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We describe a theoretical scheme for the determination of quasiparticle spectra starting from the
energy band structure of a metal and treating the on-site Hubbard repulsion beyond the mean-field
theory. The method relies upon an expansion of the many-body states in terms of uncorrelated states
with a dHFerent number of electron-hole pairs. By truncating the expansion to include configurations
with one or two pairs one can achieve approximate expressions of the electron and hole self-energies.
The interparticle scattering matrices appearing in such expressions are conveniently calculated using
the Fadeev approach. Calculations performed for a constant density of states allow us to illustrate
the role of three-body correlations in the metal-insulator transitions.

I. INTRODUCTION

It is well known that the valence electron behavior of
narrow band systems, such as the elements of the d elec-
tron series and their compounds, cannot be understood
using the single-particle eigenvalues derived by density
functional theory within the local density (LDA) or lo-
cal spin density (LSD) approximation. The discrepancy
between band theoretical results and experiments is evi-
denced by the occurrence of satellites and band narrow-
ing effects in photoemission and inverse photoemission
valence band spectra, i o by the presence of large con-
ductivity gaps in materials for which band structure the-
ory predicts a metallic behavior, ii is by the observation
in magnetic materials of spin patterns, considerably more
complex that those calculated, i4 etc. Both LDA and LSD
rely on the assumption that the exchange and correlation
effects are locally the same as in the»biform electron gas
with the corresponding density. This approximation fails
to reproduce the electronic behavior in the case of suffi-
ciently localized electron states, i.e., when the Coulomb
energy involved in d charge fiuctuations is much larger
than or comparable to the single-particle bandwidth.

To overcome these difficulties, the Hubbard model
Hamiltonian has often been used to modify single-particle
spectra. i ii ir s~ The implicit assumption is that among
the various many-body terms, which are responsible of
the correlation effects, the Coulomb repulsion U between
electrons of opposite spins sitting on the same atom is the
one which is worst treated by the local density approx-
imations. The LDA or LSD are believed to account for
the correlation efkcts by some sort of mean-field approxi-
mation, which corresponds to assume that each orbital is
occupied by an average number of valence electrons, i.e.,
to neglect d local valence charge Huctuations. In a per-
turbation expansion in powers of U, such a theory would
correspond to the 6rst order term, which seems to indi-
cate that standard local density approximations should
be strictly appropriate for low U values, i.e., when any
change in the occupancy of d levels of a given atom is lo-
cally screened by the mobile sp valence electrons. %hen
the on-site screening of the effective Coulomb interaction

is not efficient the correlation effects are to be explicitly
evaluated.

Among the properties which require an accurate treat-
ment of the correlation, the quasiparticle spectra are of
great importance not only because they allow us to test
the adequacy of the theoretical treatment by direct com-
parison with the experimental spectra, but also because
they provide a direct insight into the self-energy behavior.
Density functional theory is primarily devised for the cal-
culation of ground state properties and it is not meant for
excited states. Even in cases where a mean-field theory
is adequate to describe the ground state, such as tetra-
hedrally bonded semiconductors, the excited states may
be poorly described by the Kohn-Sham eigenvalues and a
self-energy calculations is needed to reproduce the lowest
excitations. It is expected that in narrow band systems,
where the ground state properties are sometimes poorly
described by the single particle theory, the self-energy
eff'ects can be even more important.

In developing a theoretical treatment that improves
upon the LDA or LSD description of correlation effects
by including the on-site Coulomb correlation beyond the
mean-field approximation, one is faced with two prob-
lems. First one has to derive approximate solutions for
the model Hamiltonian since exact analytical results are
not available for two and three dimensions, even for sim-
plified band structure models. Second one has to incor-
porate the strong electron correlation into an a priori
electronic structure calculation for real solids, without
losing the information provided by band structure theory.
UVhile most of the studies on the Hubbard Hamiltonian
are based on a simplified description of the single-particle
states, the actual systems have often a complex band
structure, with several orbitals contributing to the Bloch
states. This limits severely the possibility of extending
the results derived for simple models to the description
of real systems. One way of dealing with this problem
that has become very fashionable in the past few years
consists in deriving a simplified one- or few-band model
Hamiltonian &om the LDA band structure and then solv-
ing the model problem by some approximate approach or
by using advanced numerical tools. This method has
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proved to be useful to derive effective Hamiltonians for
the Cu02 sheets in high-T superconductors.

An alternative approach is to develop a theory where
the full complexity of the band structure is kept in
the kinetic term and the correlation term is treated by
some approximate scheme which allows to express the
ground state energy and the quasiparticle spectra in
terms of the single particle orbitals and/or density of
states. ' 2 4' '3 This type of theory has been ap-
plied often to the study of photoemission and Auger spec-
tra of d band systems

The present paper follows after this line of research.
We describe a method that allows us to calculate corre-
lation eff'ects in solids within the framework of the Hub-
bard model Hamiltonian and has a rather wide range of
validity. It consists of a con6guration-interaction expan-
sion of the many-body states of the interacting system,
where the various con6gurations taken into account at a
given number of particle diH'er for the number and the
kind of electron-hole couples. This method relies upon
the Fadeev theory of the many-body scattering ma-
trix. The interactions betweea coa6gurations with the
same number of electron-hole couples are represented by
a set of two-body scattering t matrices, which can be cal-
culated exactly. The Fadeev theory is used to determine
the total scattering matrix and therefore the resolvent
giving the energy of the many-body system. For the sake
of simplicity the presentation will be restricted to the case
of a one-band Hamiltonian. However, the theory with
certain additional approximations has been extended to
deal with the many-band case and to describe correla-
tion efFects in complex solids, much in the same way
as in previous work based on the t-matrix approach.
Since we intend to apply the theory to the description of
valence band spectra provided by photoemission, inverse
photoemission, Auger electron spectroscopy, and others,
the emphasis in the presentation is mainly on the deter-
mination of the self-energy and the quasiparticle proper-
ties.

It will be shown that some of the approaches commonly
used in the application of the Hubbard Hamiltonian to
real solids, such as the t-matrix theory "' 232 or the
second order perturbation theory, ' ' ' ' can be ob-
tained as di8'creat approximations to the present theory.
The present approach has two main advantages: first it
is not limited to particular band 6llings; second it can
be applied for any value of the on-site repulsion term U.
Both features are a considerable improvement with re-
spect to the previous methods since the t-Hlatrix theory
applies in the low density limit only and the various form
of perturbative approaches can be adopted in the small
U ar high U limit. It should be noted in this respect
that the most interesting physical systems, such as, for
example, the high T, superconductors or some transition
metal oxides, have a significant hole density and U values
comparable with the single particle bandwith, so that the
above mentioned approaches are not appropriate.

The plan of the paper is the following. %e present in
Sec. II the configuration expansion, which is the basis of
our approach. In Sec. III we illustrate the form of this
expansion when many-particle states with at most two

electron-hole couples are taken into account. Explicit
expressions for the self-energy within the above approxi-
mation are presented in Sec. IV. The Fadeev approach to
the intercon6gurations scattering is illustrated in Sec. V,
where the basic equations to be solved for the self-energy
determination are given when coa6gurations with only
one electron-hole pair are considered. Numerical results
are displayed in Sec. VI.

II. BASIC DEFINITIONS

The Hubbard Hamiltonian in momentum space is given
by

~+H = g Ck Gk~Gk~ + ~ g Qk+p tGktGk, ~6k
kn k,k', p

(2.1)

where rk are the single-particle energies, U is the on-
site Coulomb repulsion, and N is the number of sites. In
the following we will consider a solid with N, electrons,
the ratio n:—N, /2N giving the band filling; the sys-
tem will be supposed paramagnetic, the extension to the
ferromagnetic case requiring only minor modifications.

The first term of (2.1), hereafter indicated as Ho, is
commonly referred to as the kinetic term; the second one
will be indicated as H' and referred to as the interaction
or correlation term. Ho can be regarded as a single par-
ticle Hamiltonian obtained by a self-consistent average
of all the electron-electron interactions except the intra-
atomic Coulomb repulsion. It does not correspond to the
Hamiltonian that is currently adopted in band structure
calculations by density functional theory, since in those
calculations the oa-site repulsive interaction is included
in the self-consistent 6eld.

In photoemission one determines the binding energy
of a valence electron with lattice wave vector k and spin
projection o de6ned by

(u = E(N, —1,ko) —E~, (2.2)

h
G~ )(z)=, z = —(u+ E~ + i6.

Z —HN
(2.3)

In the same way the inverse photoemission experiments
allow us to determine the energy of an electron added to
the system given by

ur = E(N, + 1,ko) —E~, (2.4)

which is related to the resolvent operator

Z HN +1
Z = ~ + E~ + X6. (2-5)

where E~ is the energy of the ground state of the N;
particle system and E(N, —1,k0) is the energy of the
system after the removal of an electron with momentum
and spin ko. One can obtain the distribution of the bind-
ing energies by evaluating the spectral function associ-
ated with the resolvent operator of the (N, —1)-particle
Hamiltonian
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The key quantity describing the spectroscopical results
is the spectral function for hole and electron states

( )
——'ImGl l(k~, (u) if(u & p
y —ImG&+)(ka, (u) if (u & p,

where p is the chemical potential and

a~+) (k~, ~)

(2 6)

G~+l k~, ~ =
p Z~+l(ka, (u)

(2.8)

The real part of Z~+l gives the modification of the single-
particle energy ei,~ due to correlation, while the imagi-
nary part allows to express the density of the electron-
hole quasiparticle states.

The states that appear in ( 2.7) are eigenstates of the
noninteracting Hamiltonian Hp after the addition or the
removal of an electron with momentum k and spin pro-
jection cr,

I@'(k~)) = a~.l4'a}

!c' '(k~)} = ~) ~!@G}

They correspond to energies

(2.9)

(2.10)

Ek~ ——EP 6 ok~. (2.ii)
Here!4'z)is the ground state of the noninteracting N;
particle system of energy Ep ——g& f(Eig~)ei,~) w'here

f(ei, ) is the Fermi factor and ei, are the single-particle
eigenvalues.

The presence of the Coulomb repulsion term H' causes
a coupling between !4&P} and the excited states of the
noninteracting N, -particle system, which differ from

!4&) for the presence of electron-hole couples. They can
be written according the following notation:

!
e' ~ =a+ a+ a+

m(&) & kg cry kg cry k~ n~
PE 0Xakna+ 1~en+1

~ ~ a Qk, n~ I G}ty

ki&i, k3cr2 . k~o~, k~~io'~~i . . k2~o'2~}

(2.i2)

with

k~ + k2 y. . .~ k~ k~~~ k~~2. .. k2~ = 0

(2.13)

&1 + ~2 + + ~no ~m, +1 +an+2 + ' ~2' —0-

(2.14)

m indicates the number of electron-hole couples and (k}

= (4~+i(ko)!G~+i(+~+ E~+ ib)!4'~+l(ko)) (2.7)

is the one particle Green function. For ~ & p, , A(kyar, ur)

describes the angle resolved inverse photoemission spec-
trum and for ur & p, the photoemission results.

One can express the spectral function in terms of the
electron-hole self-energy by using the equation

the set of wave vectors and spin that characterize the
single-particle states where electron or holes are created.
Also notice that the case m = 1 does not give a state
distinct from !O'P&}, due to conditions ( 2.13) and ( 2.14).

The set of the no+interacting states !4 I&) ) with
m=1,2, . . . is a complete set

):!O'la)}(4"(~)l = 1
na(IC)

(2.i5)

that can be used to represent states of the interacting N,
particle system having total momentum and spin equal
to zero.

Similarly the states of the N, —1 interacting system can
be expressed as linear combinations of!4'~ ~(pi))) and of
the states of the noninteracting system which difFer from
!4~ l(pi))) for the presence of electron-hole couples such
as

Ia)(P&)}— i, , i. ,
th

ak pro pi ' ' akg~og

+2rra+1~2na+1 I G) (2.16)

with total lattice wave vector —p and spin —i). The same
is true for the addition af an electron, where we can define
states for !@+I&)(pi))}with total lattice wave vector p
and spin i). The states!4'~+)(pi))} and!O f&)(pal)}, with

m=1, 2, . . ., constitute then a complete set which allows
us to represent the states of the interacting (N, 6 1)-
particle system with defined lattice wave vector kp and
spin projection kg.

The expansion of the many-body states in terms of
the above given basis sets provides a configuration-
interaction theory of the correlation effects in the N;
and (N, + 1)-electron systems. If one truncates these ex-
pansions to some fixed value m „of the electron-hole
couples number, one obtains an approximate form of the
Hamiltonian, which we call effective Hamiltonian HN. yq.

III. FORM OF THE EFFECTIVE HAMILTONIAN

In order to illustrate the method and to clarify its re-
lation with previous approaches, we present the theory
for the case m = 2. I et us start with the N -particle
case. The states that constitute the basis set in the ap-
proxirnation m „=2 are!4&} and!4'3&&)}, where

!@,Ii,)}=!kl t k2 4 k3 t k4 4}

= ~i„g'ii„g'ii t'ii II@) (3.1)

is a con6guration with total momentum and spin projec-
tion equal to zero and energy equal to

E(ki g, k3 $) k3 t, k4 $) = Ep g ei„g + Ei„g Ei,sy Ei„i.
(3.2)

As also shown in Fig. 1(c) it presents two holes of mo-
mentum —k3,—k4 and two electrons of momentum kq, k2,
in this sense it can be called a four-particle state.



C. GALANDRA AND F. MANGHI 50

(b) U
Wp =E.+ —N,,N,, (3 9)

(g)

'%W V4 ——V41+ V42 + V43 + V44 (3.10)

corresponding to different scattering processes: (a)
electron-electron scattering

and N, t (N,~) the number of the spin up (down) elec-

trons. Notice that the term H& represents the Hamil-
tonian with the correlation term treated in mean-Geld
approximation.

V4 consists of four contributions

%W

FIG. 1. Schematic representation of the basis states in the
configuration expansion for the (a)—(c) N„(d)—(f) N, —1,
and (g)—(i) N, + 1 systems. Solid circles show electrons, open
circles holes, and the hatched area the 6lled density of states.
Dashed lines represent the interactions V, , V, V', and V".

V4i ——— ) ) Iki+ p g, k2 —p$, ks t, k4 $)
kgkgkgk4 p

x (k4 $, ks t, k2 $, ki t I + H.c., (3.11)

V42
———— ) ) Iki g, k2 —p $, ks —p, $ k4 $)

kg kgb k4 p

x(k4 $, ks g, k2 $, ki t I+H.c., (3.12)

(b) the scattering of an electron with spin down and a
hole with spin up

In general the Hamiltonian for the N, -particle system
can be written as

If we restrict our expansion to states with m &2 we get
the approximate Hamiltonian

H~, Hp +H4+ V', (s.4)

where Hp gives the ground state contribution and H4
those of the four-particle conGgurations, and V' is the
interaction between the unperturbed ground state and
four-particles conGgurations. More explicitly

&iv. = (C'alHIOa) I@'a)(C'al

+ ). ). (4".(s)l&lc" (s })IC".(s})(C"(s )I.
n(A:) vn(le')

(3 3)

(c) the scattering of an electron with spin up and a hole
with spin down

V44 ——— ) ) Iki g, k2 $, ks —p t', k4+p$)
ki kg k3k4 p

x(k4 ~ ks»k2»l i & I+H.c. (3.14)

I et us consider now the case of N, —1 interacting parti-
cles where an electron of momentum and spin equal, say,
to ko $ has been removed. The basis set is formed by
state IC( }(ko,$)), which we will denote also as Iko $),
with energy

V4. =-— ). ):Iki+ptk24 kst k4+pl)
ki kgkgk4 p

x(k4 g, ks t, k2 $, ki g I+ H.c. (s.is)

and (d) hole-hole scattering

~o = ~oIC'a)(@'al (3.5) Ek, g
——Ep —&k,g) (s.i5)

) . IC'a)(k4 $ ks t k2 $ k, t I
+ H.c.,

ki k2kgk4

(3.6)

by the states

IC'i(g) (ko 4)) = lki t k2 l ks t) = ai+„tai.,gai, pl@a)

(3.16)

H, =ID+V„
where

(3.7)
with k1 —k2 —k3 = —kp and energy

E(ki t, k2 4, ks t) = Eo + &i,g
—&i„g —&i„t', (s.i7)

~4 = ) l~o + &1t + i 24 &st i ill
ki kgk3k4

xlki t, k2 $, ks g, k4 $)(k4 $, ks t, k2 $, ki 1'I

(s.s)

with

and finally by states such as IC z(&}(ko $)), which we can

write as

Iki g, k2 $, ks t, k4 $, ko $) = a& &a& &ai„~ai,,~ai,,gl@a)

(s.is)

with total momentum equal to —ko, spin g and energy
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E(ki $) kz f, ks t) k4 $, kp $) Wi ——Ep —ei„g + —N.t (N,g
—1) (3.26)

H~ H~ +H +H +V+V . (3.20)

The first term gives the energy of the one-hole configura-
tion, the second describes the contributions of the three-
particle configurations, and the third describes the con-
tributions of the five-particle contributions. V and V"
are the interactions between one-hole, three-particle and
one-hole, five-particle configurations, respectively. More
explicitly,

Hi = Wilkp $)(kp $ l,

H3 ——H3 + V3,

A A g A

H5 ——H5 + V5,

where

(3.21)

(3.22)

(3.23)

U
Hs = ) Wp — N, t + ei„—g —~i„g —ei„g

kgkgkg

xlki t, k2 $, ks t)(ks t, k2 $, ki t l, (3.24)

Hs = ) [Wi + egqt + egqg —skag —e&4g]

kxk~ksk4

xlki »k2»ks»k4»ko &)

x(kpg k4$ kst ks$ kill.
Notice that

(3.25)

= Ep + Eg~t + eg2g —eg~t —Eg4g —6i g. (3.19)

A pictorial representation of these states is shown in
Figs. 1(d)—1(f). The basis set for the (N, —1) parti-
cle case corresponds then to configurations with one hole
(one-particle states), two holes plus one electron (three-
particles states), and three holes plus two electrons (five-
particle states)

The effective Hamiltonian appropriate for the (N, —1)-
particle system in this approximation has the form

represents the (N, —1)-particle energy with the Coulomb
repulsion treated by mean-field approximation.

The term V3 describes the hole-hole and electron-hole
scattering in the m = 1 configurations, respectively. It is
given by

and

V. = V,.- , Vj, (3.27)

V» =
N ). ). Iki t kz 4~ ks &)

p kj kgkg

x(ks t, kz+ p $, ki+ p t l+ H c., (3.2S)

Vss — —) ) lki g) kz $, ks g)
p k1kgkg

x(ks —z t, k2 + p $, ki g l
+ H.c. (3.29)

The scattering processes that take place between two-
electron three-hole configurations are represented by Vs,
which is made by the sum of the contributions from the
different two-body interactions. The processes to be con-
sidered are the same occurring in V4, the only difference
being that they take place in the presence of the specta-
tor hole with momentum and spin kp $. For this reason
we do not give their expressions.

The term V gives the interaction between the one-hole
configuration and the configurations with one electron-
hole couple

V = ——) ) lks + p t, kp + p $, ks g) (kp $ l
+ H.c..

k3 p

(3.30)

The interaction between the one-hole and the two-
electron three-hole configurations is given by V" whose
expression is

V" = ——) ) lkp $)(kp g, k2 —p $, ki+p g, k2 $, ki t l+H.c.
kgkg p

(3.31)

Equations (3.20)—(3.31) and their trivial extension to the
case of 1V, +1 particles represent the form of the eH'ective

Hamiltonian.

IV. MATRIX ELEMENTS
OF THE RESOLVENT AND SELF-ENERGY

To keep the notation as simple as possible we shall de-

note with ls) the single hole state l@p&&&(kp $)), with

lt) the two-hole one-electron states l@i&&&(kp $)) and lv)

the set of three-hole two-electron states i@2~&&ll(kp $)).
Adopting this shorthand notation, the basic equation
(2.7) defining the hole Green function becomes

G~ (kp $, (al) = (slG (z) ls) z = —(d + E~ + zh.

(4 1)
The matrix elements of the resolvent G~ &(z) of the ef-

Fs(z) =
z —H3

(4.3)

Ps(z) =
z —H5

(4 4)

are the resolvents for the three- and Qve-particle Hamil-
tonians, respectively.

Using the previous equations one can easily derive the
following expression for the Green function:

I

fective Hamiltonian can be determined considering the
following relations:

Gl &(z) = P, (z) + F,(z)[H, + V+ V" + H, ]Gl l(z)

+Fs(z) + Fs(z)(Hi + V + V" + Hs)G (z),
(4.2)

where
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1

z —Wi —) Fsg| Vg, V,g
—) Fs„„V„",V,'„'

{4.5)
with the notation G;~ = (iiG& l[j), Fsqq = (tiFsit'), etc.
This equation allows us to express the effective Hamilto-
nian resolvent in terms of the resolvents of the three- and
five-particle Hamiltonians. From Eq. (2.8) we notice that
the determination of the excitation energies of the N, —1
interacting particles as poles of the Green function can
be reduced to the calculation of self-energy which in turn
can be expressed, according to our theory, in terms of the
matrix elements of Fs and F5 and of the ground state en-
ergy. Indeed by comparing Eq. (2.8) with Eq. (4.5) one
obtains, for the hole self-energy,

U
'(~) = @G —Wp+ —N.g

—).V,cFs~~ Vi,
tt'

—) V Fsve Vv's
vv'

(4 6)

The ground state energy E~, calculated consistently with
the configurations chosen to describe the N, —1 system,
turns out to be given by

E~ = Wp + ) Vpf F4g y Vf, p, (4.7)
ff'

where

or

F, = FD+FDjFD (5 2)

having de6ned J, as the scattering operator

J;=V, +VF, J,. {5.3)

and F; the "&ee)) resolvent

F;
AD

z —H.D
2

(5.4)

Expression (5.2) can be used without any further devel-
opment to get a first comparison with previous work. In
fact in Appendix B we show that the results of second or-
der perturbation theoryis'ss are regained in the present
context including configurations up to m = 2 and ap-
proximating the full resolvents F4, Fs, and F5 with the
free resolvents F4, F3D) and F5 .

Our goal, however, is to obtain an expression of self-

energy valid for any interaction regime; for this reason we

need an expression for the full resolvent F; From . now
on we will show how to get it, reducing, however, the
number of con6gurations to m „=1, in order to make
the problem more tractable. In this case the ground state
energy of the N, -particle system is Eg = Wo while the
electron-hole self-energy is given by

F4(z) = A 7

z —H4
(4.s) Z +

(ur) = —N, g 6 ) V,gFsgg Vg, . (5.5)

and, for simplicity, i0) is the noninteracting ground state
and

i f) is the two-hole two-electron states i@s&&&).
The electron self-energy can be derived f'rom the effec-

tive Hamiltonian for the N, + 1 particles by following the
same procedure. The result for an electron added in the
state kp $ is given by

+ U
Z (ur) = E~+ Wp—+ N, t + )—V,gFsgg Vg,

In the N, —1 case the only resolvent to be calculated
1s F3

A A D A D A A DFs ——F3 + F3 J3F3 (5.6)

with

Js —Vs + VsFs Js = (Vss + Vsl) + (Vss + Vsi)Fs Js.

+) V,'„'F,„„.V„., (4.9)
(5.7)

VV

where Fs and F5 represent the resolvents for the two-
electron one-hole and three-electron and two-hole config-
urations, respectively.

V. FADEEV EQUATIONS FOR THE
INTERCONFIGURATIONS SCATTERING

The determination of the resolver; ! F; de6ned in the
preceding section is by no means trivial. To deal with the
problem it has been proposed ' to adopt the Fadeev
approach to the scattering matrix kom a potential that
is the sum of different interactions. In this section we
illustrate the basic equations of the method.

According to the definitions (4.3), (4.4), and (4.8), the
resolvents F; refer to Hamiltonians which can be sepa-
rated in diagonal (K; ) and off-diagonal (V;) terms [see
Eqs. (3.7), (3.22), and (3.23)], which in turn can be
treated as unperturbed and perturbation terms, respec-
tively. We can then write F; as

F; = FD+ FDV;F; (5.1)

Js = Jss + Js1

with
A D A

J33 —V33 + V33F J3
A A AD A

J31 = Vs] + VslF3 Js.

(5.s)

(5 9)

(5.10)

By introducing in (5.9) and (5.10) the scattering matrices
for each single potential term de6ned as

A D A

T31 ——Vsl + V31F3 T31 (5.11)

A D A

T33 V33 + V33F3 T33

we get, after some manipulation,
A D A

Jss ——T33 + T33F3 J31,
A AD A

J31 T31 + T31Fs J33

(5.12)

(5.14)

We can de6ne the partial scattering operators J33 and
Js1
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which are the Fadeev equations to be solved in order to
get J3 from (5.8), F3 from (5.6), and finally E~ l from

(5.5).
The derivation of the integral equation to be solved for

the self-energy determination is given in Appendix A. We
can summarize the main results as follows: For a given
density of band states n(e) and a given U (i) calculate

U Ey
Z~+l((u) = ——N, g + de n(e) T33(ur —e)N

x [1+UA(cu —e)), (5.25)

1 1
D~+l((u) = +—Im de n(e) Q))P.

Ef (u —e —Z+(~) '

(5.26)

n(e')
g3(u)) = de'

Ef Ef A 6, A 6
g3(Lal) = de de

(5.15)

(5.16)

(5.17)

Since the present theory has been developed for
m „=1, the ground state energy of the X,-particle
system is the noninteracting one. As a consequence the
chemical potential p, whose value is essential in order to
define the density of quasiparticle states for holes and
electrons, coincides with the single-particle Fermi level

gy

—UT»(~)=
U ( )

(5.18)

U

1+Ugs((u)
' (5.19)

K(~, e) e') = de" n(e") g3((u + e" —e)T3i(~ + e")

xg3(ld + e —e )T33(ld —e )) (5.20)

Ey

B(u, e) = de' n(e') g3((u + e —e)T3i(~ + e')

x gi((d —f ) + de n(e ) g3((d + E —e )

X g3((d —e )T33(4) —e ) (5.21)

(ii) solve the integral equation

A(ld, e) = B((d) e) + dt n(e ) K(td) e, e )A(ld, E );

(iii) calculate

(5.22)

E~ l((u) = U ' — de n(t) T33((d —e)
N —N, t

N E
x [1+UA(u) —e)]; (5.23)

(iv) and get the hole quasiparticle spectrum

Ey 1
D~ l(~) = ——Im de n(e)

7r (d —E —Z Ca)

~ & p, . (5.24)

In order to get the self-energy for the N, +1 system the
same procedure must be followed, but changing the in-
tegrations over empty states into integrations over filled
states and vice versa. The electron self-energy and quasi-
particle spectr»~ are calculated as

VI. NUMERICAL CALCULATIONS
AND RESULTS

The system under consideration is characterized by the
density of single-particle band states n(e) and by the pa-
rameter U describing the on-site correlation. These quan-
tities enter the definition of self-energy according to the
theory outlined in Sec. V.

The solution of the integral equation (5.22) is the only
computationally demanding step of the procedure. By
taking advantage of the kernel being degenerate, one can
transform the integral equation in a system of algebraic
equations whose solution can be approached by standard
numerical algorithms. In the definitions (5.15)—(5.17) a
value of b = 10 3—10 s has been used. It is useful to
define some quantities such as the bottom Ei and the
top of the band E3, the band amplitude is W = E3 —Ei,
and Wi ——Ef —Ei, and W3 ——E3 —Ey are the occupied
and the empty portion of the band, respectively. We can
make the identifications ~ —— &~ andN. ~ g N-N. t

defining the band occupancy as n = ~ . We have chosen
W = 2.5 eV.

The results we are going to discuss concern self-
energies and spectral function for a system described by
a constant single-particle density of states; we are inter-
ested in various regimes characterized by difi'erent band
fillings and different values of the parameter U. Upon
increasing U we expect two main effects: first and most
important, the system must exhibit the Mott-Hubbard
transition from a metallic situation to an insulating one;
second, for sufficiently large U the t matrices exhibit
real poles corresponding to bound states of hole-hole or
electron-hole couples.

We start by considering the case of a half filled band
(n = 0.5). Figure 2 shows the results of the present
theory for hole and electron states in the case of ~
0.5. We notice in particular the nonzero value of the real
part of self-energy at the Fermi level and the symmetric
behavior of the two self-energies

Z~ l( ) = —Z+(2E — ), (6.1)

which is an obvious consequence of the symmetry of
our model system. Here and in the following Z„and
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function around Ey, both in the hole and the electron
part of the spectrum, giving rise to a metallic behavior.

Another point that should be noticed is that, unlike
what is found in Figs. 2 and 3 for low U values, the real
and the imaginary part of the self-.energies reported in
Figs. 4 and 5 do not seem to be related by the usual
Kramers-Kronig relations. An analysis of the behavior
of the scattering matrices T3~ and T33, which for the
present model system have particularly simple expres-
sions, would show in fact that for ~ ) ~ 2i„2 the
scattering matrices exhibit poles on the real axis and
therefore their real and imaginary parts are not linked
by the Kramers-Kronig relations in the usual form, since
the singularities on the real axis have to be explicitly in-
cluded in the dispersion relations. 40 For ~ larger than
the above mentioned value the same is true of the real
and the imaginary part of the self-energy.

We go on increasing U. It is well known that for very
large ~, i.e., in the so-called atomic limit, the Hubbard
Hamiltonian can be solved exactly. It has already been
shown that the present theory with n „=1 repro-
duces correctly the atomic limit. Indeed one can easily
show that for ~ -+ oo the expressions (5.23) and (5.25)
of the self-energy become

U2
Z(+)(~)—

W W ~ —e+U(1 —~~)
(6 2)

giving rise, in the case of a half filled band, to the one-
particle Green function

~(+)(~)—
2

(6.3)

where e is the center of gravity of the density of band
states. The hole and electron spectra consist then of a
single peak at ~ = e —

2 and ~ = ~+ 2, respectively, and
the system exhibits a Mott-Hubbard gap equal to U.

or

~Z„+(Ey)~ ) W2 (8.7)

is satisfied, no quasiparticle state can exist at Ey in either
the hole or the electron part of the spectrum and the
system turns out to be an insulator. This behavior is
found here for ~ & 1.
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FIG. 6. Same as Fig. 2 with ~ = 8. The straight line
corresponding to cu —Ef is reported.

by looking at the interception of the line u —Ef with the

curve representing Z( )(u). For ~ ——8 at half filling we

find p~+~ 6 2 and an energy separation between the
spectral functions for hole and electron states of about
U.

We have also considered the same model density of
states with a band occupation of n = 0.8. Figures 7—10
display the results of the present theory at different U.
We expect the result for very large U to reproduce again
the atomic limit. This is just the case for ~ ——8, where
the quasiparticle density of states presents a gap of the
order of U. The metallic character is obtained for ~ & 1.

The graphic identification of quasiparticle energies as

interceptions between the curve Z( (~) and the straight
lines reported in Figs. 4, 5, 8, and 9 allows us to identify
a regime for the metal-insulator transition. In fact it
appears that if the condition

Z( )(Ey) ) Wi
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FIG. 9. Same as Fig. 7 with —= 3.

differences between the two calculated spectra become
negligible. Even if the t-matrix approach is commonly
believed to be valid only in the case of either almost filled
or almost empty bands, this comparison shows that its
range of validity is much wider and it depends on the
value of the correlation parameter.

It is interesting to compare the results of the present
theory with the outcomes of the t-matrix approach. 19,31

Figure ll shows such a comparison in terms of hole states
calculated according to the two methods for an occupa-
tion n = 0.8. It turns out that for values of ~ & 1 theU

VII. CONCLUSIONS

The approach we have described provides a general
framework to introduce Hubbard corrections into band
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U=2'. 5 APPENDIX A:
FORM OF THE INTEGRAL EQUATION

(b) According to ( 5.5) what is actually needed is the sum

Oa
U=1.85

(c)
I I I I I I I I I I I L I I I I

—10 -8 -6 -4 -2

2t'Ul) &.~&3«&~" =
I

—
I ).[+3 ++3 (J»P)

A A D A D+ ss+ ss 3 si)Eq ]«~ (A1)

~—EF (ev)

FIG. 11. Density of quasiparticle hole states obtained by
the present theory (continuous line) and by the t-matrix ap-
proach (dashed line) for a constant density of states and (a)
$ = 3, (b) w

——1, and (c) ~ ——0.5.

and therefore it is useful to express the previous quanti-
ties in terms of matrix elements between three-particles
states It) (here It) = I+i t, Qs $, Qs g) and we consider
the case of an electron removed from ko $). For the di-
agonal resolvent one has

(tl+ It}

structure calculations without any limitation on the value
of U and of the carrier density. For a single band or
for highly symmetric systems the only quantity that is
needed is the density of band states which enters the
definition of self-energy through Eqs. (A13) and (5.23).
The theory can be extended to the more general case
of many bands with difFerent symmetry along the lines
followed to extend the t-matrix approach and to deal
with magnetic phases, provided a local approximation is
adopted.

The numerical results we have presented illustrate the
general features of the predicted behavior for a single-
band system as a function of the U value and of the
band filling and, in particular, the presence of satellite
struvctures and the occurrence of the metal-insulator
transition. We have shown the conditions under which
the transition can occur when only configurations with
m ~ = 1 are considered in the expansion of the states
for (N, + 1)-particle system. It is not clear at present
how these conditions are modified if configurations with
a higher electron-hole couple number are considered. As
we pointed out, in the low U limit, where perturbation
theory is expected to hold, the discontinuity at the Fermi
level should go to zero as a consequence of the fact that
the correction to the ground state energy of the N, —

particle system is introduced by four-particle states. On
the other hand, in the large U range the discontinuity has
to be found in order to recover the atomic limit and even
if the values for which the metal-insulator transition takes
place might be slightly difFerent &om those predicted by
the present theory, we do not expect dramatic changes
in the qualitative behavior of the system.

The present theory with m = 1 and with the local
approximations can be used to study realistic systems
with many hybridizing bands. It will be interesting to
apply it to transition metal oxides which have a large U
value and show a metal-insulator transition.

+33(z —&g, t) = (tI&33 It')
U 1

N 1 —Ugs(z —eel, t)
(A3)

~»(z+ e~.~) = (tl&»lt')
U 1
N 1 + Ugi(z + eel, t)

having de6ned

(A4)

gs(z-e~, t)= —) ) f( ~.t)&( ~.~)( I 3 It)
Qs

~cls+Q~, cl~+&o ~ (A5)

gi(z+ eCI t) = ) .).( ~(~a.t)l~(eQ. S)

In the following

x(tIF3 It)bcl, +cI, g, +i„. (A6)

g2(» —~g, 'r+ecl. g) = —) &(eci,g)(tl+3 It)~cI.+cl.,cI.+~0
Q.

(A7)

will also be used. All these matrix elements, involving the
free resolvent can be easily determined from properties
of the noninteracting system.

We introduce now the quantity

U 1

' —Eo —
'cubi t+ &cI.~ + 'cl.t —g N ~(N ~

—1)

(A2)

One can easily determine from (5.11) and (5.12) the ele-
ments of the scattering matrices in the form
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A(z —'~.t) = ). ). (tlute lt)(tl~»lt')(t'I+g It')bg, +g„g.+l.hq, +g;,g, +l...
Q.Q. g,'g,'g,'

which allows us to write Eq. ( Al) as

t'Ub '
).&~P'ate&i" =

~

—
I ) [1 —f(&g, t)) {g3(z—ecttt) + A(z —E'g t)N)

+g3(z &Qtt)T33(z &gtt)g3(z &g t) + g3(z —6g t)T33(z —e~, t)A(z —e~ t)}.

A(z —eq, t) = B(z —eg, t)
+).(1 —&(e~,t)j

Q~

XK(z, eq, t, e~ t)A(z —eq t) (A10)

with

B(z —o t) =) &('a.'t)»( + ct.'t —'u. t)
~s
x T3i (z + eel t) Qfi (z + eel t)
+) (1 ~( Q' t)j»(z + '@st @it)

Q~

x g3(z —eq& t)T33(z —eg& t)} (A11)

One can derive from the Fadeev equations an integral
equation for A(z —eg t) by (i) inserting (5.].3) into (5.]4);
(ii) multiplying each member of the resulting equation by

(t ~+~ ~t), and (t')Fq ~t'); and finally (iii) summing up over

gi, Qs) q'„qsqs to get

the previous quantities in the form that has been adopted
for the present calculations.

APPENDIX 8: COMPARISON
% ITH PREVIOUS THEORETICAL WORK

We show how some methods adopted up to now in the
self-energy calculation can be derived as approximations
of the present theory. Most of the previous theoretical
work has been based on one of the following approaches:
(a) the t-matrix approachi 'is ' i or (b) the second or-
der perturbation theory.

The t-matrix approach relies on the assumption,
adopted also to get expressions (5.23) and (5.25), that
only configurations with m & 1 enter the expansion of
the many-body wave functions, but with the additional
assumption that the electron-hole scattering term in V3

can be neglected. It can be applied under the condition
that the band is nearly full. With this further approxi-
mation the quantity A(td —e) defined in ( A8) is zero and
the self-energies (5.23) and (5.25) turn out to be

( ~ Qtt~ Q't) =) ~( Q't)»( +'9't catt)
~s

xTsi(z + ect& t)gs(z + fg~ t eg~ t)
x T33 (z —eg~ t) . (A12)

U OO

Z~ (td) = (N, —N, t)—— de n(E')T33(td —e))
N ' '

E

Z +l (td) = N, t + —d—e n(e)T33(td —e),
N

(81)

(82)

A comment concerning the choice of single-particle en-

ergies is now in order. The energies el, that have been
used up to now are eigenvalues of the JIO Hamiltonian and
are the so-called bare energies: it is supposed that they
have been obtained from a single-particle self-consistent
field calculation neglecting the corelation contribution.
In a real band structure calculation the H' term is treated
by some sort of mean-6eld approximation. Therefore the
band energies e& are related to the bare energies by the
equation

which coincide with the expression of Ref. 31, except for
the constant term.

In order to obtain the expression of the self-energy
evaluated to the second order in the Coulomb repulsion
parameter U, it is necessary to consider configurations
with m „=2, but replacing the resolvents I'; appear-
ing in Eq. (5.2) by the free resolvents FP This leads to.
write the hole self-energy referred to "bare" single parti-
cle states as

U
~an = ~&~+ (A13)

(td) NNet ) Vet+3tt+te + ) +Qf+gf f +fo
t f

If instead of the the bare energies one wants to use the
band energies, as is often the case, the constant shift
of (A13) must be included in all the expressions which
involve single-particle energies. Having done that and
after transforming all the summations over Q vectors in
integrals over the density of band states, using where
necessary the so-called local approximation, 8 one gets all

-) v.'„'z,„„v„.. (83)
V

This amounts to neglecting all the scattering processes
between configurations having the same number of
electron-hole couples, i.e., setting the V,. potentials of Sec.
III equal to zero. By replacing the matrix elements in Eq.
( 83) by their explicit expression one can easily obtain
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(—)/ U l'U&I % f( k~1')f( ks&~~

IV eking + eksl. —eksg —ekol
kg kgk3

iUi .. f(.k.t)P- f(".&)][ -f(",~)]+ kg+ kP, k3+k2(Ã) ek~t + ekog —eksg —eks$
l 3 2

(84)

and for the electron case

- f( .i)P —f(,l.)][1—f(,t)]

~ - f(&k.~)(1 —f(ek.~)lf(ek. l)
kx+ko, ks+ks &k~) eks4 + ekst ekit ekol

1 3

(85)

which are the expressions first used by Treglia and co-
workers. In the modi6ed form of second order theory re-
cently proposed by Steiner and co-workers s 4s as an ex-
pansion in the fluctuations around mean-field solutions,
the second order term has the same form as the U2 con-
tribution entering Eqs. (84) and (85) while the linear
term accounts for the change in the orbital occupancies
of the fluctuating state compared to the mean-6eld case.

There is an important difference between Eqs. (Bl)
and (82) and the perturbative expressions (84) and (85)
of the self-energies. In the perturbation theory the real

part of the self-energy is continuous at the Fermi level,
i.e., if we remove or create an electron with energy ekol ——

E~. The same is not true for the t-matrix case: if we put
ur = E~ in Eqs. (Bl) and (82) we get different values
for the electron and hole self-energies. As shown in Sec.
VI, the discontinuity at E~ occurs for m = 1 even
when the electron-hole scattering is taken into account
and is essential in order to reproduce the metal-insulator
transition at large U values and the atomic limit behavior
of the Hubbard Hamiltonian.
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