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Acoustic-mode coupling and electron heating in thin metal films
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We discuss the heating of electrons by a steady-state electric field in an unbounded thin metal film by

considering the energy flow from the electron system to the acoustic modes of the film. Using the dispersion

relationships and the resulting density of states for the acoustic modes calculated from a non-Debye model, and

a deformation potential coupling between the electrons and the acoustic modes, it is shown that the relationship

between the electric field and the electron temperature is dependent on the coupling between acoustic modes at

the surface of the film. At low excitation we show the energy relaxation is dominated by the antisymmetric

Rayleigh mode.

The acoustic-mode spectrum in an unbounded elastic, iso-
tropic plate has been known and studied for a long time. '

pro distinct families of modes exist. ' The first is a set of
purely transverse modes that have polarization vectors in the

plane of the plate and consequently do not couple to other
modes at the free surface of the plate. These modes are de-
scribed by the straightforward dispersion relationship
to =u, [P +(n rt/d) ], where u, is the transverse wave ve-

locity, d is the plate thickness, n is an integer (n~0) and P
is the wave vector in the plane of the plate. At the Brillouin
zone center, one mode goes linearly to zero frequency while
all the other modes tend toward a finite limit. At large P or in

thick films, all the modes tend asymptotically to the disper-
sion relationship for a bulk sample. The second family of
modes results from the coupling between longitudinal and
transverse partial waves that occurs at the free surfaces.
These are the Lamb waves, ' the lowest two of which go to
zero frequency at the zone center and are the Rayleigh modes
of the plate. Precise details of the Lamb wave dispersion
relationships depend on the ratio of the longitudinal UI and
transverse wave velocities U„but in general, as the plate is
made thinner the energy separation between the modes in-
creases. At the Brillouin zone center the energy separation of
the modes is approximately firtu/d where u can be either

vh or U, . In most situations the energy separation between
the modes is much smaller than the thermal energy of the
lattice kT; hence many modes are occupied. In this case the
acoustic spectrum and density of states may be considered to
be Debye-like. However, the Debye model is not a good
approximation when the mode separation exceeds kT, that is,
Td ~ krru//c. Thus, as the product Td is reduced the change
in the effective character of the acoustic spectrum is ex-
pected to be manifest in a variety of phenomena associated
with the thermal excitations in thin plates.

In this paper we discuss the heating of electrons caused by
a voltage applied across an unbounded metal film. The volt-
age produces a field E in the film. We consider the balance
between the energy gained by the electrons from the field
and the energy lost to the lattice. %'e use a density of states

modes "

N( to, T,) —N(co)
tt tag(co) de),

Tflp

where N(to, T,) is the Bose distribution at T, , g(co) is the
phonon density of states, and r,~ is the electron-phonon scat-
tering time of the mode considered. The spatially uniform
nonequilibrium phonon distribution in the steady state N(to)
is deduced from the Boltzmann equation, the rate of energy
loss from the phonons is characterized by the escape time

r~ from the film to the helium. We use r„= r/d/~us~ where

Uz is the group velocity for a particular mode and y is a
mismatch parameter related to the Kapitza resistance. ' In-
troducing into Eq. (1) the steady-state expression of N(to)

appropriate for the two families of acoustic modes supported
by the film, and a deformation potential coupling between
the electrons and the acoustic modes; we do not assume a
linear dispersion for the acoustic modes. We show the rela-
tionship between the electron temperature T, and the electric
field depends on the coupling between the longitudinal and
transverse partial waves that occurs at the free surfaces. The
high field results are consistent with previous work that used
an inelastic electron scattering rate due to phonons as a
power law of T, . In the present work we demonstrate that
the acoustic-mode coupling at the free surfaces of the film
strengthens the electric field dependence of the electron tem-
perature.

The electric field heating of electrons in thin metallic
films depends on the electron-phonon interaction and on the
resulting nonequilibrium phonon distribution. Assuming an
inelastic electron-electron scattering time that is sufficiently
small to thermalize the electron system, neglecting the slight
anisotropy induced by the current flow, and considering the
film to be immersed in helium, the electron system can be
considered as an equilibrium system. In the steady state, a
current density J flows in the film and the power P,=J F.
provided to the electron system is equal to the rate of energy
transfer to the phonons:
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deduced from the Boltzmann equation, we obtain the follow-

ing relation between E and T, :"
22

20

18

J.E= g
modes

N(o), T,) N—(co,TI, )
A rug(cu) do),

~~+ "~
(2) 14

where TI, is the temperature of the surrounding helium.
In the analysis of Kanskar et al. the electron-phonon

scattering time 7;„ is given by the Pippard result" calculated
in the Debye approximation. Schmid' has shown that the

Pippard expressions of ~,~ for the longitudinal and trans-
verse polarizations can be deduced from the phonon self-

energy in the isotropic model introduced by Abrikosov
et aL' Following the above procedures, ' ' beyond the De-

bye model and introducing the phonon dispersion, we again
find the Pippard result" for both the longitudinal and trans-
verse phonons, with r,~(P)=1/[2n(P)vg(P)] where u is
the sound attenuation.

In previous work on electron heating in films, ' the cou-
pling between the longitudinal and transverse waves at the
film surfaces has been neglected. In order to analyze the
effect of coupling we first calculate the complete dispersion
relationship of the modes. This relationship can be obtained
from the Rayleigh-Lamb equations for an isotropic un-

bounded film,

tan q,d/2

tan q&d/2

4P'qrq

(qt P')'— (3)

for symmetric (+1) and antisymmetric (—1) solutions,
where symmetric and antisymmetric refer to the boundary
displacement. The magnitudes of the wave vector compo-
nents qI and q, perpendicular to the film are related to the
frequency co(P) by

P'+qi i=
( ~)2

(4)

where l is for the longitudinal and t for the transverse mode.
By solving Eqs. (3) and (4) numerically, we obtain the dis-
persion relation co(P).

The density of states for the coupled modes is obtained
from the dispersion curves by calculating the group velocity

vg =d a)(P)/d P.
For each mode the number of states g(co) per unit volume

and per unit frequency is

In deriving this result, we have considered the energy surface
of revolution generated by the curve cu(P) in a two-
dimensional isotropic phase space; the constant energy sur-
faces are disks as in a Debye model but the group velocity
depends on P.

The electron-phonon time in Eqs. (1) and (2) for the un-
coupled transverse mode ~,~ is given by the Pippard expres-
sion. In the case of coupled modes, we use the relaxation
times for the transverse r, and longitudinal 7,~ modes
weighted by the square of the amplitude ratio lAL/Arl = y
of the partial 1ongitudinal and transverse waves according to
the expression

10

0
0

FIG. 1.Acoustic-mode dispersion relationship.
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r,„y+1 7, 1+y r,„
(6)

The square of the amplitude ratio has been used because the
electron-phonon matrix element depends linearly on dis-
placement, thus the rate depends on the square of
displacement. '

To investigate the electron heating characteristics we have
applied the model to a 25-nm-thick gold film. The param-
eters we have used are an electron density of 5.9X10
m, longitudinal and transverse velocities of sound
UI=3.2X10 ms ' and U, =1.2X10 ms ', respectively. The
elastic mean-free path of the electrons was taken to be
l, =17 nm.

The dispersion relationship for the first eleven acoustic
uncoupled transverse, eleven symmetric, and eleven anti-
symmetric modes of the unbounded film are shown in Fig. 1
in terms of a reduced frequency 0= cod/mv, and a reduced
wave vector Q = Pd/m. The density of states for the coupled
and uncoupled modes has been calculated from the disper-
sion curves, and is shown in Fig. 2 in terms of
G(O)=2d v,g(ao). At P=O, G(Q) for the uncoupled
transverse mode has steps at integer values of A. Between
the steps, G(O) has a linear frequency dependence which is
characteristic of a two-dimensional acoustic spectrum. The
density of states for the symmetric (antisymmetric) modes
has steps at even (odd) values of 0 and at 0= mv t/v, where
m is odd (even). The steps at Q=mvh/v, are small and are
indicated by arrows on Fig. 2. At Q =0, half of the symmet-
ric and antisymmetric modes are degenerate with the un-

coupled transverse modes. Unlike the case for the uncoupled
modes, a consequence of mode coupling close to Q =0 is an
enhancement of G(A) on the high frequency side of the
steps. Moreover, at wave vectors where the coupling causes
Ug to become zero van Hove singularities occur as seen in
Fig. 2 for the symmetric mode at 0= 1.98. The total density
of states for the gold film is the sum of the density of states
for the uncoupled transverse waves and the symmetric and
antisymmetric waves as shown in Fig. 2. In the high fre-
quency limit the total density of states converges to the fre-
quency dependence and magnitude expected from a Debye
model of bulk gold.
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FIG. 2. The density of states for the uncoupled transverse (T),
symmetric (S), and the antisymmetric (A) acoustic modes. The

upper curve is the total density of states. The arrows indicate the

steps at vi/v, and 2v~/v, . The inset is an expanded view of the low

frequency region.

FIG. 4. The electron temperature as a function of the electric
field with y=10 and y=100. The solid curves are with mode

coupling, the dashed curves are without mode coupling. The inset

shows the amplitude ratios for the first two symmetric SO, S1 and

antisymmetric AO, A 1 modes.

The electron-acoustic wave relaxation times for the

coupled symmetric and antisymmetric modes were calcu-
lated as a function of Q using the Pippard expressions" and
are shown in the inset to Fig. 3. The ratio y in Eq. (6) was
calculated as a function of Q using the Rayleigh-Lamb equa-
tions (3). Examples of the amplitude ratios for the first two
symmetric and antisymmetric modes are shown in the inset
to Fig. 4. As expected, it is seen in the inset to Fig. 3 that in

the limit pl, (1 the relaxation rate for all the modes in-

creases as Q and when Pl, ~l the rate becomes propor-
tional to Q and independent of l, ." To visualize which
modes dominate the electron energy relaxation, we have
used the dispersion to plot the relaxation time as a function
of 0, as shown in Fig. 3. At frequencies up to 0=1 the
antisymmetric Rayleigh mode dominates the relaxation with
a time that is inversely proportional to the frequency. In
this frequency range the times for the symmetric Rayleigh
and transverse waves both have a power law dependence
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FIG. 3. The electron-phonon relaxation time for the first four
transverse (dotted curves), symmetric (solid curves), and antisym-
metric (dashed curves) modes as a function of the reduced fre-
quency. The inset shows the electron-phonon relaxation time as a
function of the reduced wave vector. The increased width of the
curve indicates the range of times for the different modes. At high Q
the times for all modes converge to a single value.

r,&-Q At hi.gher frequencies, relaxation is possible
to higher energy acoustic modes of the film by the on-
set of additional relaxation at 0=1,2,3, . . . and
0= vilv, ,2vi/v, , . . . as seen in Fig. 3. For clarity, we have

only plotted the times up to 0=5. Above the onset frequen-
cies all the relaxation times asymptotically approach an

0 ' frequency dependence.
The electric field dependence of the electron temperature

shown in Fig. 4 has been determined by numerically evalu-
ating Eq. (2) at a substrate temperature Tr, =10 mK, and
with y= 10 and 100. The number of modes that need to be
considered depends on the electric field. In the present work
the thirty-three modes discussed above were found to be suf-
ficient for convergence. For comparison we have also per-
formed the calculation assuming no coupling between the
longitudinal and transverse waves at the film surfaces. At
high electric fields the same power law relationship is found
for both the coupled and uncoupled calculations. In agree-
ment with Kanskar et al. , the power law depends on 7 p and
in the limit of small 7p, T,-E . ' With mode coupling the
electric field dependence of T, is found to strengthen below
a field E, at which T,=hmv, /Skd and becomes approxi-
mately T,-E as seen in Fig. 4. In these conditions, the
mode separation is about five times the thermal energy
kT, . Since for all the modes G(Q) are very similar below
0=1, they can be factored out of the mode summation in

Eq. (2) leaving a summation within the integral over the rates

(r,~+ r~) '. Furthermore, the mean value of 7~ is less than

7;p in this frequency range; so the energy relaxation is domi-
nated by the smallest relaxation time which from Fig. 3 is the
antisymmetric Rayleigh mode.

The power (~E ) required to start heating the electrons
above TI, is seen in Fig. 4 to be one hundred times larger for
the coupled modes than for the uncoupled modes. This result
shows that the electron and phonon systems are more
strongly interacting in the case of acoustic-mode coupling at
the surfaces.

Electron heating in thin films where the acoustic-mode
spectrum is modified by spatial quantization has been stud-
ied. We have used a non-Debye model for the acoustic den-
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sity of states. It has been shown that the electron temperature
becomes more strongly dependent on the electric field as
theresult of acoustic-mode coupling.
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