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Phonon dispersions of silicon and germanium from first-principles calculations
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We present the calculation of the full phonon spectrum for silicon and germanium with the pseudopo-
tential method and the local-density approximation without using linear-response theory. The
interplanar-force constants for three high-symmetry orientations [{100),{110),and {111)]are evaluated

by supercell calculations using the Hellmann-Feynman theorem. By considering the symmetry of the
crystal, three-dimensional interatomic-force-constant matrices are determined by a least-squares fit. In-
teractions up to the eighth nearest neighbors are included. The dynamical matrix, which is the Fourier
transform of the force constant matrix, is hence constructed and diagonalized for any arbitrary wave
vector in the Brillouin zone, yielding the phonon dispersion. In this paper we will present the calcula-
tion details and discuss various aspects of convergence. Phonon dispersions of Si and Ge calculated are
in excellent agreement with experiments.

I. IN+RODUC~iON

The phonon spectrum of a solid is important in
evaluating physical quantities such as specific heat,
thermal expansion coefficient, and electron-phonon in-
teractions. ' Many empirical methods were developed '

before first-principles calculations became feasible.
Different kinds of interaction parameters were proposed;
all had to be fitted to known experimental results, most
commonly dispersion curves. These empirical methods
provided insight into experimental observation, but
lacked predictive power. With the advent of computa-
tional techniques, calculating phonon frequencies within
the local-density approximation (LDA) became possi-
ble. The approach can be divided into two categories:
the supercell method ' and the linear-response
method. '

In the supercell method, total energy or forces are cal-
culated within the frozen-phonon approximations as
atoms in the supercell are displaced from their equilibri-
um positions. It is conceptually simple and computation-
ally straightforward, but limited by the size of supercell
that can be handled. Only phonons at high-symmetry
points and along high-symmetry directions ' have been
studied by this method. On the other hand, the latest
linear-response method calculates the electron-density
response to a specific lattice distortion either by evaluat-
ing the potential change self-consistently or by solving
an integral equation in connection with the density
change in the absence of electron-electron interaction.
The first-order change in electron density gives the
second-order change in energy. Thus the phonon disper-
sion was calculated for several semiconductors and
aluminum.

In this paper, we will demonstrate that it is indeed pos-
sible to obtain full phonon dispersion from a few simple
supercell calculations. It is based on the observation that
one-dimensional force constants between high-symmetry
atomic planes (which can be evalttated easily by the su-
percell method} are linear combinations of three-

dimensional interatomic-force constants. Therefore, if
one knows the interplanar-force constants (longitudinal
and transverse} for a few directions, interatomic-force
constants can be found by solving a set of linear equa-
tions. Since crystal symmetry reduces the number of in-
dependent elements in the force-constant matrices, one
may end up with more equations than needed for a given
cutoff of interaction range. Therefore, solutions can be
determined from a least-squares fit. A dynamical matrix
for any wave vector can be calculated once interatomic-
force constants are known. This approach needs only the
normal LDA codes and can in principle provide informa-
tion about nonlinear forces. We will use the diamond
structure as an example and calculate the phonon disper-
sion for silicon and germanium within the harmonic ap-
proximation. The preliminary results for silicon with a
smaller plane-wave energy cutoff was previously report-
ed

The paper is organized as follows: the calculational
method is presented in Sec. II and the results for Si and
Ge in Sec. III. Discussions of convergence of force con-
stants and other related topics are driven in Sec. IV and
the conclusion in Sec. V.

II. CALCULATIONAL METHODS

The method we present is based on the supercell ap-
proach ' where forces on each atom in the supercell are
calculated using the Hellmann-Feynman theorem. Un-
der the harmonic approximation, the total-energy change
due to the displacements of atoms is written as'

Uh =
—,
' g u (R) D~(R —R') u~(R'},

R,R', a,P

where u (R) is the displacement from equilibrium of
atom a in the unit cell associated with lattice vector R,
D ~(R—R') is the interatomic-force-constant matrix
connecting atom a in unit cell R and atom P in unit cell
R', and a and P are indices of atoms in the basis. We will
limit our discussion to the diamond structure where two
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A, ~(n)=
R, e (R+v &j=d

D ~(R)

where e is the unit vector normal to the atomic layer and
r &=r,—r& is the vector connecting atoms a and P in
the basis. An example is shown in Fig. 1 for the (100)
planes, where open circles are atomic equilibrium posi-
tions and solid circles indicate the atomic plane displaced
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FIG. 1. Supercell for {100) planes. Empty circles are the
equilibrium atomic positions and solid circles are the layer of
atoms displaced longitudinally. The solid box is the long, slim
unit cell containing 12 atoms. Dotted lines show the pairs of the
interatomic forces, indicating that the planar force is written as
the snm of interatomic forces as expressed in Eq. (4).

atoms are present in each unit cell. It can easily be gen-
eralized to other structures. Following conventional no-
tation, the two atoms in the primitive cell will be referred
to as a and c. The vector connecting their equilibrium
positions is r„=(a/4, a/4, a/4), where a is the lattice
constant. The phonon frequencies of wave vector k are
the eigenvalues of the dynamical matrix, 4(k), which is
simply the Fourier transform of the real-space
interatomic-force constants,

D"(R) D"(R)
D"(R) D"(R) (2)

R

Therefore, once interatomic-force constants are known,
the phonon dispersion can be easily obtained.

In principle, force constants can be calculated within
the LDA by using the Hellmann-Feynman theorem and
a supercell modeling of the atomic displacement, but
since the size of the supercell can become alarmingly
large using the conventional approach, this has never
been achieved. On the other hand, the one-dimensional
interplanar-force constants can be easily calculated using
a long and slim cell along certain high-symmetry direc-
tions. ' In these calculations, instead of one single atom
being displaced, the whole layer of atoms are displaced.
We have

F(n)—= gA. ~(n —m)u~(m),
m, P

where F (n} is the force on atom a in the nth layer,
u~(m) is the collective displacement of atom P in the mth
layer, and A, ~(n} is the interplanar-force-constant matrix
for the chosen direction.

Note that the interplanar forces on each atomic layer
are in fact superpositions of the interatomic forces:

Therefore, only two of the above four 3X3 matrices are
independent. From the definition of the force constant in
Eq. (1) as the second derivative of the energy, we have

D"(R)=D"(—R)
D"(R)=D"(—R)

D"(R)=D"(—R)

(6)

Additionally, the force-constant matrix transforms as a
second-rank tensor

D ~(R')=S D ~(R).S

where S is any point-group operation that maps R+~ I3

to R'+r &. This further reduces the number of indepen-
dent elements in the 3 X 3 force-constant matrices.

In the calculation, we keep up to the eighth nearest
neighbors in the summation of Eq. (2). The real-space
convergence will be discussed later. With this cutofF, su-
percells for the (100), (111),and (110)planes include 8 —16
atoms with the eighth nearest neighbors at the boundary.
Two kinds of displacement (L and T) are considered for
(100) and (111), and three kinds of displacement (L, T,
and T2) for the (110}calculation. The calculation is done
within the local-density approximation using the soft
pseudopotential" and the plane-wave basis. The
Ceperley-Alder exchange-correlation' parameterized by
Perdew-Zunger' is used.

III. RESULTS FOR Si AND Ge

%e first checked the convergence of the calculated
Hellmann-Feynman forces with respect to the energy
cutoff'of the plane waves. For a 10% displacement of the
bond length along the [111]direction, the force and ener-

gy change as a function of plane-wave cutoff are shown
in Figs. 2 and 3 for Si and Ge, respectively. The forces
are accurate to within 1 mRy/a. u. with an energy cutoff
of 18 Ry for Si and 20 Ry for Ge. These are the energy
cutoffs used in this calculation. The difference in the

longitudinally. The dotted lines indicate interatomic
forces included in the summation in Eq. (4) for the force
on the adjacent plane. The solid box is the typical long
and slim supercell containing 12 atoms if the interaction
is truncated at the eighth nearest neighbor. For more de-
tails on the interplanar-force-constant calculation, see
Ref. 5. Following Eq. (4), one linear equation can be
found for the force on every plane in the unit cell and for
two different kinds of displacements, longitudinal (L) and
transversal ( T) (three in the cases where the two transver-
sal modes are nondegenerate).

It turns out that knowing the interplanar forces for
three plane orientations [(100, (110), and (111)] is
sufficien to determine the interatomic-force constants in
the diamond structure (when the cutoff' is at the eighth
nearest neighbor}, since crystal symmetry greatly reduces
the number of independent matrix elements. For the dia-
mond structure, the inversion symmetry gives

D"(R)=D"(—R)

D"(R)=D "(—R) .
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FIG. 2. Total-energy change and forces (triangles) as a func-
tion of the plane-wave energy cutofF for Si. Ten special k points
for the two-atom primitive cell (and its equivalent) are used in
both calculations. The force is for a bond length reduction of
10%.

FIG. 3. Total-energy change and forces (triangles) as a func-
tion of the plane-wave energy cutofF for Ge. Ten special k
points for the two atom primitive cell (and its equivalent) are
used in both calculations. The force is for a bond length reduc-
tion of 10%

frozen-phonon results for TA(X) in Si using the cutofFs of
12 and 18 Ry is about 5%. Therefore, these results cor-
respond to more converged values than those reported
earlier.

In calculating interplanar forces, three different super-
cells are chosen for the (100), (111), and (110) orienta-
tions. They are different in size (number of atoms), shape,
and symmetry. The same accuracy for the calculated
interplanar-force constants along difFerent directions has
to be maintained in order to reduce the error in the final
results of the interatomic-force constants. Therefore, a
consistent k-space representation is necessary. The k
points used in each case are equivalent to the ten special
k points for the primitive cell of the diamond structure.
This set is chosen according to previous convergence
studies. ' Usually, the limited k-point sample does not
introduce a serious error in total-energy calculations for
semiconductors. ' However, it is important to keep the
sampling consistent when the forces are concerned, espe-
cially when examining various supercells, because the er-

ror induced is more significant in the force than in the en-

ergy. The calculation is performed using the theoretical
equilibrium lattice constant.

As a test, five displacements (O, hu, +2u) are included
in each planar force calculation for Si at the energy cutoff
of 12 Ry to get a better description of the harmonic term.
The size of u is typical at l%%uo of the lattice constant. The
zero displacement calculation is important because it
checks the accuracy of the calculated forces. Theoreti-
cally, the force should be exactly zero, but due to the lim-
ited number of k points and plane waves, a very small
value may occur (less than 0.1 mRy/a. u. , much less than
the convergence error). The force constants obtained
from the five-point fit [error —0(u )] do not differ
significantly from those obtained from the three-point
(0, ku) fit. The difFerence is less than 2%%uo, which is com-
parable to errors introduced by the limited number of
plane waves. Most of the results presented below are ob-
tained from the three-point fit.

The interatomic interactions up to the eighth nearest

TABLE I. Planar-force constants of Si (10' dyn/cm). Supercells contain 8 and 12 atoms for the [100] direction, 8 atoms for the

[111]direction, and 16 atoms for the [110]direction, respectively. The sum excludes the values from the first row.

[100]

Longitudinal Transversal Longitudinal Transversal T2

[110]

LL LT

0
+1
—1

k2
+3
—3
+4
+5
—5

Sum

+2.527
—1.130
—1.130
—0.151
+0.012
+0.012
—0.005

—2.543

+2.085
—1.874
—0.270
+0.063
—0.000
—0.081
+0.014
—0.008
—0.019

—2.098

+2.437
—1.244
—0.977
—0.093
+0.007
—0.034
—0.002

—2.438

+2.182
—0.138
—2.078
+0.026
—0.040
—0.001
+0.006

—2.193 Sum

CC

ca
CC

ca
CC

ca
cc
ca
CC

ca

+2.084
—1.858
+0.074
—0.143
+0.002
—0.036
+0.002
—0.005
—0.005
+0.000

—2.082

+2.174
—0.276
+0.064
—0.973
—0.029
—0.005
+0.002
—0.010
—0.003
+0.000

—2.184

+2.413
—1.134
—0.149
—0.538
+0.061
+0.014
—0.022
—0.022
+0.007
+0.000

—2.432

+0.000
+0.000
+0.046
—0.524
—0.015
+0.009
+0.003
+0.014
+0.000
+0.000

+0.000
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TABLE II. Planar force constants of Ge (10' dyn/cm}. Supercells contain 8 and 12 atoms for the [100] direction, 8 atoms fox the
[11 1] direction, and 16 atoms for the [110]direction, respectively. The sum excludes the values from the first row.

[100]
Longitudinal Transversal

[111]
Longitudinal Transversal T2

[110]
LL LT

0
+1
—1

+2
+3
—3
+4
+5
—5

+2.203
—0.975
—0.975
—0.130
+0.005
+0.005
—0.001

+ 1.800
—1.595
—0.265
+0.063
+0.001
—0.076
+0.013
—0.005
—0.022

+2.145
—1.061
—0.879
—0.093
+0.015
—0.033
—0.001

+ 1.924
—0.129
—1.814
+0.022
—0.038
—0.012
+0.006

CC

ca
CC

ca
CC

ca
CC

ca
cc
ca

+ 1.813
—1.610
+0.057
—0.124
+0.008
—0.039
+0.003
—0.005
+0.000
+0.001

+ 1.882
—0.232
+0.058
—0.836
—0.021
—0.009
—0.002
—0.014
—0,002
+0.001

+2.068
—1.007
—0.113
—0.456
+0.057
+0.012
—0.018
—0.029
+0.010
+0.007

+0.000
+0.000
+0.040
—0.450
—0.014
+0.014
—0.003
+0.013
+0.000
+0.000

Sum —2.202 —1.810 —2.142 —1.937 Sum —1.808 —1.882 —2.067 +0.000

neighbors are included in the calculations. This corre-
sponds to a total of 31 independent matrix elements. The
number of atoms in the unit cell is 12 for (100), 8 for
(111),and 16 for the (110}orientations, respectively. For
the (100) longitudinal mode, the force decays very fast, so
that an eight-atom cell is sufficiently converged. Tables I
and II list the calculated interplanar-force constants for
Si and Ge, showing that the sum rule is well satisfied.

From these results, we have 61 equations to solve for
31 independent parameters. A least-squares fit is em-
ployed to determine these matrix elements. Note that the
low frequencies of the TA modes are determined by the
small difference of two large numbers. In order to get the
low-frequency TA modes correct, the difference of cer-
tain force constants has to be very accurate. This is in-
cluded in the fitting. In addition, more weighting is in-
cluded for low-lying TA branches. The results of
interatomic-force constants are listed in Table III, in
which coordinates are in units of a/4 and notations for
the force constants follow Herman's work. '5

Using these interatomic-force constants, the calculated
phonon dispersions for Si and Ge are shown in Figs. 4
and 5, respectively. Solid lines are calculated results,
while experimental data are denoted by circles and
stars. ' The black squares are from the direct frozen-
phonon calculations for zone-boundary modes using suit-
able supercells. As a whole, the calculated results com-
pare very well with experiment. Small discrepancies exist
at very low frequencies, which correspond to very small
eigenvalues of the dynamical matrix (mco }. As an exam-
ple, men equals to 0.311 and 0.165 (10 dynicm ) for
TA(X) and TA(L) in Si, respectively. Even a small error
in the force constants can create a visible effect in phonon
dispersion curves in the very-low-frequency region. The
phonon density of states is also shown in the figures.
Comparing phonon frequencies calculated from the
interplanar-force constants with those from the final
interatomic-force constants for the [100], [111],and [110]
directions, one finds an error of 2%, resulting from the
0.3% error in the least-squares fit.

TABLE III. Coordinates of neighbors and corresponding force-constant matrix elements for Si and
Ge. Coordinates are expressed in units of Q/4 with Q being a cubic lattice constant. The force con-
stant matrix elements are in conventional notations (Ref. 15) (10' dyn/cm).

0 cc
1 ca
2 CC

3 cQ

4 cc
5 ca

6 cc

7 cQ

7 ca
8 cc

Coordinate

(0,0,0)
(1,1,1)

(2,2,0)

(1,2, 3)

(0,0,4)
(3,3,1)

(2,2,4)

(1,1,5)

(3,3,3)
(4,4,0)

Qo=
a, =
P2=
r2,=
P3=
y3=
P4=
Ps=
3 S

P6=
3 6

E6

P7=
y7=
CX7

=
P8=
7 t

2.237
—0.547
—0.035

0.017
0.007
0.008

—0.013
—0.002

0.004
—0.002
—0.000

0.002
0.000
0.002
0.004

—0.002
—0.008

Si

V2=
52=
V3=
63=
54=
VS-
5S=
V6-
66=

—0.388
—0.029

0.068
—0.010

0.001
0.018

—0.001
—0.030

0.006
0.001

0.004
0.004

—0.002
—-.002

0.012

Qo=
a&=
P2=
y2=
JM3-
y3=
p4—
PS-
Xs
p6-
V6
E6=
P7-
y7=
tX7 =
P8
3 8

1.952
—0.478
—0.025

0.013
0.011
0.004

—0.015
—0.003

0.003
—0.003
—0.002

0.000
—0.000

0.002
0.000

—0.003
—0.001

V2=
52=
V3-
53=
54=
VS-
5S=
V6-
56=

V8-
5 =

t

—0.330
—0.027

0.056
—0.007

0.000
0.001
0.002

—0.029
0.006
0.004

0.003
0.001

—0.006
—0.006

0.021
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FIG. 4. Phonon dispersion and density of state for Si. The re-

sults are obtained with a plane-wave energy cutoff of 18 Ry.
Solid lines are calculated results and experimental values are
shown as circles (Dolling, Ref. 16) and stars (Nilsson and Nelin,
Ref. 16). Solid squares are the frozen-phonon results.

FIG. 5. Phonon dispersion and density of state for Ge. The
results are obtained with a plane-wave energy cutoff of 20 Ry.
Solid lines are calculated results and experimental values are
shown as circles (Nilsson and Nelin, Ref. 16).

IV. DISCUSSIONS

A. Real-space convergence

In real calculations, the sum in Eq. (2) has to be trun-
cated at some distance. It should reflect the range of the
interatomic interactions in the material. The conver-
gence in elemental semiconductors is well studied in the
literature. It has long been realized that the flatness of
the TA branch near the zone boundary comes from long-
range interactions. As Herman' pointed out, the fifth
nearest-neighbor interaction is vital for reproducing the
fiatness. Interactions between atoms farther apart are of
minimal effect. This was again examined by Mazur and
Polhnann' recently. They further speculated that the
next important contribution after the fifth nearest neigh-
bor will be the eighth nearest neighbor (the next atom in
the zig-zag chain along the [110]direction), but they did
not find that it caused any visible effect on phonon disper-
sion curves. In our study, we included all the force con-
stants up to the eighth nearest neighbor in our calcula-
tion. The results do indicate that the eighth nearest
neighbors are more important than the sixth and seventh
nearest neighbors (Table III), but the increase in the num-
ber of neighbors included from the fifth to eighth nearest
neighbors had little effect on the dispersion. If the notion
that the force constant for atoms connected by the zig-
zag chain along the [110] direction is impor-
tant is correct, then the next atom along the chain
will be the thirteenth nearest neighbor [coordinates
(Sa/4, 5a/4, a/4)]. As the magnitude of force constants
decays (Table I), the contribution will be negligible.

Another check of the convergence is the interplanar
force (or force constants) for each layer. It has to decay
fast enough. For example, for the (100) transverse force
constants, we had to go up to the fifth layer before the
force constants became small enough (1% of the nearest-
neighbor value). The other thing to check is the sum
rule, Q„A,(n) =0, for each direction and polarization. In
our calculation (see Tables I and II) this is satisfied to
within 1% of the zeroth layer force constants. One other
check, usually neglected, is the agreement in the calculat-
ed optical-phonon frequencies at I' from difFerent direc-
tions and polarizations. This is important because it
measures the quality (consistency) of the data obtained
from different supercells and difFerent polarizations. In
our silicon calculation, the frequencies agree to within
0.5%.

In addition, real-space convergence can be checked by
comparing the bulk modulus calculated from the equa-
tion of state and from interatomic-force constants. This
should directly indicate whether all the important force
constants are included in the calculation. Our test shows
that we have an agreement to within 2% by including the
eighth nearest neighbors.

Table IV lists and compares results for the zone-
boundary TA modes calculated by the direct frozen-
phonon method, by the interplanar force, and by the
three-dimensional atomic-force constants. These are
low-frequency modes at high symmetry points. The
direct frozen-phonon calculations for X and L include, in
principle, an infinite range of interactions. Hence the re-
sults can be used to check the convergence of planar-
force results. If up to the eighth nearest neighbors are in-

TABLE IV. Comparison of phonon frequencies of TA(X) and TA(L) modes in Si obtained by the
dynamical matrix calculation (DM) and other methods.

Frozen phonon
energy force 8 layer

Planar force
12 layer 16 layer

DM EXP (Ref. 16)

TA(X)
TA(L)

4.22
3.21

4.22
3.21 3.37

4.37 4.27 4.10
3.12

4 49
3.43



2226 SIQING WEI AND M. Y. CHOU 50

eluded [8 and 12 layers for the (111)and (100) supercells,
respectively], the planar-force results have an error of a
few percent. The final three-dimensional dynamic matrix
results have an error of 2—3%%uo. The 16-layer calculation
(for the [100] direction supercell) includes up to the six-
teenth nearest neighbors. The results are very close to
the frozen-phonon results. Hence, error induced from
real-space truncation is insignificant considering error in-

duced from the limited number of plane waves, as dis-
cussed in the previous section.

B. Determination of force constants

In order to uniquely determine all elements of
interatomic-force-constant matrices for an arbitrary
cutoff, one may need to know the interplanar force con-
stant along some low-symmetry direction. In the case of
the diamond structure, it can be understood by examin-
ing the symmetry relations expressed in Eqs. (5}, (6), and
(7}. D" is always symmetric, hence it has no more than
six independent elements, which can be uniquely deter-
mined from the interplanar-force constants of the (100),
(111), and (110) orientations. The difficulty is with
D"(R), which can have as many as nine independent ele-
ments for a certain R. This first occurs at coordinates
(a/2, a, 3a/2), corresponding to the fourteenth nearest
neighbor. If an interaction of this range has to be includ-
ed, it is then necessary to consider, for example, the (012}
rather than the (110) planes. This corresponds to 20
atoms per cell instead of 16. For this low-symmetry
plane, there are three independent displacements (one
longitudinal and two transverse}. The forces generated
also each have three independent components. There-
fore, we have nine linearly independent equations that are
sufficient to solve for the nine matrix elements. For Si and
Ge, the cutoff at the eighth nearest neighbor is well
justified, so it is not necessary to perform the (012}super-
cell calculations. Instead, the (110) supercell calculation
provides all the necessary information.

Although we studied only elemental semiconductors in

the diamond structure, the same method can be applied
to calculations of phonon spectra for other semiconduc-
tors in, for example, zinc-blende or wurtzite structures.
The size of supercells will be similar given a similar in-
teraction range. Because of the reduced symmetry, the
number of independent force-constant matrix elements
will increase. On the other hand, with a lower symmetry,
there will be more inequivalent atomic displacements,
thus producing more planar-force-constant data. In the
end one still has enough linear equations to solve for
force constants from three supercell calculations.

As in any other force-constant calculations (including
the linear-response method}, the number of modes to be
considered increases with the complexity of the material
being studied. However, for bulk materials with a given
interaction range, the number of repeated units in a su-

percell used in planar-force calculations may decrease
when the number of atoms per unit cell increases. This
makes the application of this method to more complex
materials possible, although one is limited by the size of
supercells that can be easily handled by the present stan-
dard.

V. CONCLUSION

In conclusion, we have demonstrated that it is possible
to obtain the phonon dispersion over the entire Brillouin
zone through a direct calculation of forces within the lo-
cal density approximation. The input needed is
interplanar-force constants along several high-symmetry
directions. Calculations for Si and Ge are presented and
the agreement with experiment is excellent. We discussed
truncation and unique determination of force constants.
This method requires only the usual total-energy-force
codes and the calculation is straightforward. Even
though only the harmonic interaction is considered in
this paper, the higher-order response can be obtained, in

principle, with this method. Additionally, this method
will not be restricted by the crystalline or electronic
structure of the material being studied.
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