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We study here an extension of the periodic Anderson model by considering finite f-band width. A
variational method recently developed by us has been used to study the temperature dependence of the
electronic specific heat C aud the thermoelectric power Q for difFerent values of the f-band width. We
find that as the f-band width increases, the low-temperature peak in C becomes broader and shifts to
ward the high-temperature region. While the low-temperature peak in Q becomes sharper and shifts to-
ward the low-temperature region and disappears for still larger values of the f-band width.

I. INTRODUCTION

Experimental results of electronic specific heat C(T)
and electrical resistivity p( T) of many heavy fermion sys-
tems (e.g., Ce A13, Ce Cu6, UBe, s, etc.) at low tempera-
ture show anomalous behavior (just like anomalous
behavior of magnetic susceptibility at low T) in that
C(T)/T =y+ AT and p(T)=p(0)+BT with A and B
positive (see, e.g., Refs. 1-4). The low-temperature elec-
tronic specific heat C (T) of systems like Ce A13, Ce Cu6,
etc. show an enormous enhancement of the specific heat
coefiicient y(T) [=C(T)/T], suggesting a very heavy
efi'ective mass of Fermi-liquid state. The temperature
dependence of y (T) of these compounds shows a peak
y,„at a (relatively low) temperature. The thermoelec-
tric power Q(T) also exhibits characteristic anomalies
when compared to the thermoelectric power of usual
metals. Q ( T) is very large in the case of these materials.
It shows maxima at a relatively low temperature T*. In
some heavy fermion systems like UPts, Q(T) changes
sign at temperatures T) T*. In the recent past, the
periodic Anderson model (PAM) (Ref. 6) has been widely
accepted as a model for understanding the basic electron-
ic and magnetic properties of mixed-valence and heavy
fermion materials. Since there is an overlap of 5f orbitals
(thereby giving rise to a finite f-band width) in actinide
materials, we consider here an extension of the PAM by
considering finite f-band width. Recently, an extension

to the Anderson model in which direct f-f hopping is in-

cluded has been studied by many authors. ' This mod-
el has been studied by several authors using the variation-
al method. " "

We developed, recently, a variational method' ' to
study the ground state and thermodynamic properties of
PAM. We use this variational method here to study the
PAM including finite f-band width. In Sec. II we give
the basic formulation for electronic specific heat and
thermoelectric power. In Sec. III we discuss our results.

II. BASIC FORMULATION

The orbitally nondegenerate periodic Anderson model
including finite bandwidth of f electrons is described by
the Hamiltonian

H = g ezcz+ cz + g T, b;+b,"
ko ij cr

where A is some positive constant less than unity. Here
W and A W are the bandwidths of conduction band and f
band, respectively. For 3=0, Ek =e& is the position of
the f level.

In k-space, Anderson Hamiltonian may be written as

H= geic~+ci, + g eI+A ei, —
ko ko

8'
bk &k.

—g Vz(cz bz +H c )+—.g. n n
ko. JET

Here we are considering strongly interacting (i.e.,
U ~ oo ) case. In this case the probability of f
configuration is very small. The variational wave func-
tion which projects f configuration out, may be written
as (Panwar and Singh' )

where lF &
= g& z cz+ l0& is the Fermi sea of conduc-

t

tion electrons and Ak the variational parameters. It can
be seen that the resultant states are in the form of two
quasiparticle bands; the lower ( —) and upper (+) of
quasiparticle spectra are given by

—g Vz(cz+b, +H c )+—. .gn n
iko JO'

where

1 ik(R,. —R. )T =—g"E eij ~ k
k

Here E& is the f-band energy and other symbols have
their usual meanings.

For simplicity, we assume that the form of the f band
is the same as that of the conduction band. The f band is
represented by the expression

8'
Ek =eg+ A ek—
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T

Ek~ =— (1+API )ek+eIPI — k[ [(1—API )ek e—IPI+ A WPI l2] +4VkPI ]
A O'PI

2 2 2 1/2

The Ak's are given by

1
Agg —

2 kk( 1 —AP~ ) cIP—I+
2V~P~ 2

k j [Ek(1 API ) eIPI+ A WPI I2] +4VkPI ]
' (7)

"ko = fk.
1+(Ak ) PI

(Ak ) PI
1+(Ak ) PI

fk'.
1+(A+ ) P

( Ak+ ) PI
1+(Ak+ ) PI

(9)

Here, Fermi functions fk and fk+ are given by

1

exp[P«k*. —V) ]+1

where P& =(1 n I—).
At finite temperature, the number of conduction elec-

trons and f electrons is given by (taking total number of
electrons such that Fermi level lies in the lower band)

I

p is the chemical potential and p= 1 /kz T.
Let ¹ (ek ) denote the density of the unperturbed con-

duction band, N' (Ek* ) the total density of lower and

upper quasiparticle states, and N' (Ek ) the density of
(lower and upper part of) perturbed conduction states.
Then

N' (&k )&k~ N~(sk )

(dEk~ Idek ) (dEk~ ld6k )

fk*.

1+(Ak* ) PI

Here the factor dEk /dok for the lower and upper quasi-
particle bands may be evaluated from Eq. (6),

dEk*

dkk

PEP~ T APIECE~ T (1+API ) APIek+eIPg
A 8'P~

2

[[ek(1—API) eIPI+ AW—PI/2] +4VkPI]
(12)

A. Electronic specific heat

At finite temperature, the ground state energy is given
by

(E)= g [(E~~ IJ)f~~+(E~—~ p)f~~] . (1—3)
kcr

The electronic specific heat C is obtained by
difFerentiating energy (E) with respect to temperature
T. The total specific heat gets the contribution from both
the lower as well as the upper quasiparticle bands. It is
given by

C = =
~T g [(Ek~ P)fk~ + (Ek+~ ——P )fk+~ ] .a(E) a

k(r
(14)

Equation (14) may be written as

~fk + ~fkC= g(Ek~ P) +—g(Eg~ —P)
ko ko

(16)

B. Thermoelectric power

I

The first two terms in the summation give the tempera-
ture dependence of quasiparticle bands, which gives a
very small contribution to specific heat in the nonmagnet-
ic case. We have neglected these two terms. The dom-
inating terms are the third and fourth terms which give
temperature dependence of Fermi function. Hence, C
takes the final form.

C= X fk ~
(Ek P)+fk (Ek —P) We are not interested here in the absolute value of

thermoelectric power but only in the variation of ther-
moelectric power with temperature. The thermoelectric
power Q ( T) may be written in the following way for both
the lower and upper quasiparticle bands:

Q(T)=QO
f dEk+fdEk.

fdE+

ko.
(Ek~ P)o (Ek~)—

BEk

fdEk ( dfk IdEk ) (—Ek )

(Ek I )~(Ek
BEk+

~E g kcrcr(E+ )
ko

(17)
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and curve II for ef =0.0. Here C ( T) increases linearly at
low temperature and has a maximum near T,„=12.5 at
A=O.O. As A increases, the maximum is less pro-
nounced and much broader and shifts towards higher
temperature region.

Also as A increases, the maxima in C/T at low tem-

perature becomes wider and is less pronounced and
disappears in some cases. We have a sharper peak in C
or C/T at low temperature as f level goes down for a
constant value of A. This behavior of specific-heat
curves has been the main characteristic of many mixed-
valence and heavy fermion materials such as NpSn3.

Corresponding results for the temperature dependence
of the thermoelectric power Q(T) for different values of
A are shown in Fig. 3. We observe maxima in Q(T) at
low temperature for small values of A. For some values
of A (e.g., for 2=0.05) Q(T) changes sign towards

higher temperatures. The maxima in Q(T) at low tem-
perature becomes more sharper and shifts towards the
low temperature region when A is increased. However,
for still higher values of A, the peak disappears altogeth-
er. The behavior of Q(T) for A around 0.05, corre-
sponds to many heavy fermion compounds such as
U Pt3.

From the above results of C ( T) and Q ( T), one can
conclude that by increasing f-band width, we are making
the "Fermi-liquid" nature of f electrons more pro-
nounced.
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