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Treatment of thermal vibrations and local static disorder within tensor LEED
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A general formalism is developed to include thermal vibrations and local static disorder into
tensor-LEED calculations. The given expression for the averaged t matrix is based on a cumulant
expansion for the probability distribution of atomic displacements. The method is a generalization
of the concept of temperature-dependent scattering phase shifts and allows an efBcient description
of both anisotropy and anharmonicity of thermal motions, which are important in particular for
adsorbate atoms and substrate atoms in the topmost layers.

I. INTRODUCTION

Thermal vibrations have a considerable effect on low-

energy electron difFraction (LEED). As the temperature
of the sample is increased, the intensity of the LEED
beams becomes weaker, the spots are slightly broad-
ened, and the background intensity between the spots
is enhanced. In a single scattering theory the inQu-
ence of harmonic lattice vibrations can be described by
Debye-Wailer factors, as they are used for x-ray diffrac-
tion. Within a multiple scattering situation, which is
characteristic for LEED, it is much more complicated
to include thermal vibrations correctly into the scatter-
ing theory. The standard procedure in dynamical LEED
calculations is to use temperature-dependent scattering
phase shifts, which describe the scattering properties of
a vibrating atom. This approach relies on the assump-
tion that the thermal vibrations of different atoms are
uncorrelated, which is certainly not true for near neigh-
bors. Only isotropic harmonic vibrations can be treated
within this framework. Obviously, much of the difBculties
one encounters by generalizing this concept to arbitrary
thermal motions result from the fact that anisotropic vi-
brations disturb the spherical symmetry of the atomic
potentials and lead to nondiagonal t matrices for the scat-
tering atoms.

From local electron diffraction techniques such as sur-
face extended x-ray-absorption fine structure (SEXAFS)
and photoelectron difFraction, it is well known that the
anisotropy in the thermal vibrations of surface atoms
can have a measurable inHuence on the spectra. Vibra-
tional components parallel and perpendicular to the sur-
face have been investigated in several adsorbate systems
by SEXAFS (Refs. 4—7) and by scanned-energy mode
photoelectron diffraction. '

The traditional restriction to isotropic harmonic vi-
brations can certainly be the reason for a number of bad
R factors in LEED structure determinations. There are
only a few attempts to go beyond this barrier and to con-
sider anisotropic vibrations: A direct method has been
developed in Ref. 10 by which a probability distribution
of the surface atoms can be obtained from LEED mea-
surements. For CO on Ru(0001) it has been shown in
Ref. 11 that the inclusion of anisotropic vibrations of the

II. AVERAGED t MATRIX

The LEED wave 6eld is given by a sum over all possible
scattering paths which the electron can take hypotheti-
cally on its way through the sample. These contributions
consist of terms such as

~ ~ s k&Ggj kg Gji o ~ ~

where tz describes the scattering properties of the atom
at position R~ and G~; is the free electron propagator
between the atoms R; and Rz. The Green function of
&ee electrons with a given kinetic energy E = (hk) /2m
can be expressed by an integral over the eigenvalues and
eigenfunctions:

d3I I &ik'. (R~, +r' —r )

G(R, +r', R, +r) = 2' 3 k2 —A,"2+is (2)

molecule by means of a "split position" method can im-
prove the R factor significantly. The standard LEED
codes2 offer only the possibility that the layer difFraction
matrices are multiplied by anisotropic Debye-Wailer fac-
tors, whereas the anisotropy of thermal motions has to
be neglected for all intralayer scattering events.

In recent years, the tensor-LEED method has been es-
tablished as a new basis for LEED data analysis.
This perturbation technique is designed to treat nondi-
agonal t matrices, which originate from atomic displace-
ments. Many recent structure determinations for com-
plex surfaces have shown that tensor-LEED works very
eKcient as long as the displacement vectors are within
the range of validity of this approximation.

In the present paper, we develop a general expression
for an averaged t matrix, which is based on a cumulant
expansion. Hence, arbitrary probability distributions of
atomic positions can be described. The new method pro-
vides a numerically efBcient way to include anisotropic
vibrations into a multiple scattering theory and, in par-
ticular, into existing tensor-LEED codes. Furthermore,
also anharmonic contributions can be taken into account.
These terms have proven to be important in EXAFS and
SEXAFS spectroscopy.
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where the limit e ~ 0 has to be taken so that e is always
a real positive quantity. R~; = Rz —R; is the vector
between the two atomic positions. We transform this
two-center representation of the Green function G~; with
the help of

and rewrite the plane waves under the integral using the
completeness relation of the spherical harmonics as

~&'(uj+r ) gg Y* kI Y k ~& '(uj+r )

into

e'"' = 4vr ) i ji(kr)Yg(k)YI, (r)
L

where the modulus of k' is equal to the wave number k.
Finally, we obtain Eq. (9) and

G(Ri + r', R; + r) J cl(u) = i' ' f dBa'Yl', , (k)Yg(k)e'"'" . (i2)

LI I

(r —r)
x

2 ji (k'R, ;)Y I (k') (4)

The LEED wave field, Eq. (i), can now be expressed by
propagators between the positions in the reference system
Re and modified t matrices which have the displacements
u~ built in,

where the abbreviation L = (l, m) has been used. Under
the condition r + r' & R~; we can calculate the integral
over the modulus of k' using Cauchy's residue theorem.
The result is

G(Ri + r', R; + r) = ) i ht (kRz, )YI',„(Rz,)4x

x dOgYL» k e (s)

from which we obtain immediately by means of Eq.
(3) the standard expression for a two-center angular-
momentum representation of the Green function:

G(R~ + r', R; + r) = ik ) ji (kr'—)Yl, (r')
L'L

x GI, 1,(R,,)ji(kr) Yl', (r)

with

Gg r, (R) = 4z ) i' '+' hi (kR)YI', , (R)
L»

x dOYL& YL» YL.

If the scattering atoms are displaced from their posi-
tions R in a reference system, i.e., for

R~ =R. +u~,

the matrix Gl, 1,(R~;) can be factorized into

G(Ri;) = J(u~)G(R.;)J(—u;),

G(Rz + r', R;+ r) = ) i hi (kR;)Yl*,„(R.;)
L»

y k ik-(u -+r' —u, —r)

where underlined quantities denote matrices in the I
space. In order to derive this result, we start from Eq.
(s),

Usually, the scattering potentials are assumed to be
spherical symmetric. Then the matrix t - is diagonal with
respect to the quantum numbers t and m and the matrix
elements are determined by the scattering phase shifts
gl ~

0 0 ~ ~ Cgftr r, = tibL L = 1, sin'/le 6L L . (i4)

However, any displacement u~ destroys this spherical
symmetry of the scatterer so that the matrix t (ui) of
the shifted muffin-tin potential will contain oH'-diagonal
terms which are nonzero.

The inQuence of thermal motions or local static dis-
order on LEED intensities can be taken into account by
using averaged t matrices in the calculation of the wave-
field,

If the vibrations are harmonic and isotropic, the matrix
T . has the same structure as t. , i.e., it is diagonal in the
indices t and m (see Sec. V). Hence, one can simply use
T instead of t in the multiple scattering programs. This
is the standard technique by which thermal vibrations are
included into dynamical LEED calculations.

Obviously, this approach is only an approximation,
since all correlations between the displacements of dif-
ferent atoms as well as the self-correlation of an atom
which occurs in more than one factor of an intensity con-
tribution are neglected. There is little chance to go be-
yond this concept within the framework of a full multiple
scattering theory. The errors which may result in LEED
intensities from the assumption that the atomic displace-
ments are totally uncorrelated have been discussed in
more detail in Ref. 1.

In the following sections we describe a technique, which
allows an efBcient calculation of the averaged t matrix,
defined in Eq. (is), for an arbitrary distribution of atomic
displacements uz.



1924 V. FRITZSCHE 50

III. CALCULATION TECHNIC}UE

The matrix J(u) obeys the difFerential equations

J(u) = ikM J(u),0
19th~

(16)

Since we have

[M, [MP, A]] = [MP, [M, A]],

this leads directly to

(26)

s l' —l 4+
ML, I, = i — dO Yl, i YL,Yj p, (17)

where u is one of the Cartesian coordinates of u. This
set of equations is obtained from Eq. (12) by express-
ing the coordinates k in terms of Yji l(k) and using
the completeness relation for spherical harmonics. The
matrices M are given by

t(u) = exp ik)—u [M, ~] t (27)

This formula has been used by Oed et al. for an expan-
sion of tensor-LEED in Cartesian coordinates. The ma-
trix t(u) has to be calculated by a series of commutators
as shown in Eq. (25). Computationally this procedure
is very eScient, since the majority of matrix elements in
the M is zero. Explicit expressions for the nonvanishing
elements are given below:

(18) (l p m) (l p m —1)
2(2l —1)(2l + 1)

M" = (M +M+),
(l 6 m+ 1)(t 6 m+ 2)

2(2t + l)(2l + 3)

with

(2o)

(l + m)(t —m)
(2t —l)(2t + 1)

It can be shown that these matrices commute with each
other,

(t + m + 1)(t —m+ 1)
(2l + 1)(2l + 3)

(29)

[M, MP] = O. (21)
IV. HARMONIC VIBRATIONS

J(u) = exp ik ) u M (22)

The set of linear differential equations for J(u), Eq.
(16), has a unique solution which is determined by the
initial value. Obviously,

If u is the time-dependent amplitude of an harmonic
vibration around the mean value (u) = 0, then the aver-
age over a phase factor is determined by the mean square
displacements (see, e.g. , Ref. 28),

satisfies both Eq. (16) and the condition imposed by Eq.
(12) for the initial value at u = 0,

J(o) = I .

The resulting expression for the t matrix of a displaced
atom, Eq. (13),

(
t(u) = exp ik) u M —t exp ik) upMP

exp i ) k —u = exp ——) (u up) kpk
'p )

(30)

This result can be generalized to the matrix expression of
t(u), Eq. (27), and we obtain for the averaged t matrix:

(24)

T = exp ——k ) (u up) [MP, [M, ~]] t0 (31)

X2
exp(zA) Bexp( —xA) = B + +[A, B] + —[A, [A, B]]

X3
+—[A, [A, [A, B]]]+.. .

= exp(x[A, ~])B (25)

can be simplified using the Cambell-Baker-HausdorK the-
orem

The analogy between these two equations is essentially
based on the commutative law for the matrices M in
commutator expressions, Eq. (26). The mean square dis-
placement tensor (u up) is symmetric with respect to
the indices n and P, and we can find a coordinate system
(principal axes) in which it is diagonal,

(u-up) = (u'. )~-,p
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T(22) (33)

In practical calculations T is evaluated by a series of
commutators,

(40)

/(21 + 1)(2l'+ 1)(2!"+ 1)
4'

f 1 t' I" ) (1 1'I")
x

i

( —mm'm") (00 0)

where the T( ) are obtained by the recurrence relation

T "+' = — ) (u )(M M T~"
2(n+ 1)

+T" M M —2M T" M ).

f li t2 E ') f ti t2 l' ') h(gh

(—mi m2 m) (—mi m2 m') 2t + 1

(34) we obtain

(41)

The recursion starts with the t matrix of the nonvibrating
atom,

T~~', ~~ = —k'(u ) t, —) (2l" +1)t,„
l'I

The value of n needed for convergence in Eq. (33) de-

pends essentially on the argument k2(u )/3. The first

term T is diagonal in the indices l and m. As the
order n increases, however, more and more off-diagonal
positions in T will be occupied by nonvanishing elements.

All nonzero values of TL",L occur in a region near the di-

agonal which is determined by the condition ~l
—l

~

& 2n.

('1 t" 1)
"~ 000 i

(42)

This proves that T, and subsequently all other T"
are diagonal with respect to the quantum numbers l and
m.

In order to transform the diagonal elements of T into
the familiar form, we introduce two submatrices of J and
M, which describe one-dimensional displacements along
the z axis of the coordinate system:

V. ISOTROPIC HARMONIC VIBRATIONS

In this section, we will show that T is a diagonal matrix
for isotropic harmonic vibrations and we will recover the
formula for the diagonal elements which usually has been
used in I EED theory from the results given above.

For isotropic vibrations we have

(u up) = (u')h p .

ji i(ku) = ~& o,io(«*)

ll X&
ml~l = ivilg0 l0 .

According to Eq. (22) they are connected by

j(ku) = exp (ikum)

(43)

(44)

(45)

The first step of the recursion, Eq. (34), gives

k' t'u'~
T~l= — ') (M M t

a
+t'M M —2M t'M ) .

From the de6nition of M in Sec. III follows

)MM=I, (38)

Similar formulas have been used earlier in EXAFS
theory.

An explicit expression for m is

mi i = i g(2l' + 1)(2l + 1)
~

l' —l (I,' 1 1)
F000) (46)

where Eq. (40) has been used. Now, we can write the
diagonal elements of the first term, given in Eq. (42), with
the help of m and an additional transformation matrix

where I is the identity matrix in the L space. The last
term in Eq. (37),

) ) MLrLt&tt&&Mrs&L,

L II

~l', l~m, ',m, ~

(a) (a)

= —k (u ) ).Ll —o mojl'it)(a) 2 2 —a 0

l

(47)

(48)

where a is defined bya

) ) 1' '2,„Jd12 YgYrYi„— .".
g= —a L" oi &

= i'v 2l + 1hi i . (49)

X dO YLtg YLYa& &

From Eq. (31) follows for the total averaged t matrix of
an isotropically vibrating mufBn-tin potential:

can be simpMed using 3j symbols. With TL' L ~l ~l', l ~m, ', rn ) (50)
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T~ = ) (exp[—k (u )(I —a ma)]j~ ~t&

Application of Eq. (45) leads to

(51) (u" u„"u," ), are denoted by the subscript c in order to
distinguish them &om the ordinary moments. From a
given set of cumulants we can obtain the probability dis-
tribution simply by a Fourier transform,

T, , = e " ~" ~ ) (a 'j(—ik (u ))aj& (t, . (52) P(r) = d ke'"'4(k) .
1

(2m )' (58)

The integral representation for J(u) given in Eq. (12) can
be transformed into

Jr, 1,(u) = 4vr) i' '+' j( (ku)YI,*„(u)
L II

x dO YI*., YI,~ Yl.

If we use cumulants to characterize the distribution of
displacements, the averaged t matrix follows in analogy
to Eq. (31):

ne+ny+ne

ge ye Z ~

SLY AQ Ag

by expanding the plane wave with the help of Eq. (3).
We need only the special case

j~ ~(ku) = ) i + (2l" + 1)j~ (ku)

7 TL~ Ay Ag

where [A, B]„is defined by

[A, B]„=[A, [A, 8]„ i]
fl'1" t

x g(2P 4- 1)(2l + 1)
~(0 0 0)

to obtain finally for the diagonal elements

(54)

[A, B]p ——B .

T —Ic (u)) l"
( k2( 2))

(l' l" l') ',
x(2l" + 1)(2l+ 1) i i

ti,
), 0 00)

which is the standard formula used in LEED theory.

(55)

This formula contains static displacements (u ) = (u )„
the mean square displace~ents of harmonic vibrations,
and all types of higher order corrections.

VII. DISCUSSION

VI. ARBITRARY PROBABILITY
DISTRIBUTION

n~+ny+rae
4(k) = exp ) . . . (u" u„"~u," ),

l n@ 'ny 'nz '
fir~ fLyAz

xk" k"~k". ~, (56)

where

4 (k) = (e '"'"}= f d e P(u)e

is the generating or characteristic function.

means a summation P o P„oP from which

the term n = n„= n = 0 is excluded. The cumulants

The results of Sec. IV can be extended to the case
that we have to average the t matrix over a more general
probability distribution of atomic displacements, which
describes for instance anharmonic vibrations or a struc-
tural disorder with some kind of asymmetry. For this
purpose we use the method of cumulants s (see the Ap-
pendix for basic formulas). The cumulants of a three-
dimensional distribution function P(u) are defined by

We have presented a new method for averaging an
atomic t matrix over an arbitrary distribution of displace-
ments. The resulting averaged t matrix can be used in
any multiple scattering formalism for LEED, photoelec-
tron diffraction, and EXAFS.

An application to tensor-LEED seems to be particu-
larly promising, since here the full multiple scattering
problem is solved only once for a reference system, and
all displacements of scattering atoms can be treated by a
perturbation theory. This concept opens the possibility
to vary a large number of structural parameters at rel-
atively low costs. This has been demonstrated by many
structure determinations of complex systems. The de-
scribed cumulant expansion for the t matrix extends the
parameter space beyond static structure models to all
types of thermal and local static disorder at surfaces. On
the basis of high-quality LEED data, possibly tempera-
ture dependent, such a comprehensive fit between the-
ory and experiment will certainly provide new insights
into the dynamics of surface atoms. A recent study of
surface atom vibrations, although restricted to isotropic
harmonic vibrations, has shown that tensor LEED is a
suitable basis for these investigations.

The described concept has much in common with the
direct method proposed by Pendry and co-workers.
The essential difference is, however, that the direct
method is based on an expansion into moments, whereas
the present theory makes use of cumulants. An obvious
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disadvantage of moments is that harmonic vibrations give
rise to a series of higher order moments, as brieHy shown
in the Appendix. If harmonic vibrations with large am-
plitudes are present in the system, a user of the direct
method would 6rst have to determine a lot of higher or-
der moments as independent parameters from the theory-
experiment comparison and then to Gnd out the corre-
lations between them. In the cumulant expansion, only
one parameter is required to describe a one-dimensional
harmonic vibration, which allows a much better control
of the 6t between theory and experiment.

The newly derived formulas are a natural extension of
the concept of temperature-dependent scattering phase
shift. For isotropic harmonic vibrations they give the
same results as the standard calculation technique used
in existing LEED codes.

We propose to include the cumulants step by step into
the 6t procedure. First one should get the structure right
(first order cumulants). Then one could include harmonic
vibrations with anisotropic amplitudes (second order cu-
mulants). Finally one can extend the optimization to
selected anharmonic contributions. Anisotropy and an-
harmonicity will be important in particular for the ad-
sorbate atoms, so that these effects will be concentrated
in the &actional order beams. In general, we expect the
harmonic contributions to be dominant. Therefore, the
cumulants determined by the fit will give a probability
distribution, Eq. (58), which is essentially a Gaussian
function with small distortions and corrections.

APPENDIX: METHOD OF CUMULANTS

The generating function

+OO

C(k) = (e '"
) = dz'P(z')e (Al)

(A2)

or cumulants

(
C(k) = exp ), (z"), (A3)

Obviously, the cumulants (z"), can be expressed by mo-
I

ments (z" ) with n' & n and vice versa.
For a Gaussian distribution

P(z) = exp ~—
2rroz ( 20' )

(A4)

we get the moments

(
2

)
(2m)! (,j~ (A5)

in which P(z') is an arbitrary probability distribution,
can be expanded either into moments

2m+1) (A6)
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and the generating function

4(k) = exp
~

——cr k
2 )

(A7)

which means that all cumulants higher than second order
vanish (unlike the moments).
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