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Electron scattering by a spatially correlated system of DX charges has been described using the
formalism of composition waves. The matrix element for the scattering rate is given through an

I(Q) interference function (Q=scattering vector) containing pair correlation functions e(p) defined
at the p lattice vectors. The e(p) are able to describe long-range as well as short-range order
and they are simply related to short-range order correlation functions given in the literature. The
method is developed for scattering centers having equal charges; the case of positively and negatively
charged impurities present together is brie6y discussed. A comparison between the two extreme
cases of randomly distributed scattering centers and of centers arranged in a superlattice suggests,
for intermediate cases, an I(Q) given by an array of Gaussian shaped functions with common

dispersion 0, centered on the reciprocal nodes of a virtual superlattice. On this basis, experimental
mobility data for Si-doped Alo. &5Ga0.75As samples prepared by molecular beam epitaxy have been

analyzed and discussed. Data refer to isothermal electron capture transients into DX centers, as
well as to steady-state measurements taken for different free electron densities under a persistent
photoconductivity regime. It has been con6rmed that the initial stage of the capture process takes
place together with increasing order in the scattering center distribution (decreasing o), whereas

the contrary happens during the final stage (increasing o).

I. INTRODUCTION

The importance of interimpurity interactions in affect-
ing the low-temperature electron mobility in heavily n
doped semiconductors is widely recognized. When the
empty donors begin to capture electrons, there is the pos-
sibility for the electron charges to be redistributed among
the randomly distributed donors in such a way that the
total electrostatic energy is minimized. Because of the
partial occupation, the interdonor Coulomb interaction
causes the formation of a spatially correlated system of
donor charges. As a consequence of this partial ordering,
a mobility higher than the expected one for a system of
randomly distributed impurity charges can then be ob-
served under conditions where impurity scattering dom-
inates.

DX centers in n-type Al Gai As (Refs. 1 and 2) con-
stitute a charged impurity system which is particularly
attractive &om the above point of view. It is now gen-
erally accepted that the DX center is due to the isolated
donor impurity. Moreover, a number of experimental re-
sults can be more easily explained by assuming that the
isolated donor has a bistable behavior between the ordi-
nary substitutional configuration and a lattice-distorted
one, the DX center being the ground state of the dis-
torted configuration. There is also a growing consensus
to the idea that the distorted configuration is stabilized
by the capture of two electrons by the center, this latter
having thus a negative DX charge state and a nega-
tive Hubbard correlation energy U. Anyway, the main
practical advantage of DX center systems is that, ow-

ing to the well known persistent photoconductivity effect
taking place at low temperature, the fraction of empty
donors can be easily adjusted to any desired level at the
same temperature.

The significance of spatial correlations among DX
charges has recently been pointed out in a number of
studies, performed under diverse experimental condi-
tions. O'Reilly and Kossut et al. suggested that such
correlations should be accounted for in order to explain
the increase in low-temperature mobility, observed in
GaAs subject to hydrostatic pressure. By varying the
hydrostatic pressure at low temperature, Suski et al.
were able to separate the modifications of the mobility
due to alterations in the band structure of GaAs &om
those related to correlations among DX charges. Wilam-
owski et al. demonstrated that such correlations are de-

stroyed by the photoionization process of the DX centers.
Piotrzkowski et al. produced different DX center config-
urations using a combined effect of pressure, ill»mination
and temperature in a Al Gai As alloy (z = 0.15), and

they observed difFerent y, = p(n) curves (p = mobility, n
= electron density) upon warming the sample, depending
on the configuration. Jantsch et al. observed hysteresis
in the time resolved mobility p, = y, (n) diagram obtained
above 100 K by increasing n with illumination and by de-

creasing n through capture. Finally, Coz et al. demon-
strated that the low-temperature electron mobility in Si-

doped Alo 25Gao 75As is not a single valued function of
n, p being larger if a given n value is reached through
capture rather than photoionization processes.

Spatial correlations of donor charges have been de-
scribed using different approaches. O'Reilly argued that
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the initial formation of DX centers involves replacing
close pairs of positive charges by dipoles. The variations
in mobility due to carrier trapping is then determined
by the corresponding reduction in the scattering cross
section. Wilamowski et al. used the model of impu-
rity self-screening. An effective Thomas-Fermi screening
radius is evaluated which includes the screening by the
impurities themselves in addition to &ee electron screen-
ing. The former has to be evaluated in a self-consistent
way from the energy distribution of impurity states. A
quantitative interpretation of mobility data is very com-
plicated, however, owing to the need to accounting for
the self-screening of the four DX states arising from dif-
ferent numbers of Al next to neighbor atoms around the
donor. These complications are avoided if a difFerent ap-
proach is introduced, based on the use of pair correla-
tion functions g(r) to describe the short-range order con-
figurations around the impurities. ' ' ' In this way the
scattering cross section can be evaluated as a function
of the Q scattering vector by multiplying the scattering
amplitude of the isolated impurity with an appropriate
structure factor S(Q).

In this work, the spatial distribution of charged im-

purities is described using the formalism of composition
waves, as earlier introduced to analyze coherent x-ray or
neutron scattering in solid solutions. ~4 s A brief outline
of the method has already been given in Ref. 16. Using
the first Born approximation, the matrix element for the
scattering rate is given through an interference function

I(Q) containing pair correlation functions e(p) defined
at the p lattice vectors. The e(p) are able to describe
long-range as well as short-range order and they are sim-

ply related to the above mentioned g(r). In Sec. II the
method is developed for the case when only positively
charged donors are present. In Sec. III the case of posi-
tively and negatively charged impurities present together
is briefiy discussed. A comparison between the two ex-
treme cases of randomly distributed scattering centers
and of centers arranged in a superlattice suggests, for in-

termediate cases, a I(Q) given by an array of gaussian
shaped functions centered on the reciprocal nodes of a
virtual superlattice. On this basis, an analysis of experi-
mental mobility data of Si-doped Al Ga~q lAs is given
in Sec. IV.

II. POSITIVE' CHARGED CENTERS

A. Outline of the method

Consider an n-type semiconductor. For the sake of
simplicity, let us neglect acceptors and assume a posi-
tive Hubbard correlation energy U for the donor impuri-
ties. In this way, the scattering centers are the positively
charged donors D+, whose number will be indicated by
N(D+). Their spatial distribution can be described as
follows. For each / vector of the space lattice (diamond-
like semiconductors have a fcc space lattice) let us define
a variable $(l5 which is equal to 1 if the proper site of the

1th primitive cell is occupied by a D+, $(l) = 0 otherwise.
The scattering potential for the electron is then

U(r) = ) U;(r —l)((l),

where U;(r —l) means the potential due to an isolated
D+ in l. Free electron screening is included in U;. Be-
ing defined at space lattice nodes, ((l) can be written
as a superposition of N (N = number of primitive cells)
composition waves, having wavevectors q and amplitudes

~(q)

((l) = ) g(q) exp( —iq I, )

Using the first Born approximation, the matrix element

for the transition rate from a plane wave state k to I(.
" is

then

1(k I U(r)
I

k') I'= N'
I f'(Q) I'I &(Q) I'

(Q = k —k'). (3)

Here Q is the scattering vector, f, (Q) given by

j;(q) = f U;(r —l)exp r'q (r —I) dr (4)

is the scattering amplitude for the isolated impurity, and

I('(Q) I'= N, ) (.'(i)

Ipl

+) $(l)((l ) exp[iQ (l —I )]

This last quantity is more usefully replaced by its ensem-
ble average

(l((Q) I') =
N (!+).e(@exp(iQ 4 (6)

where ( = N(D+)/N is the mean value of ((l) over a
macroscopic portion of the crystal and

1(Q) = —(I(!(Q) I') =1+( ').e(plexp(iQ. p)( (8)

can now be introduced, so that the matrix element is

e(p) —= (&(&3&(&'));==-.

means the average of the product ((l)((P) over all pairs
separated by the p = l —l" lattice vector.

The scattering probability can then be evaluated as a
function of the state of order of the D+ distribution, this
latter being described by the pair correlation parameters
e(pQ. The function
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1(I I
II(r)

I
I') I' = N(D+)

I &*(Q) I' I(Q) (9)

that is I(Q) times the one for N(D+) independent, iso-

lated charged donors. We shall denominate I(Q) the
interference function. The shape of I(Q) is clearly de-
pendent on the spatial distribution of the D+ charged
donors, whereas its integral over the Brillouin zone (BZ)
is not. In fact, I(Q) satisfies the sum rule

vanishes and only Bragg scattering remains in Eq. (12),
as expected.

The opposite extreme situation [case (ii)] is character-
ized by a superlattice arrangement of the D+ charged
donors. The superlattice will be de6ned by a system of
N(D+) vectors s, a subsystem of the fcc lattice vectors l.
All the 8 sites are occupied by D+, any difFerent lattice
site l g s being empty or occupied by a neutral donor
D . Thus

BZ

) I(Q) =N (io)
&(t)&(&') - = ~;-

where b is the Kronecker symbol. From Eq. (5) we get

as can be easily demonstrated from Eq. (8).
I ((Q) I

= N(D+) + N(D+) ) exp(iQ s)
e+Q

B. The interference function = —) exp(iQ s). (17)

Let us now consider two extreme cases: (i) an ideally
random D+ distribution and (ii) a superlattice arrange-
ment of the D+ charged donors.

In an ideally random distribution [case (i)]

e(~) = (((i)((t'))~ = Ã(t))(((t')) = &'

is independent of p, so that

I(& I
U (r) I

I ')I'

= N
I f;(Q) I ((1—() +( ) exp(iQ p) l . (12)

Equation (17) represents Bragg scattering by the super-

lattice, the summation over s being vanishing unless Q
coincides with a g, reciprocal superlattice vector.

The interference function

I(Q) = ) exp(iQ a)

is an array of 6-like functions centered on the g, super-
lattice nodes. The number of superlattice nodes within

the BZ is equal to ( . Since I(Q) = N(D+) whenever

Q = g„and I(Q) = 0 otherwise, the sum rule gives

BZ N(D+)

I(Q) = (1 —
&) (for Q g 0) (13)

and

I(Q) = (1 —() iN( (for Q = 0). (14)

The sum rule (10) is easily verified, since

BZ

) I(Q) = (1 —()(N —1) + (1 —() + N( = N. (15)

Here the first term represents the "von Laue" diffuse scat-
tering, which is characteristic of the random nature of the

distribution. The last term, being vanishing unless Q co-
incides with a reciprocal lattice vector, represents Bragg
scattering by a virtual crystal of charged impurities hav-

ing scattering amplitude (f; (Q).
Avoiding Bragg scattering t;he interference function is

as expected.
When comparing case (i) and case (ii), we first have

to point out that Bragg scattering does not really limit
the electron mobility. Thus, in case (i) the relaxation
time will be limited only by the "von Laue" difFuse term,
whereas it will be infinite in case (ii).

The comparison between the interference functions
Eqs. (13), (14), and (18), of cases (i) and (ii), respec-
tively, also gives a suggestion for an empirical picture of
intermediate cases. A partially ordered charged center
distribution will be tentatively described as a virtual su-

perlattice arrangement of the D+, with a given amount
of disorder superimposed. Thus, a general interference
function will be assumed as being an array of Gaussian
shaped functions, having common dispersion o, centered
on the g, reciprocal nodes of the virtual superlattice:

In the cases in point, N(D+) is much smaller than the
N available sites, so that ( « 1 and I(Q) 1. Owing
to Eq. (9), the system of N(D+) randomly distributed
charged donors behaves as N(D+) independent, isolated
scattering centers. However, the case ( = 1 represents
a regular array of charged impurities occupying all the
available lattice sites. In this case the von Laue term

I(Q) = A ) exp
ge

(20)

Here, the preexponential factor A must be determined in
order for I(Q) to satisfy the sum rule Eq. (10). We have
(see the Appendix)
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8~s $N
(rsvr )'2 erf (L/cr)

where V is the volume of the crystal and L is the side
of the cube whose volume is equal to the OBz one of the
Brillouin zone. In the Appendix it is also shown that the

I(Q) given by Eqs. (20), (21) reduces to the one given
by Eq. (13) [case(i)], or by Eq. (18) [case (ii)] in the two
opposite cases of large or vanishing o, respectively.

Finally, we will consider how the interference function
given by Eq. (8) can be reduced to the S++(Q) structure
factor of Refs. 4, 7, 8, and 13. Equation (8) gives

= (1 —() +() (g++ —1) e'~'~ +() e'q'~.

PW0 PW0

(22)

Here the pair correlation function g++(pg/( (p g 0) has
been introduced. In Eq. (22) the Srst term is responsi-
ble for the diffuse scattering by an array of fN scatter-
ing centers randomly distributed at the N lattice points,
whereas the last terms gives Bragg scattering by a virtual
crystal of centers of reduced scattering amplitude (f; (Q)
The second term represents the contribution (positive or
negative) of any type of order in the distribution of cen-
ters over the lattice sites; if long range order is absent,
e(p) can be replaced by (z, and g~~(pg by unity, when p
is large. Using the continuous variable r instead of p we

get, apart &om Bragg scattering,

I(q) = (1 —g) + n(D+) J ]dec(e) —1] exp(iq e)de.

(23)

Here n(D+) = N(D+)/V is the density of ionized D+
donors. The function g++(p) must now vanish for van-
ishing r. For an isotropic distribution, which may be
justified when long range is absent, Eq. (23) reduces to

I(Q) = (1 —f) + —n(D+) [g++(r) —1]r sin(Qr)dr.

(24)

When f « 1, as in practical cases, Eq. (24) coincides
with the S++(Q) structure factor of Refs. 4, 7, 8, and 13.

charged impurities occupy diferent sites in the primitive
cell. For example, in Si-doped (A1Ga)As, owing to the
amphoteric behavior of Si, D+, and A occupy III and V
group atom. sites, respectively, whereas DX is believed
to be displaced into a threefold coordinated interstitial
site. These complications will be neglected here by as-
suming the spatial con6guration of the scattering centers
to be described by a set of variables ((l) so that ((l) = 1

if a D+ is present within the lth primitive cell, $(l) = —1

if a A or a DX is present, and ((l) = 0 in all other
cases. The scattering potential is then again given by
Eq. (1) if now U;(r —l) means the potential due to an

isolated positively charged impurity in l. Consequently,

Eq. (3) is still valid and the interference function I(Q)
is still given by Eq. (8), provided that ( is replaced by

(f+ +( ), where

N(D+)
N

N(A ) + N(DX )
N

The correlation parameters e(p) may now be negative
when lattice sites separated by p have a high probability
of being occupied by impurities with opposite charges.
In any case,

~
e(p) ] gives the probability that pairs sepa-

rated by p are both occupied by charged centers regard-
less of their signs. More specifically, e(p) can be written
as

e(R =P++(p)+P (p)-2P—+-(R (26)

where P++(p), P (p), and P~ (p) are the probabilities
that lattice sites separated by p are both occupied by
pairs of positive, negative, or opposite charges, respec-
tively. I(Q) is then

Let us now examine particular cases. For a random dis-
tribution of scattering centers [case (i)], a straightforward
analysis gives

I(Q) = ((++( ) [(+(1—(+) +( (1 —g ) + 2(+( ].

(28)

I(Q) = 1 + (f+ + $ )

x ) [P++(p) + P (p) —2P+ (p)] exp(iQ p).
p+0

III. POSITIVELY AND NEGATIVELV
CHARGED CENTERS

I et us now consider the possibility of positively and
negatively charged impurities being present together. In
an n-type semiconductor, negatively charged impurities
are the A compensating acceptors and, possibly, D
donors having negative U Hubbard correlation energy.
A well known example of this last case is the conjec-
tural DX charge state of donor impurities in many III-
V semiconductors.

In diamondlike structures positively and negatively

The interference function is independent of Q and it can
be readily approximated to I(Q) = 1, when (+ « 1,

« 1, as for the cases in point. In the opposite case, of
centers arranged in a superlattice [case (ii)], only Bragg
scattering contributes to I(Q), similarly to Eq. (18). The
superlattice may be defined as having N(A ) +N(DX )
»mt cells, each of them containing a negatively charged
center together with p = N(D+)/[N(A ) + N(DX )]
positive centers ordered within the cell itself. The inter-
ference function will be an array of b functions centered
on the ( superlattice nodes within the BZ. Intermedi-
ate cases between random and superlattice distributions
could be tentatively described by substituting b functions
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with Gaussian shaped functions of common dispersion tT

to account for disorder in the negative center distribu-
tion. A better description should also account for the
distribution of the p positively charged centers within
each cell, thus introducing one more parameter of order,
at least, besides cr. Contrary to the case examined in Sec.
II, the use of an interference function with the unique pa-
rameter o may now result in too rough an approximation
for the analysis of experimental mobility data. A further
difhculty is related to ambiguities in defining the virtual
superlattice. In fact, the number of unit cells could al-
ternatively be assumed to be equal either to the num-
ber of positively charged centers or to the net difference

(~
I'++(P)

(~
&--(P)

P+-(P
g+-(Pg =

( ( (29)

A straightforward analysis then gives

N(D+) —[N(A ) + N(DX )]
Finally, the interference function Eq. (27) can be writ-

ten in a more convenient form by introducing correlation
functions defined as (p g 0)

( -) (+( —4+) + (-(1—(-) + 2(+(- ((+ —(-)' )-
(++ t!- (++(

+ ) .[g++(P) —1]exp(tQ P)+ ).(g--(P) —1) exp(tQ P)
sWo PW&

).[gi (p) 1]—exp(tQ ' p).
2(+(-
+ + (So)

The 6rst term represents the contribution of a disordered
distribution of charges and the second one gives Bragg
scattering by a virtual lattice of impurities having scat-
tering amplitude (f+ —( )f;(Q) When r.eplacing p by
the continuous variable r and assuming isotropic distribu-
tions, the interference function I(Q) gives((+, ( (( 1),

4~ 2 OO

I(Q) = 1+ — [g++(r) —1] r sin(Qr)dr
Q n++n o

4 n2 oo

+— [g (r) —1] r sin(Qr)dr
Q n++n o

4~ 2n+n
[g+ (r) —1] r sin(Qr)dr.

Q n++n o

mobility data as a function of the n free electron concen-
tration were here analyzed. In particular, p, and n were
obtained as a function of time during isothermal capture
transients in the temperaure range 110—140 K, starting
from a t = 0 electron density reached by illuminating the
sample with the same light-emitting diode light intensity.
By eliminating time, p = y, (n) curves were obtained; two
of them, corresponding to the extreme temperatures of
110 (curve 1) and 140 K (curve 2) are here considered
(Fig. 1). In Ref. 11 these curves were analyzed by fitting
each mobility value through an empirical N, g e8'ective
density of isolated scattering centers. Spatial correlation
effects were then particularly evident both for high n val-
ues in the T = 110 K curve and for low n values in the

Here Bragg scattering has been excluded and n+ and
n are the total densities of positively and negatively
charged scattering centers, respectively. Again the pair
correlation functions g++, g, and g+ are assumed to
vanish for r ~ 0. Equation (31) coincides with the S(Q)
structure factor of Ref. 13.
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IV. ANALYSIS OF EXPERIMENTAL
MOBILITY DATA

8
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T= 140 K

In this section we give an example of the use of the
interference function in the analysis of experimental mo-
bility data in which spatial correlation eKects are signif-
icant. We considered Hall eKect data taken in Si-doped
Alo 25Gao 75As samples, whose electrical properties are
controlled by DX centers. The uncompensated donor
density Np —1V~ was 2 x 10 cm . Di6'erent sets of p

6oo
0 5 10 15

Electron density (10 cm )

FIG. 1. Hall electron mobility vs free electron den-

sity during isothermal capture processes in Alp. &5Gap. 75As

(Nq —N —10 cm ) taken at T = 110 K (curve 1) and
T = 140 K (curve 2). The data are taken from Ref. 11.
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FIG. 2. Hall electron mobility vs &ee electron density at
T = 7 K in Alc.2sGac, qsAs (Nq N10 cm ). T—he lower
curve (opeu circles) is obtained through subsequent photoion-
ization steps (increasing n). In the higher curve (full circles) a
given n is reached through capture processes during a proper
thermal cycle starting &om n = nsppo (decreasing n), as ex-
plained in the text (curve 3). The data are taken Rom Ref.
11.

T = 140 K one. In fact, in the first case, correspond-
ing to the initial stage of the capture process, the order
in the charged center distribution appeared to increase
as n decreased (decreasing N, fr), whereas, in the second
case, the final stage of the capture process seemed to take
place together with a disordering of the charge arrange-
ment (increasing N, fr).

A steady-state y, = p(n) curve (curve 3) was also ob-
tained at a lower temperature (T = 7 K) by varying n
between the dark value ng, g and the one corresponding
to the saturated photoconductivity condition (SPPC),
Asppg. Each point of this curve was taken after the fol-
lowing thermal cycle: lighting the sample at T = 7 K
to saturate the persistent photoconductivity; heating the
sample until activation of the capture process reduced
the &ee electron density, rapid recooling of the sample
to 7 K and taking the steady-state Hall measurement.
These data are indicated in Fig. 2 with full circles. The
mobility values measured through this experimental pro-
cedure are higher than those obtained for the same n
after step by step illumination of the sample at T = 7
K, starting from the dark (open circles). These differ-
ences were attributed to the reaching of a higher order
into the spatial distribution of the charged centers when
n is varied passing through a capture process, instead of
a random photoionization of the DX centers. We empha-
size that an analogy exists between the behavior of curves
1 and 3 for high electron density and between curves 2
and 3 for low electron density. In fact, in curve 3, &ee
electron densities just below nsppc were obtained by ac-
tivating the electron capture into DX centers for a short
time during the thermal cycle and then stopping the cap-
ture during the first stage of the process. On the other
hand, low electron densities were reached after activation
of the capture for a long time, in this case reaching the

final stage of the process.
All the p, = p(n) curves 1 to 3 were here analyzed

using the simplified form Eqs. (20), (21) of the interfer-
ence function, as follows. The mobility was calculated
within the relaxation time approximation, by taking into
account the Fermi-Dirac statistics for a degenerate elec-
tron gas. Two scattering mechanisms were considered,
alloy scattering and ionized impurity scattering, so that
the total momentum relaxation time is given by

1 1 1

7(E) . 7.;(E) 7. iioy (E)
+ (32)

An alloy scattering potential V ~
——1.08 was assumed, as

suggested in Ref. 16, to evaluate r ii y(E), whereas the
energy dependent relaxation time w; for impurity scat-
tering was calculated for N, screened isolated charged
impurity per unit volume &om

1 N, e4m Qs

r;(k) 4nhs e2 ks . (Q2+P2)2

where k = g(2mE)/5 and Q are the moduli of the in-
cident electron wave vector and of the scattering vector,
respectively; e is the dielectric constant, m the electron
efFective mass, and P the screening parameter; e and 5
are the electron charge and the reduced Planck constant.
An isotropic I(Q) scattering function, as defined below,
is used in Eq. (33).

The analysis was first performed according to the
U ) 0 model. Acceptors were considered only to evalu-
ate the N, charged impurity density as N, = n+ 2N,
where a N = 1.21 x 10is cm s acceptor density was
used as obtained in Ref. 16 Rom data relative to the
same sample. The number of unit cells per unit volume
in the virtual superlattice was assumed as being equal to
the difference n(D+) —N = n, so that the N(g, ) num-
ber of superlattice reciprocal nodes within the BZ was

N(g, ) = 4n ia s, where a is the lattice parameter. Af-
ter that, acceptors were neglected. The interference func-
tion Eqs. (20), (21), given as an array of Gaussian shaped
functions with common dispersion 0, centered on the vir-
tual superlattice reciprocal nodes, was assumed. The
unique empirical parameter of order cr was then varied
to fit each experimental mobility value. In this way the
analysis was considerably simplified and rendered similar
to the one for the case when all the centers have the same
charge.

As to the details of the calculation, a simple cubic
reciprocal superlattice cell was considered and its side
taken as g = [32' a /N(g, )ji~s = 2vrni~s, so that
each reciprocal superlattice vector has modulus g,
go/(i2+ j2+ l2), for integer values of i, j, and /. We
have then to consider that the experimental mobility is
a scalar quantity, independent of the orientation of the
electric field. In order to account for this a mean on the
solid angle was introduced in Eq. (20) by making any
angle between Q and the g, reciprocal superlattice vec-
tors equally probable. This leads to an isotropic I(Q)
interference function and then to a r;(k) relaxation time
independent of the direction of k. This may be regarded
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as a not too crude approximation if one considers that
is vanishing in the limit case when I(Q) reduces to

the anisotropic array of b functions; on the contrary, 'T,

becomes larger and larger, increasing towards the limit
value for a random distribution of charges, the more I(Q)
approaches an isotropic shape due to the increasing over-

lapping of neighboring Gaussian functions. The isotropic
I(Q) interference function is then

I(Q) & a vr / N(g, ) erf (L/a. )

1
[
Q-g. ['&

x ) — dA exp4' )
(34)

that is, for Q g 0

8'
I(Q) =

os' /2N'(g, ) erf (I/o)
2e-q'/~' + ) (e

—(0—s.)'/~'

e
—(Q+g) /a

) (35)

The sum on g„which becomes a sum on i, j, and
l, was extended to the whole BZ, but practically, for
0 ( 10 cm, appreciable contributions were found only
by g, ( (10 —15)g .

The evaluated values of the ratio cr/g between the
common dispersion o and the g side of the virtual su-

perlattice are reported in Fig. 3 (continuous lines) as a
function of the free electron density for the 110 K and
140 K isothermal capture transients. The corresponding
values of the N,p effective density of isolated scattering
centers, as evaluated in Ref. 11 are also shown for com-
parison. N g is independent of the choice of U & 0 or
U ( 0 model for the DX center. During the 6rst stage

of the capture process a decrease in o/g is observed as
n decreases: this agrees with the expected ordering of
the charges through a spatially selective capture into DX
centers, which removes as much as possible local Huctua-
tions in electrostatic potential. In the intermediate stage
of the process the electron capture takes place without
important modification of the u/g ratio. The final stage
is characterized by a reduction of order in the scattering
center distribution. This latter behavior is not observed
at T = 110K, owing to the limited duration of the exper-
iment (300 min), i since the capture process is very slow
at this temperature. On the other hand, the 6nal stage
becomes observable at T = 140 K, the capture being suf-
6ciently fast, whereas in this case the region of constant
a/g is probably compressed between the initial and fi-

nal stages of the process, owing to the limited variation
of n. The analysis of the steady-state mobility data of
Fig. 2 (full circles) is reported in Fig. 4. Also in this case,
the corresponding N, g values are indicated in the inset.
Owing to a more widely investigated range of n, the ini-
tial stage of decrease in 0/g, the intermediate one and
the final stage of increase in 0/g are well evident in this
case.

The dashed lines in Figs. 3 and 4 give the ratio o/g
vs n when the N, density of scattering centers in Eq.
(33) is taken as N, = Ng —N, independent of n, as
for the U ( 0 approach for the DX center [Ng =donor
density= n(D+) +n(DX )]. The value N, = 4.33 x 10is
cm was used, as derived &om the analysis given in
Ref. 16 for the same sample. g was taken as being equal
to 2vrn ~, as for the U ) 0 case, thus assuming that
the density of the unit cell of the virtual superlattice is
again equal to the difference n(D+) —[n(DX ) +N ] be-
tween the densities of positively and negatively charged
impurities. As for the U ) 0 case, using the interfer-
ence function [Eqs. (20), (21)] in the simplified isotropic
form [Eq. (35)], the single parameter o was determined
by fitting the experimental mobility data. The above
simpli6cations, which are made to analyze the experi-
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responding values of the N, ~ effective density
of isolated scattering centers, as evaluated in
Ref. 11, are reported in the inset for compar-
ison.
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mental data in a way similar to the case of scattering
centers with equal charges, are more easily justified in
the positive U approach than in the negative U one. In
fact, in the U ) 0 case, complications are only due to
acceptors: they are in a fixed position and can be rea-
sonably neglected in scarcely compensated samples. In
the U & 0 case, besides acceptors, DX charges have to
be considered. For low values of n they are comparable in
number to D+; moreover their distribution may change
owing to spatially selective capture processes. Our sim-

plified U & 0 analysis is then expected to be less and less
accurate the lower n becomes.

In spite of the above difficulties, the o/g vs n curves
obtained using positive or negative U approach have
some important common features, especially in the anal-
ysis of steady-state mobility data, as can be seen in Fig.
4. The most important difference appears at low values
of n, where the U & 0 analysis is rather inadequate to
reveal the increasing disorder in the charge distribution
which takes place at the final stage of the capture. In par-
ticular, the final increase in o'/g is lacking in the U & 0
analysis of the T = 140 K mobility transient (Fig. 3).
This final disordering of the scattering centers is clearly
suggested by the U-independent analysis which uses the
empirical N,s parameter (see the insets of Fig. 3 and 4).
The absence of the o/g final increase in Fig. 3, and the
less evident one of Fig. 4 when compared with the U ) 0
analysis, can then be interpreted as an indication that
the simplifications we have made are too crude in the
U & 0 case the lower n becomes.

Other common features are related to the order of mag-
nitude of the ratio cr/g . In particular, as also discussed
in Refs. 11 and 16, a random distribution of the scattering
centers is expected under conditions of saturated persis-
tent photoconductivity (n = nsppc), when all the donors
are photoionized. Within this limit o/g should tend
to infinity, but practically every value above o/g 1
was found to give the experimental mobility. Regard-
less of the sign of U, values below o/g, = 0.1 were ob-

tained during the intermediate stage of the capture pro-
cess, when a partial order in the charge arrangement is
reached: these small values indicate that a slightly dis-
ordered superlattice can be a satisfactory picture of the
distribution. In other words, the capture takes place by
realizing the maximum allowed distance between couples
of neighboring charges, rendering the charged center dis-
tribution not too difFerent from a regular lattice. This
picture, which is alternative with respect to the ones
based on local order parameters, seems to suggest that
the local smoothing of the electrostatic potential fluctu-
ations may have the global effect of introducing a rough
long-range order in the distribution of charges. Although
the absolute value of o/g should not be considered too
meaningful o/g values near 0.1 mean that the scatter-
ing centers are displaced, on the average, from the sites
of a regular superlattice of about 10% of the mean dis-
tance between neighboring centers. This latter is not far
from 10 s cm in the present situation. The increasing
disorder which is observed in the final stage of the cap-
ture process is rather difFicult to explain in terms of local
fiuctuations of the electrostatic potential. This is due to
the exhaustion of free electrons before capture processes
which increase significantly the total electrostatic energy
beginning to take place. These are, for example, the for-
mation of DX —DX or DX —A pairs (U & 0) or
the transformation of D+ —A dipoles into D —A pairs
(U ) 0). A tentative explanation could be more easily
advanced in terms of a long-range order picture. We first
have to consider that electron emission is a considerably
less efFicient process compared to capture. In fact, the
activation energy for emission (0.44 eV, independent of
x) is systematically larger than the x-dependent energy
barrier for capture into DX centers. The lower eKciency
of the emission process is thus expected to prevent the re-
arrangement of the center distributions towards the one
of maximum order allowed by the random distribution of
the impurities. This limiting role of the emission should
be more and more important as n diminishes, owing to
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the increasing &action of filled impurities.
Finally, we have to consider the question of how the

above conclusions may depend on the particular choice
of a simple cubic virtual superlattice. First, we have to
point out that the density of unit supercells is determined
by the charged impurity density alone. This latter being
given, the g first neighbor distance between reciprocal
superlattice nodes changes by only a factor near unity
when different superlattices having cubic symmetry are
considered. Moreover, the crucial parameter in fitting
mobility values is the ratio n/g rather than cr or g sep-
arately, as it can be argued by considering that o/g
determines the amount of overlapping between neighbor-
ing Gaussian shaped functions in I(Q). All this suggests
that the main features of the scattering center distribu-
tion resulting from the above analysis of mobility data
are rather independent of the type of superlattice used
in the picture. Anyway, although the details of the dis-
tribution of charges cannot be investigated through our
analysis, a main result of this work is that the experimen-
tal p = p, (n) dependences can be fully described only if
a given amount of long-range order is included in the
distribution itself. This long-range order, which is due
to selective capture processes during the initial stage of
the capture, cannot fully survive at the final stage. As
explained above, this may be understood by considering
the role of low efficiency emission processes in limiting
the redistribution of charges over the impurities.

surement taken for different values of the n free electron
density under persistent photoconductivity regime. Both
the cases of positive and negative U correlation energy
for the DX center have been considered and discussed.
The results of the analysis were given through the n de-
pendence of the 0/g ratio, g being the size of the unit
cell of the virtual superlattice in the reciprocal space.
The U & 0 analysis confirmed that the initial stage of
the capture takes place together with an increasing order
in the scattering center distribution (decreasing o/g ),
whereas a decreasing order (increasing 0/g ) takes place
in the final stage. The simplifications introduced in the
U ( 0 analysis seem to be inadequate only for reveal-
ing the final increasing disorder. Regardless of the U
sign, the analysis has shown that values of tr/g as low

as 0.1 or below are reached during the state of maximum
order, thus confirming that a slightly disordered super-
lattice can be a satisfactory picture of the distribution of
the scattering centers.

APPENDIX

The I(Q) function Eq. (20) will satisfy the sum rule
Eq. (10) if

(Al)

V. CONCLUSIONS

Electron scattering by a spatially correlated system of
charged centers has been described using the formalism of
composition waves. The matrix element for the scatter-
ing rate is given through a I(Q) (Q = scattering vector)
interference function containing pair correlation parame-
ters e(p) defined at the p space lattice vectors. The e(p)
are able to describe long range as well as short range
order. A comparison between the two extreme cases of
randomly distributed scattering centers and of centers ar-
ranged in a superlattice suggest, for intermediate cases, a

I(Q) given by an array of Gaussian shaped functions with
common dispersion cr, centered on the reciprocal nodes
of a virtual superlattice. In the simple case of scattering
centers with equal charges, the unique parameter o can
be used in fitting experimental mobility. A siinilar proce-
dure can be tentatively carried out also when positively
and negatively charged impurities are present together,
although simplifications have to be made in this case.
On this basis, experimental mobility data for Si-doped
Al Ga~i lAs (x = 0.25) samples have been analyzed
and discussed. Data refer to isothermal electron capture
transients into DX centers, as well as to steady-state mea-

I

with

(I) = 0 x ~ erf
f I.l
E~)

z

erf(z) = dt e
ir 0

(A2)

This leads to Eq. (21).
Let us now verify that the interference function reduces

to Eq. (13) or (18) in the two opposite cases of large
or vanishing o., respectively. Consider first the case of
large cr Since ( « .1 in the cases in point, the (
number of reciprocal superlattice nodes within the BZ is
large, typically of the order of 104 for charged impurity
concentrations in the 10 cm range. Then, if o. &) g
we can make the approximation

When o. is much smaller than the g spacing between
neighboring reciprocal superlattice nodes, the I integral
of Eq. (Al) is equal to 0 m ~, independent of g, . For
nonspecific values of o., a good approximation is to re-
place the sum over the ( i reciprocal superlattice vector

g, with ( (I), where (I) is the mean value of I. By
approximating the BZ with an equivalent cube of side L
we have

dg, exp
ABz (

o' )

(A4)
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From Eq. (20) we then get I(Q) = 1 which clearly coin-
cides with Eq. (13) for ( « 1.

In the opposite case, of vanishing cr, each normalized
Gaussian function in Eq. (20) reduces to a b(Q —g, )
function centered on the corresponding g, node

This satisfies the sum rule Eq. (10) since

= (N( = N. (AB)

8'
I(Q) = (N ) b(Q —g, ).

ga

(A5) Equation (A5) is then equivalent to the interference func-
tion given by Eq. (18).
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