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A7 structure: A family of photonic crystals
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We found that a whole class of structures with rhombohedral symmetry possesses sizable photonic gaps.
These structures can be generated by connecting lattice points in an A7 structure by cylinders and a few

structures that are known to possess photonic band gaps are in fact members of this "parent" structure. This

class of structures also allows us to explore more systematically the criteria favorable for gap formation.

The idea that light in ordered dielectric structures could
be forbidden from propagating in any direction in certain

energy ranges, in analogy with electron waves in semicon-
ductor crystals, was put forward several years ago. ' Such a
forbidden gap for electromagnetic wave is called a photonic

gap, and the periodic dielectric structures that support the
photonic gaps are called photonic crystals. The numerous
possible applications of the photonic gap in many different
areas have drawn considerable attention from physicists in

the past few years. To date, the existence of photonic band

gaps in several different two-dimensional (2D) and 3D
(Refs. 4—8) periodic structures have been established both
theoretically and experimentally. It is also gratifying that
photonic band gaps exist for periodic dielectric structures
with refractive index contrasts bigger than 2, ' which is at-
tainable with many materials even in the optical wave-
lengths. Soon after theory has a handle on this problem, it is
quickly realized that very few structures have full photonic
gaps for reasonable dielectric contrasts, and these few seem-

ingly unrelated and isolated 3D structures include the
diamond and diamondlike structures, the Yablonovitch-
Gmitter-Leung (YGL) structure, the simple cubic structure,
and a face-centered-tetragonal "stacked-bar" structure.
Moreover, there is still onc major obstacle that needs to be
overcome before the concept of photonic band gap can real-
ize its true potential: The periodic dielectric structure must
be fabricable with reasonable ease; otherwise it is unlikely
that it can mature into devices or instruments that can have
significant impact on science and technology. While it is
comparatively easy to fabricate these structures in the micro-
wave length scale, fabricating these 3D structures in the op-
tical length scale poses formidable challenges to current
technology. It is thus important to continue with the search
for more structures that possess photonic band gaps, since
the more examples we have, the better we will understand
the systematics of gap formation, and hopefully, some of the
new structures may prove more suited for existing or emerg-
ing fabrication techniques. In doing so, we found that there is
a whole class of structures with rhombohedral symmetry that
possesses sizable photonic gaps. Interestingly, most of the
structures that are known to date to possess 3D photonic
gaps can be regarded as members of this broader class ofA7
structures and are related to each other. Many authors have
noted the importance of the connectedness of the structure,
and we found that the local connectivity of the structure is
also an important factor, and structures composed of the high

dielectric component forming a percolating network with the
lowest coordination number seem to favor the formation of
photonic gaps. We note that some authors used the term con-
nectivity to refer to the connectedness (whether the structure
percolates) of the system; here connectivity refers to the
number of rods that meet at a particular joint.

A periodic dielectric material ("photonic crystal" ) can be
specified by a position dependent dielectric function

e(r) = X&, f(r R —r), —where {R,r) defines a periodic lat-
tice. The structure function f(r) can be rather general, but

f(r) is usually taken to be a constant e, at some domain and
another constant eI, elsewhere, since these structures are
most amenable to fabrication by conventional processes. In
this paper, we will consider periodic structures such that the
lattice {R,r) corresponds to that of the A 7 crystal
structure " and f(r) corresponds to cylindrical rods with cir-
cular cross sections joining the lattice points, preserving the
space group symmetry of the A7 crystal structure, and both
the high and low dielectrics form percolating networks. Such
connected networks are favorable for gap formation. " We
also know from earlier experience that these percolating
structures tend to give the largest gaps with smallest thresh-
old in dielectric contrasts. We considered both dielectric rods
in air background, and the inverse structures with air rods in
a high dielectric background. In all cases, we have calculated
the band gaps for a fixed dielectric constant ratio of 12.96,
which corresponds to that of Si in optical frequencies. We
also employ a fixed material filling fraction of 20%, which
determines the radius of the rods.

The A7 crystal structure has a rhombohedral lattice and a
basis of two atoms. The primitive translation vectors
are given by a&=ao{e,1,1), a2=ao{1,e, 1), and

a3 an{1,1,e); such that e=[1—(1 +cosu
—2 cos a)'/ ]/cosu, and a, the shear angle, is the angle
between any two a s. The two basis atoms are positioned at
d=~u(a, +a2+a3). (For photonic crystals, it is more
meaningful to call them "sites" rather than "atoms, "and for
our structures, these positions are where the rods meet and
thus may be called "joints. ")The structure can thus be char-
acterized by two parameters: u and u. We form the "photo-
nic crystal" by joining the first and second nearest neighbor
(NN) sites together by cylinders. By varying a and u, we can
generate a whole series of "photonic crystals" with very dif-
ferent structural characteristics, but sharing the same symme-
try except for some particular values of u and o., where the
structure attains a higher symmetry. This can happen at u =0,
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FIG. 1. The photonic band structure for a A7 structure with
+=60' and u =1/I'6, with dielectric rods of a=12.96 in air back-

ground. The frequency is given in units of c/t'ao where c is the speed
of light.

1/8, and 1/4 with a= 60' or 90'. In these cases, the sudden
increase in symmetry will cause a corresponding discontinu-
ous change in the NN lists. We will disregard the higher
symmetry for one isolated point in the coordinate space of a
and u, and just keep the same local connectivity as those
structures in the immediate neighborhood of the coordinate
space. In these cases, we can imagine that we artificially
maintain the lower symmetry of the A7 structure by consid-
ering u~u+8, or a —+++8, where 8 is a small number
wherever there is a sudden change (increase) in symmetry or
conn ectivity.

We have calculated the photonic bands for a series of
structures obtained by varying both n and u. We used the
plane wave expansion method' with about 1000 plane
waves (corresponding to 2000 x 2000 matrices for each k).
For most of the structures, the gap is determined by calcu-
lating 56 k points in the Brillouin zone (BZ) boundary. '

Photon density of states' are also calculated for a few cases
and the gaps found are the same as those determined by just
considering points in the BZ boundary. In Fig. 1, we show
the photonic band structure for an A7 structure with n =60'
and u=1/6. Photonic band gaps are found for a continuous
and substantial range of the parameters u and u. We show in

Fig. 2 the relative size of the photonic gap (measured by the

gap to midgap ratio: 5«&/(&&s) for various values of u at a
fixed a (60'), and in Figs. 3(a) and (b), we show the pho-
tonic gap for different u for various values of u. The struc-
tures generated have either fourfold or sixfold connectivity.
In some cases, especially for u~0. 16, there are multiple
ways of joining the A7 lattice points by cylinders to create
gaps with the same parameters u and n, as can be seen in

Figs. 2 and 3. For example, at u-60', the local connectivity
is 4 for u ~0.1875 and 6 for u &0.1875 if we use the stated
algorithm to connect the lattice points. For u)0. 1875, the
sixfold connected structure (as defined by our algorithm) has
photonic gaps, but we can also obtain photonic gaps if we
insist on a fourfold connected structure (Fig. 2). In Figs. 3(a)
and (b), we also observe that the sixfold connected A7 struc-
tures have gaps at u-1/4, but if we force a fourfold con-
nectivity (by continuously deforming the A7 structures with
smaller u's at the same a, where the natural connectivity is
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FIG. 3. hco/cog for the A7 structure with different values of
a=60' for some values of u: (a) for dielectric rods, and (b) for air
rods. The connectivity is fourfold unless indicated by sixfold, where
it is sixfold. For u-1/4, results for both fourfold and sixfold con-
nected structures are shown.

FIG. 2. The relative size of the photonic gap (hu&/u&s) for the

A7 structure with different values of the u for n=60'. Both di-

electric rods in air and air cylinders in dielectrics are considered.
For u&0. 1875, the natural connectivity is sixfold, and the fourfold
structures are obtained by maintaining the same connectivity as the

structures deform continuously from u&0. 1875 to u&0. 1875.
The lines serve as guides to the eye only.
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fourfold), gaps can also be obtained.
It is interesting to note that the few well-known structures

that have been reported to have photonic band gaps are in

fact members of this class of structures. This includes the

diamond structure, ' which corresponds to a = 60' and u
= 1/8. The region with u~ 0 (i.e., the two "sites" in the A7
fuse together, so that the rod joining them becomes infinitely

short) deserves special attention. It exhibits photonic gaps for
a continuous range of o.; and in particular, for n =60, it is
identical to the YGL structure (with air rods in high dielec-
trics), and for a=90', it generates a simple cubic structure,
both are known to have photonic gaps. Although not obvious
at first glance, the A7 structures with u-0. 25 are actually
structurally equivalent to the u-0 structures at a different u.
In particular, the A7 structure with a=60' and u=0.25 is
also a simple cubic system, but with two sites per unit cell.
From Fig. 3(a) (the solid triangles), we see that the simple
cubic structure can be deformed to get a bigger gap either by
increasing or decreasing a.

There are also some members within this class that have

very interesting geometry. For example, with u=1/6, the

structure is actually "graphitic, " with graphitelike layers
formed by rods joining NN sites in a 2D graphite plane, and

a fourth rod at each site extending to the nearest neighbor
planes. These graphitelike planes are geometrically equiva-
lent to the 2D photonic band gap structures with a triangular
lattice of circular holes. The planes have a stacking se-

quence of ABCABC. The distance between the layers de-

creases with increasing n. In this sense, the A7 structures
with u =1/6 are "stacked" 2D photonic band gap structures
that have 3D gaps. The maximum bc'/&osis about 25% for
both air and material rods. The case for u~0 and u
=109.47' is also very interesting. With e= —1, the BZ has
the same shape as that of bcc, and it is equivalent to a bcc
structure with 6 out of 8 of the NN joined by rods (except the

two neighbors in the [111]direction). A full-symmetry bcc
structure does not have photonic gaps in the low lying bands,
while this crippled bcc structure with two broken legs has
photonic gaps close to 10% for the case of material rods.

From Figs. 3(a) and (b), which show the variation of the

gap with the shear angle n for different u, we see that the

photonic gaps generally peak at 60', where the BZ is most
spherical. This reinforces the earlier notion' that isotropic BZ
favors gap formations: The spectral gaps in different direc-
tions have better chances to overlap if the BZ is mostly
spherical. This is the reason why early experimental works'
in a quest for photonic gaps are all focused on the fcc struc-
ture. The isotropic BZ rule, however, is often complicated by
the vector nature of light: The gaps for the two possible
polarizations in the same direction may work against each
other (fcc is a well-known example). ' This argument also
does not apply when the gap is derived from higher bands, as
we can see for the case of sixfold connected material rod
structures at u-1/4 with various u [Fig. 3(a)), and u-0 for
u) 80 [Fig. 3(b)].

Another important factor seems to be the local connectiv-
ity, or the number of rods joined to a particular site. In gen-
eral, smaller local connectivity favors large photonic gaps,
at least for those cases where the BZ is reasonably isotropic.
If we examine cubic lattices, each site can be fourfold, six-
fold, eightfold, or twelvefold coordinated. All the structures

here that have gaps are either fourfold or sixfold connected.
If we enforce a higher connectivity (but maintain the sym-

metry) by connecting to more neighbors, the gap disappears.
As we have mentioned, a true bcc structure with eight neigh-

bors joined together does not have gaps but the A7 structure

with six instead of eight neighbors connected together have

photonic gaps. Another example is the fcc structure. If we
choose to join up all 12 NN neighbors with rods, there are no

gaps in the second and third band (however, a small gap in

the higher bands has been reported ), but the A7 structure

here, with the same BZ but a lower connectivity, '" a good
sized gap is obtained. In Fig. 2, the "natural" connection of
the structures is to have a sixfold coordination with

u&0. 1875, but it turns out that fourfold connected struc-
tures have bigger gaps. It is interesting to note that for ma-

terial rods, the simple cubic structure can achieve a bigger

gap by connecting the lattice points in a different manner to
reduce the connectivity. In two dimensions, photonic gaps
can be obtained by drilling holes in a triangular or a square
lattice, and the triangular lattice has larger and more robust

gaps than the square lattice. If we look at the dielectric grid
left behind by drilling the holes, the triangular lattice has
threefold coordinated sites while the square lattice has four-
fold coordinated sites. The triangular lattice also has a more
isotropic BZ. This again corroborates the notion that isotro-

pic BZ and low local connectivity favors photonic gap for-
mation. If we imagine that space is divided into two perco-
lating and disjoint volumes by a connected surface forming
complex structures, part of our results can be stated as the
structures with the minimum number of genius per joint
(such as those bounded by D surfaces and P surfaces' ) have

large gaps. In this view, it is not surprising that the diamond
structure is still the champion among all known structures
since it has the most favorable BZ and the lowest local con-
nectivity.

The present results also have some immediate implica-
tions on fabrication. All A7 air cylinder structures with u —+0
can be fabricated by drilling three sets of holes into a trian-

gular array, spread out at 120' on the azimuth, and each hole

drilled at an angle H=cos '[(a+2)/(+3v'e +2)] to the
normal. The YGL structure, " drilling three sets of holes at
35.3' to the normal into a triangular lattice, is a special case
with u=60' (e=O). From Fig. 3(b) (solid circles), we see
that photonic gaps persist for a large range of n, and thus
photonic gaps can be obtained by drilling all the way from
8= 30' to over 55' (Ref. 18) to the normal. The nature of
the gap also changes. It is derived from the second and third
band for n(80'and from the fifth and sixth band for
a)80', and thus the midgap frequency cog (at which the
photonic gap centers) also varies for a fixed filling ratio. This
is an extra advantage since the midgap frequency can be
tuned simply by varying the drilling angle.

As a summary, we observe that a few photonic crystals
known to date, with different structural characteristics and
discovered by different authors, are actually related in a
broader family of structures. In this family, there are other
members with interesting character such as the graphitic
structure. Within this "parent" class, we observe that photo-
nic gaps prevail in the lower bands if the structure is a con-
nected network with low local connectivity and has a BZ that
is reasonably isotropic.
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