fig. 6 that, for
large values of p, (gND)(O = @p/4) is always smaller
than (gND)(O = 0) (negative magnetoconductance) in

both canonical and grand canonical statistical ensem-
bles. One would expect indeed to recover in the limit
6 « p « E, the results of the diagrammatic theory
which exhibits a positive low-field magnetoconductance
(AAS oscillations). We understand this disagreement as
a consequence of the approximation we used when com-
puting the matrix elements P p &om the eigenstates of
the pure system i.e. neglecting the coupling with the
thermal reservoir. We already pointed out that this ap-
proximation is only valid in the limit where p « b, . If
this condition is not fulfilled, one has to calculate the ma-
trix elements of P in the basis of the eigenvectors of the
system perturbated by the reservoir. This results in a
mixing of (OND) with (0~), which gives rise to AAS-like
oscillations. We show indeed in Sec. V that (0'~) leads
to a positive magnetoconductance.

B. Temperature dependence

The temperature dependence of the oscillating part of
the conductance in the canonical ensemble jgND(T') js
depicted in Fig. 7 for different values of p. bgND(T)
decreases with temperature until it reaches the grand
canonical value. One can clearly distinguish two different
regimes in the temperature dependence of hgND(T). For
values of p smaller than 6, there is a sharp decrease at
temperatures below 6 which can be approximately de-
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diagoual conductance expressed in e /2zh for p = A. The
canonical statistical ensemble: Q, 4 = 0; Q, 4' = 4O/4. The
grand canonical statistical ensemble: +, 4 = 0; x, I' = 4 p/4.
Note that for all cases these quantities are frequency indepen-
dent below u = 7 = A. The inset shows the same quantities
for 7 = 0.02 and the grand canonical ensemble. In this case
the ~ and ~ dependences predicted &om random matrix the-

ory [expression (21)] are clearly observed for the low-kequency
conductance at 4 = 0 and 4 = 4s/4. The sample studied
and the range of averaging is the same as for Fig. 3.
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FIG. 6. 7 dependence of the real part of the nondiagonal
conductance at zero frequency expressed in units of e /2z'h,
for the grand canonical and canonical statistical ensembles.
The sample studied and the range of averaging are the same
as for Figs. 3 and 5.
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In the grand canonical case where p is constant,

(27)
~A

V z

) 10
—2

t-I
~ Zi

V

C2
(~z '(c'))~ = ~', (i.'(@)) (28)

The average value of g& (4) versus chemical potential
can thus be written

10

I ~ s tsl I i i &t) 1

10
—1 z 5 100 z 5 101 z 5 102

FIG. 7. Temperature dependence of the difference between
the oscillating parts of gND in the canonical and grand canon-
ical statistical ensembles for different values of p. The sample
studied and the range of averaging are the same as for Figs.
3 and 5.

scribed by a 1/T law in agreement with Ref. 32. This
sharp decrease is followed by a much slower one between
6 and E,. This behavior can be understood using the
following relations:

(@)= —Be /BC is the current carried by an elec-
tron in the state n; the averaging procedure: ( )„overa
wide range of chemical potential compared to the temper-
ature gives rise to a conductivity which is nearly temper-
ature independent. It presents Po/2-periodic oscillations
whose maximum at Pp/4 is of the order of OoE/p, and
thus much larger than the Drude conductance.

It is also interesting to compare our results to the
analytical expression yielding the average square of
the single-level persistent current from diagrammatic
theory, 22 which reads

2

(i'(c)) =

~ cosh(/2b, /E, ) cos(47r4/4o) —1= —2
@o ( [cosh(/2b, /E, ) —cos(4+4/4o) ]2

(~ —A)~
6~ —6'p

1

cosh(/2b, /E, ) —1)
(29)

(f —fp)~
&cr &p

a —P for )e —ep) ) T
C~ —Cp

V. DIAGONAL CONDUCTIVITY

A. Temperature and Hux dependence: difference
between canonical and grand canonical averages

Let us write o.D in the following form:

These equations yield to a p/T dependence for bgND(T)
for p & T ( A.

where the inverse phase coherence time has been taken
equal to the level spacing. Note that the agreement be-
tween the numerical and analytical expressions is only
qualitative. As we already pointed out in Sec. III, for the
average current, the two quantities have a different har-
monic content (see Fig. 8). Since it has been previously
shown that the harmonic content of the energy levels

obtained &om numerical simulations is in relatively good
agreement with the results of diagrammatic theory, it is

surprising to Gnd such large disagreement concerning the
harmonic content of (i2 (4)). It is, however, important to
note that Eq. (29) is obtained from the flux dependence
of the correlation function density of states with the as-

sumption that the harmonics A„ofthe energy levels are
uncorrelated:

1 L
~a = p . @,»(@)Vp —nu 40 (A~Av) = (A„)h(p—q). (30)

where

Co ) w Bf~ BE~

84 BC

If one indeed reconstructs a fictitious quantity

(i (C))s„=) p (A )sin (27r@/4O), (31)

is a real positive quantity without dimension. gD is
related to the diagonal conductaoce of the system by

gD
—2~ e~ jh

according to this assumption of uncorrelated harmonics,
one obtains a flux dependence which is in better agree-
ment with Eq. (29) (see Fig. 8). In other words, this
shows that Eq. (30) is not valid: the harmonics are
clearly correlated.
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FIG. 8. Flux dependence of the average square of the
single-level current obtained from numerical simulations
(64 x 8 x 8, W = 1.4), compared with the analytical pre-
dictions of diagrammatic theory snd the quantity (ifi t(4') )
reconstructed from the Bux dependence of the energy levels
assuming no correlations among the different harmonics.

FIG. 9. Flux dependence of the canonical diagonal con-
ductivity for a given number of electrons, for different tem-
peratures (stars, T = 0.24; squares, T b, ; crosses,
T E,). One notes the self-averaging effect of the tem-
perature, gz(T = E,) = (gz(T = E,)).

2. Canonical ensemble

If one now considers the canonical case there is an extra
term in g(4') which is due to the fiux dependence of the
chemical potential:

More generally it is possible to write

4o ~ Bf~ t Be~) Bp ) Bf~ Be~
(

(32)

where the operation

(h )r=) h(e )

At a temperature very low compared to the average level

spacing the chemical potential p(N, 4) =
z [e~(O) +

e~+q(4)] lies just in the middle of the two last oc-
cupied levels, and the function Bf/Be is nonzero only

in a window of energy width equal to T centered on

p, (N, 4). As a result limr~o Bf /Be = 0 for each level

and (gg(4)) vanishes at zero temperature, in contrast
with the grand canonical case. When the temperature
is increased, still in the limit where T « b, , the fiux

dependence of (gg(4)) exhibits two spikes on each side

of the values of Hux where the gap at the Fermi level

b, N(4) = e~+] (4) —e~(4) presents a minimum lower

than T. In the case of a one-dimensional spectrum these
spikes occur only at 4 = n4 o/2, which are the only points
where E~(4) can have a minimum. On the other hand
in the case of the spectrum of a multichannel ring these
spikes can take place at any value of the Hux. As a result

gg(N, O) presents very strong fiuctuations with N and

f, as illustrated by our numerical simulations depicted in
Fig. 9. In the range of Qux close to one of these spikes,
where E~ (4) & T, it is possible to expand gn according
to

t'B4~ l (

defined for any function h(e) becomes at high tempera-
ture equivalent to averaging this function on an energy
window of width T. For T » E, this average is expected
to be independent of T and to be equivalent to a disorder
average. As a result, (1)T = 1 and (i )r»@. = 0, and
the conductivity becomes a self-averaging quantity which
is identical to the value obtained in the grand canonical
ensemble:

g~(N, T && E„4')= (gg (T && E„4))
= (ga'(T» E. c')) = (gL '(c'))

@2

2 (i'(4)).

The variation with temperature of (gg)~ obtained from
our numerical simulations is depicted in Fig. 10. The
abrupt increase observed at temperatures lower than 6
is followed by a much slower one until (gg(T)) N reaches
an asymptotic value which is identical with (g~ ); in the
temperature range 4 ( T & E, it is possible to fit the
difFerence between (gDGc(T)) and (gg(T)) by the power
law T ~~2 (see Fig. 11). Note also that this temperature
dependence is notably different &om the one observed for
the related nondiagonal quantity hgNn —bgNg (Fig. 7).
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I much larger than OND which is proportional to 7, . On

the other hand in the limit where u )) p the real part of
aD(4) vanishes and gives rise to an imaginary contribu-
tion which adds up to the persistent current. As a result
in the limit where ~ )) p the imaginary conductance
reads

A 20—
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V

0, J.
0

I. . . , I. . . , I. . . , I. . . , .L,
O. i 0.2 0.3 0.4 0.5

4/eo

FIG. 10. Flux dependence of the canonically averaged diag-
onal conductance for difFerent temperatures (stars, T = 0.2b, ;

squares, T b, ; crosses, T E„circles,T )) E,).

1 OIp„e2
(lm(g)) = —— '" + gD—(@',T)04 2vrh u)

(36)

In the grand canonical case, ((BI&„/cj4'))Gc= 0 and
Im(g) &&

——(e /2n'h) (Oos/b, u) (i2 P) indePendent of tem-
perature. On the other hand in the canonical case at
T = 0, Im(g)+ = ((BI~„/84))+= (8 E/8/2) Wh. ere
E is the total energy of the system, this is the old re-
sult of Kohn relating the imaginary conductivity to the
stiffness of the disordered ring. At higher temperature
there is an extra diagonal contribution. The nonmono-
tonic variation with temperature of the Hux-dependent
part of (Im(o)) depicted in Fig. 12 is easily understood
as resulting from the sum of the exponential decay of
(I~„(T))and the increase of (gg(T)) described above.
Note that the Hux dependences of g~(T )) E,) and of
gz„(T= 0) are similar but not quite identical. Taking
the derivative of Eq. (14) one can show indeed that

B. Frequency dependence and imaginary
conductance

The frequency dependence of OD(4') is given by the
prefactor (p —iu); it is thus completely determined by
the ratio u/p; unlike the case of oND, E, is not here a
relevant energy scale. In the limit where u (( p, crLi(4)
is essentially real and proportional to I/p; it can be also

This last quantity can be identified with (i (4))—
(i2(4)) @ only if one assumes a decorrelation of the dif-
ferent harmonics and also of the currents bared by suc-
cessive levels.
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FIG. 11. Temperature dependence of the canonically aver-
aged diagonal conductance for 4' = 40 /4. One notices the
sharp increase from T = 0 to T A, the tail up to T E,
and the saturation at the grand canonical value for higher
temperature. Inset: Difference between the grand canoni-
cally and canonically averaged diagonal conductances. This
quantity decreases like T up to E, and then much faster.

FIG. 12. Flux dependence of the imaginary part of the
conductance in the canonical ensemble for different temper-
atures (stars, T = 0.2A; squares, T 4; crosses, T —E,)
(Img ) = (Img~„) for T = 0 and (Img ) (Img~) for
T E,. Inset: temperature dependence of the amplitude
of the oscillation of the imaginary part of the conductance.
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VI. THE TOTAL CONDUCTIVITY

We have seen in the preceding sections the different

characteristics of the nondiagonal and diagonal compo-
nents of the conductance. The Hux dependence of the
total conductance at zero frequency directly follows &om

this analysis. The grand canonical conductance is dom-

inated by the diagonal contribution and is temperature
independent. On the other hand, the canonical conduc-
tance, which is depicted in Fig. 13, depends on the tem-
perature in the following way: at T = 0 it is given by
only the nondiagonal contribution; its flux dependence
exhibits oscillations whose signs are opposite &om the
grand canonical case. At nonzero temperature the diag-
onal contribution is added to the nondiagonal one and the
sign of the flux oscillations changes, the canonical con-
ductance becomes identical to the grand canonical one at
temperatures of the order of the Thouless energy.

The &equency dependence of the total conductivity for
the grand canonical ensemble, or equivalently the canon-
ical ensemble for T )& E„is displayed on Fig. 14 for
4 = 0 and 4 = 4p/4. One can see that the sign of the
magnetoconductance changes for u & p, which corre-
sponds to the &equency range where the diagonal contri-
bution becomes negligible compared to the nondiagonal
one. Finally, Fig. 15 summarizes the Qux dependence
of both real and imaginary parts of the conductance for
the canonical and grand canonical statistical ensembles in
the various frequency and temperature regimes. The con-
ductance in the grand canonical ensemble is temperature

40
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0 4 =@p/4
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—
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FIG. 14. Frequency dependence of the total conductance

(grand canonical or canonical ensemble for T )& E, ) for

4 = @s/4 and 4 = 0 with p = b, . Note the change of sign

of the magnetoconductance occurring at ~ = p. The sample

studied and the range of averaging is the same as for Figs. 3
and 5.

independent (if one neglects the variations of the param-
eter p with temperature) and is identical to the canonical
conductance for T )) E,. In the low-temperature regime
for the canonical ensemble, the real part of the conduc-
tance is only nondiagonal and exhibits Qux oscillations
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FIG. 13. Flux dependence of the total average conduc-
tance in the canonical statistical ensemble for difFerent tem-

peratures at zero frequency. Note the change of sign of the
4 Q/2-periodic oscillations occurring at a temperature of the
order of E. These results are obtained from numerical sim-

ulations on the Anderson model on a 30 x 4 x 4 ring arith
disorder W = 2; they are averaged on the number of particles
between 1/4 611ing and 3/4 Riling, for two different disorder
con6gurations.

FIG. 15. Schematic summary of the Bux dependences of
the real and the imaginary parts of the conductivity, obtained
for the difFerent statistical ensembles for various frequency
and temperature ranges. The amplitudes are given up to
numerical factors. (a) p/b, ln(b, /p) if cu « p; (b) ~/6, if
p « uA; (c) valid only for u « b, .
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whose amplitude, in the limit where both p and ~ go
to zero, is of the order of the Drude conductance with
a negative low-field magnetoconductance. On the other
hand, for the grand canonical case at low frequency the
diagonal contribution dominates the nondiagonal one and
gives rise to Hux oscillations of amplitude goA/p with a
positive low-field magnetoconductance.

The imaginary part of the conductance is proportional
to the flux derivative of the average persistent current;
there is no extra diagonal contribution for the canonical
ensemble at zero temperature. On the other hand for
the grand canonical case the average persistent current
is zero but there is an extra contribution coming &om
the diagonal conductivity at ~ &) p.

baux. We also thank M. T. Beal-Monod, L. P. Levy, and
B. Spivak for &uitful discussions. Numerical simulations
have been performed using Cray facilities at CCVR of
Ecole Polytechnique. Laboratoire de Physique de Solides
is associe an CNRS (U.A. 040002).

APPENDIX A: DETAILS OF THE
COMPUTATION

The samples we studied are tori of two different shapes:
a large one, of length I = 64 sites and cross section
L„xL, = 8 x 8, and a smaller one of size 32 x 4 x 4.
On this lattice we numerically diagonalized the following
Anderson Hamiltonian:

UII. CONCLUSIONS

We have shown that the response function of a meso-
scopic Aharonov-Bohm ring to a small time-dependent
lux in the limit of a discrete spectrum presents a va-

riety of original features and can be essentially differ-
ent from the conductance of the same object connected
to macroscopic measurement leads (continuous-spectrum
limit). This study is relevant to the experimental situa-
tion of quantum dots made from GaAs/Gai Al As het-
erostructures, where recent spectroscopy studies have
indeed shown evidence of a discrete spectrum. We have
identified different contributions to the real part of the
conductance giving rise to flux oscillations of opposite
sign:

(i) An ofF-diagonal contribution related to interlevel
transitions. It is connected with the flux dependence of
the level statistics.

(ii) A diagonal contribution related to the aux depen-
dence of the occupation of the different levels. This quan-
tity is proportional to the average square of the single-
level persistent current and to the inelastic scattering
time. It can be much larger than the Drude conductance.

We have emphasized the importance of the choice of
the statistical ensemble: at zero temperature the canon-
ical and grand canonical average magnetoconductances
have opposite signs, and these differences persist up to
temperatures of the order of the Thouless energy. These
results obtained for Aharonov-Bohm geometry could eas-

ily be generalized to singly connected quantum dot ge-

ometries. We have investigated so far only the av-

erage conductance; preliminary results concerning the
probability distribution of this quantity show evidence
of strongly Don-Gaussian Quctuations different in the
canonical and in the grand canonical ensembles. Such
non-Gaussian fluctuations have already been predicted
by Prigodin, Efetov, and Iida in the tunneling con-
ductance of quantum dots, also in the discrete-spectrum
limit.
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H(C) = ) p„ctc„+) (z„ctc + z„ctc„),
A im

where z„=0 if the sites n and m are not nearest neigh-
bors, and if they are z„=exp[2im4/4o(z„—x )/L ],
where x„andx are the respective coordinates of sites
n and m along the 2; axis, and where (p„}are a set
of on-site energies, randomly distributed in the interval

[
—~, ~]. In our case W = 1.4 for the bigger ring and
S' = 2 for the smaller, so that the disorder is just strong
enough to make the electron motion diffusive. Such a
matrix can be diagonalized for different values of the
magnetic flux 4, giving rise to a set of spectra (e (C)}
and eventually a set of eigenfunctions too (we restricted
the computation of eigenfunctions ]o.(4)) to the small-
est matrix only). From the spectrum we can deduce the
chemical potential p, (X, T, 4) for all values of the number
of electrons N and the temperature T, and for the fluxes

4 for which we first diagonalized H(4). This is done by
inverting the following implicit equation:

N = ) f with f = (exp[P(e —p)] + 1}

where o. runs over all levels. Then we can calculate Ip„
by using Eqs. (9,14), and g~ as:

2

) ~ Bf~ (Be~ Bp, ) ~ Bf~ Be~

Be ( B4 ) B4 Be B4

(Al)

) ~ Bf~ Be~
06 OCa).Bf

86

(A2)

For the nondiagonal part of the conductivity according
to Eq. (8) we computed the matrix elements of the kinetic
momentum operator which read in the tight-binding
model, P p = P (o.]2:,y, z„)(z„+l, y, z ]P)
(o.~x„,y„,z„)(x„—l, y„,z„]P),(see Fig. 16). Instead of
studying a quantity for a given number of electrons or
a given configuration of the disorder, it is often more
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APPENDIX B:DETERMINATION OF THE
THOULESS ENERGY

In order to be able to compare our results with analyt-
ical predictions we had to estimate the Thouless energy
E, = hD/L = sMl, /L. According to the empirical
formula l, = 30/Wz we obtained E, = 20 and E, = 5
respectively for the samples 64 x 8 x 8, W = 1.4 and
30 x 4 x 4, W = 2. Taking this de6nition, the amplitude
of the typical 6rst harmonic of the total current and the
average square of the single-level current are found to be

yp
—1 8 5 yp0 8 5 yp1 . 8

/s
—

gati[/6

5 yp2

(i (Cp/4))„„=1.6E,/b, ,

FIG. 16. Square of the matrix element of the kinetic mo-
mentum operator ~P S ~

as a function of the energy difference
—ep~ averaged over an energy window equal to E. These

results are obtained from numerical simulations on the An-
derson model on a 30 x 4 x 4 ring vrith disorder W = 2.

to be compared to the theoretical values:~9

interesting to compute averaged quantities. The aver-

aging procedure involved in analytical approaches runs
over the disorder, but according to the ergodicity prop-
erty of mesoscopic systems in the diffusive regime, it is

equivalent and numerically simpler to average over the

("(C./4)) .= 2E./~,

[(,'.,(Cp/4)) th]'~' = 1.6E,/D.
(B2)
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