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The resonant electron transfer processes that occur when slowly moving atoms and (positive) ions in-

teract with metal surfaces are theoretically analyzed with regard to scaling properties and universal

behavior. Within the first-order adiabatic approximation, a simple model is employed that allows a sys-

tematic (formal and numerical) study of the dependence of transition matrix elements and transition
rates upon the parameters characterizing the ion-metal system. Scaling parameters are introduced,
through which scale transformations of the system parameters are defined. The ion-surface distance, in
particular, is scaled by means of the "classical threshold distance, "below which, at given electronic en-

ergy, resonant electron transfer is classically allowed. When transformed to the scaled representation,
transition matrix elements and rates are found to be expressible in terms of "reduced, " universal func-
tions, which are independent of the parameters characterizing the strength of the electronic potentials in
the ion-metal system. In the limit of large ionic principal quantum numbers, the behavior of transition
matrix elements and rates is largely determined by three universal functions that depend on the scaled
ion-surface distance only. Scaling laws connecting transition matrix elements and rates for different ion-
ic principal quantum numbers are established. Resonance neutralization of highly charged ions and res-
onance ionization of Rydberg atoms are considered as specific cases. Quasiclassical aspects and possible
applications of our results as well as extensions of our analysis are brieAy discussed.

I. INTRODUCTION

Resonant electron transfer is a ubiquitous process in
the interaction of slowly moving atoms and ions with
metal surfaces. Under the near-adiabatic conditions pre-
vailing in this type of interaction, the one-electron poten-
tial acting in the ion-metal system induces transitions in
which either an atomic electron is transferred into an ini-
tially empty conduction-band state of virtually the same
energy ("resonance ionization"), or a conduction-band
electron is transferred into an empty ionic state ("reso-
nance neutralization" ). ' In specific situations, Auger-

type two-electron transitions can compete with, or can
occur subsequent to, the resonant one-electron transi-
tions.

A great deal of work, both experimentally and theoret-
ically, has been devoted to the study of resonant electron
transfer processes in ion-metal-surface interactions.
In recent years, novel aspects of these processes have
been revealed in extensive studies covering previously
unexplored domains of the parameter space associated
with the ion-metal system. Particular emphasis has been
placed on the investigation of surface interactions of
slow, highly charged ions, ' in which multiple resonant
electron transfer populates highly excited Rydberg states
of the ion, thereby leading to the formation of "hollow"
atoms at an early stage of the interaction. Other subjects
of current interest are the destruction of laser-excited
Rydberg atoms due to resonance ionization at metal sur-
faces, " ' kinematic effects on resonant electron transfer
in grazing ion-surface collisions at high ion velocities (al-
beit low velocity component normal to the surface), ' '
surface interactions of sputtered and desorbed

atoms, ' ' and the formation and autodetachment of
negative ions at metal surfaces.

The theoretical description of resonant electron
transfer processes relies on a variety of different methods
and approximations, both quantal and classical. A gen-
eral framework for the quantal treatment of the electron-
ic dynamics is furnished by the time-dependent coupled-
state method, ' which has been frequently applied in
conjunction with model Hamiltonians of the Anderson-
Newns type. ' * ' In the near-adiabatic case, an ap-
propriate starting point for the dynamical treatment is
provided by the strictly adiabatic approximation (or
"fixed-ion" approximation), ' in which the electronic
motion in the ion-metal system is considered at fixed ion-
surface distance. Within this approximation, transition
rates for resonant transfer have been calculated in first-
order perturbation theory (see Ref. 26, and references cit-
ed therein) as well as by means of nonperturbative
methods valid at asymptotically large distances. ' Full
solutions of the stationary Schrodinger equation for the
one-electron problem at arbitrary distances have been ob-
tained by applying the complex-scaling method ' and
the coupled-angular-mode method. ' ' ' Classical dy-
namics has been employed in recent analyses of multiple
electron transfer in surface interactions of slow, highly
charged ions.

The present paper deals with general aspects of the
theory of resonant electron transfer in the interaction of
atoms and positive ions with metal surfaces. Within a
quantal framework, we analyze this kind of process with
regard to scaling properties and universal behavior. Scal-
ing and universality are closely related concepts. By sub-
mitting the parameters of a physical system to appropri-
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ate scale transformations, one aims at identifying univer-

sal functions that characterize the system in terms of a
reduced number of parameters, and at deriving relations
("scaling laws" ) connecting the values of a physical quan-

tity for different parameter values. Thereby, one hopes to
be enabled to systematize and simplify the theoretical
treatment. For electronic processes in the ion-metal sys-

tem, the application of scaling concepts suggests itself
through the large number of parameters upon which the
electronic motion in this system depends. Our specific
motivation for considering the scaling behavior of reso-
nant electron transfer has arisen from qualitative similari-
ties observed in the parameter dependence of explicitly
calculated transition matrix elements and transition
rates.

The analysis of scaling properties and universal
behavior requires the parameter dependence of resonant
electron transfer to be systematically studied over a
broad range. In order to achieve this goal, we resort to
the first-order adiabatic approximation in conjunction
with a very simple model. Most importantly, this model
allows a closed-form evaluation of the relevant transition
matrix elements. We are therefore in a position to in-

vestigate scaling properties by formally analyzing the ma-
trix elements and their closed-form representations as
well as by examining the results of (fairly simple) numeri-
cal calculations for transition matrix elements and transi-
tion rates.

It should be pointed out at the beginning that, in a
sense, the model we use may not be fully adequate for a
quantitative treatment of resonant electron transfer. But
even if certain details are not properly taken into ac-
count, we believe the model at least to be capable of
correctly predicting qualitative trends. In particular, this
holds for those of our results which involve only relative
quantities, like ratios of transition matrix elements and
rates, and which therefore will not depend crucially on
model details. In any case, the scaling procedure
developed here as well as our results will be useful as
guidelines to future, more sophisticated work. We also
note that, since particular emphasis is placed in our
analysis on the limit of large ionic quantum numbers, i.e.,
on the quasiclassical limit, we may understand our study
as an attempt to bridge the gap between the quantal
treatment and the purely classical treatment of resonant
electron transfer.

We have previously examined scaling properties of
resonant electron transfer in a specific case by solely
analyzing explicitly calculated transition matrix elements
and rates. A brief account of some preliminary results of
the present, general analysis has been presented else-
where.

This paper is organized as follows. In Sec. II, we speci-
fy the model assumptions upon which our analysis is
based. Section III deals with the definition of appropriate
scale transformations for the parameters of the ion-metal
system and with the representation of transition matrix
elements and transition rates in terms of scaled parame-
ters. A general, formal analysis of the scaled representa-
tions of transition matrix elements and rates is presented
in Sec. IV. In Sec. V, the universal behavior of matrix

elements and rates is analyzed in the limit of large ionic
principal quantum numbers, and scaling laws are in-
ferred. A summarizing discussion of our results is given
in Sec. VI. Concluding remarks are made in Sec. VII,
which is followed by two appendixes containing some for-
mal details. If not stated otherwise, we use atomic units
(e =m, =A'= I).

II. MODEL ASSUMPTIONS

We consider an atom or positive ion moving slowly in
front of an ideal (plane) metallic surface. Assuming the
ionic motion to proceed along classical trajectories, we

adopt the first-order adiabatic approximation ' to de-
scribe resonant transitions between the electronic states
of the ionic core, which is centered at an arbitrary, fixed
distance D in front of the surface, and the states of the
conduction-band of the metal (cf. the schematic diagram
shown in Fig. 1). We assume the metal to be at zero tem-
perature, so that we have to distinguish two cases: (i}
transitions of an electron occupying initially an ionic
state with energy above the Fermi level of the metal into
an empty conduction-band state, and (ii} transitions of a
conduction-band electron into an empty ionic state lying
energetically below the Fermi level of the metal. The
latter case can be viewed as the transition of a hole initial-

ly bound to the ionic core into an unoccupied
conduction-band hole state. Cases (i) and (ii) can there-
fore be combined by considering transitions of an elec-
tron or a hole (indiscriminately referred to in the follow-

ing as "electron"} out of an initial ionic state into a final
conduction band s-tate.

While the strictly adiabatic approximation is the natu-
ral starting point for treating the dynamics of resonant
electron transfer at low ion velocities, the range of validi-
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FIG. 1. Schematic diagram illustrating the shape of the elec-
tronic potential in the ion-metal system as well as the resonant
electron transfer processes that can occur at the surface.
D =ion-surface distance; Z =effective ion core charge;
@=work function; elF=Fermi energy; V0=4+e+=depth of
conduction-band potential.
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ty of the first o-rder approximation is restricted to
sufficiently large distances D, where the adiabatic mixing
of the ionic states caused by the metal potential is small.
For the sake of completeness, we will extend our explicit
calculations down to D=0. However, our analysis em-

phasizes the range of fairly large distances, particularly
the vicinity of the classical threshold distance and the
classically forbidden range in which resonant electron
transfer can occur via quantal tunneling only.

A. Unperturbed potentials and wave functions

We use coordinates r=(x,y, z) such that the surface
coincides with the (x,y} plane and the metal fills the
half-space z 0. The ion is assumed to lie on the z axis,
i.e., the coordinates of its center are (O, O, D). For the
electronic potential of the unperturbed ionic core V„we
adopt the purely Coulombic form

V, (r;D)=
I
r De, I—

where Z is the effective core charge number. Hence, the
unperturbed bound states of the ionic system are
represented by hydrogenic wave functions g'„i'(r —De, )

with spherical quantum numbers n, I, m and energy

cinity of the surface. Simple estimates show that this
condition is fulfilled already for ion-surface distances con-
siderably smaller than the classical threshold distance.

B. Transition matrix elements

As for any rearrangement process, the transition ma-

trix element for resonant electron transfer can be written
in two equivalent forms. Let us assume the total elec-
tronic potential in the ion-metal system at arbitrary dis-

tance D to have the form '

~'""'=
& y, '

I
v —v, l1('" (D) )

=—&y„'""Iv v,'+ v—, Iy„'f' (D }), (7)

V=V +V, +V, :—V +(V, —V, )+V;,
where V, = V,e(z) and V, = V, e( —z) = V, —V, . The
restriction of the ionic Coulomb potential to the "vacu-
um" half-space z )0 reflects the assumption that the ion-
ic potential is completely screened inside the metal. The
term V; represents the sum of the classical image poten-
tials induced by the ionic core and by the electron under
consideration. We can now write the transition matrix
element either in the "prior" form involving the initial-
channel perturbation V—V„

e„= K„12,
where

(2)
or in the "post" form involving the final-channel pertur-
bation V—V,

a.„=Z/n (3)

is the mean orbital momentum in the state with quantum
numbers n, l, m (Ref. 38} (which is defined as the root of
the expectation value of the momentum squared, and is
identical to the classical orbital momentum).

The unperturbed conduction-band states of the metal
are described within a simplified jellium model ("Som-
merfeld model" ), ' in which the electronic potential is
approximated as

V (r)= —Voe( —z) . (4)

The potential depth Vp is the sum of the Fermi energy eF
and the work function 4, and e(z ) is the unit step func-
tion. The explicit form of the bound-state jellium wave

( Vo)
functions tI)z

' (r) corresponding to electronic momentum
k=—(k„,k, k, ) and energy

e~=k /2 —
Vp

(k = lkl; the effective electron mass is taken equal to the
bare mass m, ) is given in Appendix A.

For the purposes we have in mind, our choice for the
unperturbed ionic and conduction-band wave functions
appears to be adequate. We mention that in many typical
cases (alkali atoms, highly excited Rydberg atoms, highly
charged ions) one deals with effective one-electron sys-
tems, which can be accurately described in terms of hy-
drogenic wave functions with an adjustable effective core
charge. The jellium wave functions corresponding to a
step potential are sufficiently accurate if the ionic orbital
considered has small amplitude only in the immediate vi-

u&"'= &y„'
I
v —v. Iy'" (D) &

—= & yI,
'

I V,'+ v; I
q'. I

' (D ) & . (8)

The matrix elements (7) and (8) are identical, provided
the resonance condition

~a= ~n

or, equivalently,

k =k„—:(2VO —~„)' (1O)

is fulfilled.
A simple evaluation of the matrix elements (7) and (8)

is inhibited by the presence of the image-potential term
V;. In the context of the present study, we therefore have
to disregard this term completely. This clearly consti-
tutes a severe approximation, whose consequences are
difficult to assess.

Without V; in the perturbing potential, the matrix ele-
ments (7) and (8) can be evaluated in closed form for arbi-
trary parameter values of the ion-metal system, including
the nonresonant case. ' As the post form is slightly
easier to handle in the actual evaluation and much better
amenable to a formal discussion than the prior form, we

adopt as our final expression for the transition matrix ele-
ment the form (8) with V, omitted:

u'„", '(k;D)=&P& ' Iv, (D)lg'. i'(D}&

:—fd3r[$„'(r)]*V, (r;D)

X 1('„,' ( r De, ) . —
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M(z) ( k D ) = & yI,
""

I V, (D ) I
0'.z( (D ) & (12)

as

Jkt„(' ', —=At„(' '( t, =b'M( '( (13)

It is noted that we have defined in Ref. 36, for the specific
case 1=0, k((=0, a difFerent type of reduced matrix ele-

ment, which must not be confused with the reduced ma-
trix element introduced here.

C. Effect of nonorthogonality

At finite distances D, the initial-state wave function

f„'('(r De, ) and th—e final-state wave function (()t,
' (r) in

the transition matrix element (11) are not orthogonal to
each other, i.e.,

Below, we will explicitly consider the effect that comes
about by the nonorthogonality of the initial and final
states in the matrix element (11). We note that in the
analysis of Ref. 41, which includes a discussion of image-
potential and nonorthogonality effects, the specific form
(11) of the transition matrix element has been identified
as a "permissible" form for use in a first-order treatment
of resonant electron transfer.

An immediate simplification of the matrix element (11}
arises from the presence of the potential V, , which
effectively restricts the r integration to the range z +0.
In the resonant case (from now on this is the only case

( ())
we consider), the wave function P(, (r) factorizes in this
range (cf. Appendix A) into the penetration coefficient b,
which depends on both Vo and Z, and a "reduced" wave

(a„)
function yt,

" (r), in which the Vo dependence has been
II

eliminated in favor of a dependence on a.„(andhence on
Z ) and which depends on the momentum vector k only
via its component kii parallel to the surface. Consequent-

(z; vo)
ly, the matrix element Af„(' ' (k;D) can be written in

terms of a Vo-independent, reduced matrix element

V, (D)=&y'"(D)IV, (D)Iy' '(D)& (18)

102-

is the expectation value of V, in the ionic state
I g'„,' (D ) &. While the overlap matrix element

0) (z)
& (t)(,

'
I g'„r' (D ) & can be evaluated in closed form, z this is

unfortunately not possible for V, (Ref. 45).
In order to get a rough estimate of the effect of orthog-

onalization, we consider a modified transition matrix ele-
ment 3f, which is obtained from Al by replacing the po-
tential V, with the full ionic Coulomb potential V, . The
expectation value of the latter potential is V, = —)r„[cf.
Eq. (3)], and the matrix element

&„('' (k;D)=&PI, ' (D)l V, (D), g(„z()(D) &

=&yI, '
I V.(D)ly'('(D) &

+~'„&y„'I11(„z.)(D) & (19}

can be evaluated in closed form.
In Fig. 2, the D dependence of a typical squared matrix

(Z' Vo )
element IA„' '

I
(Ref. 46) calculated from Eq. (19) is

shown in comparison with the matrix element obtained
by omitting the overlap term proportional to ~„,i.e., by
disregarding orthogonalization. It is seen that the effect
of orthogonalization is to smooth out the oscillations ob-
served in the classically allowed range, which are caused
by the nodes in the ionic wave function. The smoothing
tends to preserve fairly well the average value of the ma-
trix element in this range. The correction effected by or-
thogonalization appears to be particularly small in the vi-
cinity of the classical threshold distance D =25 a.u. [cf.
Eq. (29) below for a quantitative definition of the classical
threshold distance]. In the classically forbidden range,
the matrix element in which the overlap term is omitted
approaches zero much faster than does the full inatrix

&y„'"'Iy",'(D) &eo. (14)

IP„'(D)&=I/I, ' &
—&l1' '(D)IP), ' &I@'„('(D)&, (15)

we have

& PI,
' (D ) I

y(z) (D) & =o (16)

The ambiguity in A that arises from additive constant
terms in the perturbing potential ' can be removed by
explicitly orthogonalizing the final state with respect to
the initial state (or vice versa). Defining the corrected
final state as
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The matrix element describing transitions between the
states Il(„'('(D) & and I(N}(, (D) & reads

At„,
' ' (k;D)= &/),

' (D)I V,'(D)IQ'„('(D)&

W„(' ' (k;D) —V, —(D)&(t)), ' It/' '(D)&,
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FIG. 2. Square modulus of the modified transition matrix
(z; P'0)

element Jk„ for the indicated parameter values, plotted as a
function of the ion-surface distance D. The solid curve corre-
sponds to the full matrix element and the dashed curve to the
matrix element in which the overlap term is omitted.
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element (19). This feature can be understood from a com-
parison of the asymptotic (large-D ) behavior of Coulomb
and overlap matrix elements.

We assume the trends exhibited by Fig. 2 to give a
qualitatively correct picture also for the effect which or-
thogonalization has in the original matrix element (17).
For our purposes, the main conclusion then is that in a
fairly broad D range centered about the classical thresh-
old distance, orthogonalization of the final state with
respect to the initial state does not change the order of
magnitude of the transition matrix elements. In the fol-
lowing, we neglect orthogonalization and use the form
(11)of the transition matrix element throughout.

D. Transition rates

Within the adiabatic approximation, the electronic
transition rates at arbitrary, fixed ion-surface distance D
are the quantities of primary importance. They deter-
mine, in conjunction with a prescribed time dependence
of D, the time dependence of the occupation probabilities

of the ionic states. '

In first-order adiabatic approximation, the rate for res-
onant transitions of an electron out to the initial state
~g'„&'(D)) into the manifold of final states ~PI, ') with
density g(k) Ior, equivalently, the decay width of the
state

~ f'„I' (D) ) ] is given by

I „,' (D)=2 f d k p(k)5(e„—e„)~JM,„,' ' (k;D)~

(20)

For the sake of simplicity, we assume p(k) to be given by
the free-electron density of states, p(k)=1/(2n) (for
fixed projection of the electron spin). We return in Sec.
VI C to a discussion of the infiuence which the choice of
the density of states may have on our results. Now, by

(Z; Vo)
exploiting the invariance of ~JK„&' ' (k;D )

~
under rota-

tions about the z axis in k space (in the following, the
dependence of JNon th, e azimuthal angle about the k,
axis via an overall phase factor will be suppressed), we
obtain

k„ kr", '"'(D)= ' f—"ak " ~u, '"'(k, k =[k' —k']'";D)~'
n

(21)

where

kii
= ikii —=(k +k ) (22)

As the singular term in the first factor of the integrand in
Eq. (21) has been compensated by the factor ~b ~, the k~~

integration in Eq. (23) is easily performed numerically.
We note that it is important to have ki as the integra-

tion variable in Eqs. (21) and (23). Had we chosen k, in-

stead, we would have not been able to introduce a re-
duced transition matrix element that is independent of
Vo.

Upon reversal of the sign of the magnetic quantum(Z; Vo)
number m, the matrix element A,„l'' is merely multi-
plied by a phase factor. Hence, the transition rate

(Z; Vo)I „I' ' does not depend on the sign of m, and we can
confine ourselves in the following to considering the case
m ~0.

The integration limit k„,which has been defined in Eq.
(10), can be viewed as the radius of the spherical "reso-
nance surface" in the momentum space of the metal elec-
trons. ' Now, by using Eqs. (13) and (A7), we can rewrite
the transition rate in terms of the reduced transition ma-
trix element M„'P(k~~, D ) as

I&„r„,' '(D)= f dkikii( )'"lM'"("ll' )
mVO o

(23)

parameters characterizing the ion-metal system. We
select appropriate scaling parameters, which serve to per-
form scale transformations of the system parameters.
Scaled representations of the transition matrix elements
and transition rates are obtained by expressing these
quantities in terms of the scaled system parameters.

A remark is in order here concerning the quest for "ap-
propriate" scaling parameters. Clearly no systematic stra-
tegy exists by which an optimized set of scaling parame-
ters can be found, i.e., a set of parameters which allows
an optimal systematization and simplification of the
theoretical treatment. We therefore have to resort essen-
tially to "guessing" parameters, taking as a guideline sim-
ple physical arguments and the evidence we have ob-
tained from calculations done previously for specific
cases. Whether or not this procedure leads to the desired
goal can be assessed only a posteriori.

Considering now the transition matrix elements, we
can confine ourselves, in view of the form (23) of the tran-
sition rate, essentially to the discussion of the reduced
matrix elements M„'& ' (ki, D ). These matrix elements de-

pend on the (independent) continuous parameters Z, k~~,

and D. As the effective charge number Z is dimension-
less, we do not submit it to a scale transformation. The
scale transformations defining the scaled parameters k~~

and D associated with the parallel momentum k~~ and the
ion-surface distance D, respectively, are introduced as

III. SCALING PARAMETERS

Having specified the model assumptions that underlie
our analysis, we now develop a sealing procedure for the

alld

k)) =k))/k,

D =D/D, ,

(24)
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with scaling parameters k, and D, . We require the scaled
parameters to be dimensionless, so that k, and D, are re-

quired to have dimension of a momentum and a length,
respectively.

The specific form of k, and D, is determined by look-
ing for parameters characterizing the rnomenturn and
length scales in the ion-metal system. Characteristic
quantities setting the momentum scale in the initial ionic
state and in the final conduction-band state, respectively,
are the orbital momentum «.„[ef.Eq. (3)] and the magni-
tude of the resonant jellium-electron momentum, k„[cf.
Eq. (10}]. By choosing k„asa scaling parameter, we
would reintroduce a Vo dependence into the analysis.
We therefore define

(30)

Correspondingly, we define the scaled representation—(z; vs tz;v, )
JK„I (kII', D) of the full matrix elements At„&

' '
(kII, D )

[cf. Eq. (11}and (13); note that the scale transformation
of kII also affects the penetration coeSeient b] by setting

(z' Vo ) (z '
Vo )

(kll'D ) =A„(~' (k, kII, D,D)

(31)

In terms of the original (unscaled) parameters kII and D,
Eqs. (30) and (31) are written as

k, =«.„=Z/n . (26) M„'I'(kII;D ) =M„'I'(kII /k„'D /D, )—:M„'t '(kII /«„;D/D„

As no characteristic length can be associated with the
conduction-band states, we have to define D, in terms of
quantities related to the initial ionic state and/or to the
perturbing potential. A simple choice is the classical or-
bital radius r„ofthe manifold of states with principal
quantum number n,

and

(32)

(33)

r„=n /Z . (27)

Taking r„asa scaling parameter for the ion-surface dis-

tance D, one would emphasize that distance at which the

ionic orbital just "touches" the surface.
Another possible choice is the classical threshold dis-

tance D„,at which, in a one-dimensional picture, the top
of the potential barrier between metal and ion (cf. Fig. 1)
coincides with the ionic level with energy e„.This dis-
tance separates the range D &D„,in which resonant elec-
tron transfer is classically allowed, from the classically
forbidden range D )D„.When D varies from very small
to very large values, the qualitative behavior of the tran-
sition matrix elements and rates changes in the vicinity of
D =D„from oscillatory to rapidly decreasing26' s (cf. also
Fig. 2}, i.e., D„actsas a kind of "critical" parameter in

the D dependence. We take this as our main argument
for defining

(28)

With this choice, the classical threshold distance is dis-
tinguished, in terms of the scaled distance D, by the value
D= 1. Disregarding the centrifugal potential for states
with nonzero orbital angular momentum, we find the
classical threshold distance for the Coulomb potential
V, as

D„=2n /Z= 2r„, — (29)

i.e., D„differs from r„bya constant factor only. Never-
theless, we adhere to the choice (28), the more so because
it may be directly generalized to more general forms of
the perturbing potential, including, for example, image-
potential and angular momentum terms.

We now express the transition matrix elements in
terms of the scaled parameters k and D. The "scaled

(z) II

representation" M„I (kII,D) of the reduced matrix ele-
ments M„'( (kII'D ) is introduced as

It will be shown in Sec. IV A that for our choice of scal-
ing parameters, the reduced transition matrix elements in
scaled representation can be further reduced to a particu-
larly simple form.

(z; v, )
Turning now to the transition rates I'„I' ' (D ), we

define their representation with respect to the scaled ion-
surface distance D as

or, equivalently

(34)

(35)

where

k„=k„/«„=—(2 Vo /«„—I )
'i (37)

is the (dimensionless) scaled jellium-electron momentum.
In Sec. IVB, the expression (36) for the transition rate
will be brought into a reduced form by exploiting proper-
ties of the reduced transition matrix elements and by us-
ing the potential depth Vo as an additional scaling pa-
rameter.

IV. GENERAL ANALYSIS

In this section, we perform a general, forrnal analysis
of the scaled representations of the transition matrix ele-
ments and rates. We make use of the defining expressions
for the matrix elements and rates and, to some extent, of
the closed-form expressions derived previously for the

By changing in Eq. (23) the integration variable from kII
to kII and using Eqs. (30) and (34), it follows that

k
I"

(
' (D ) =— I dkIIkII(k —k )' ~M' '(k;D }~

7T 0

(36)
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matrix elements. While the transition matrix elements
are not the quantities of primary physical interest, a care-
ful study of their properties is prerequisite to a systematic
analysis of the transition rates.

M„')'(ki', D)

= —(2Z)' 'n Jd'r'[y""'(r')]* e(')
i

r' —De, .
i

A. Transition matrix elements Xy(2n )(r' —De, . ) . (46)

From Eqs. (12) and (30), we have explicitly

M„)m(kiiD) ™num(k~kii D, D)

—Jd3r[ n
( )]»

ir D,D—e, i

X it)'n)m ( r D,D—e, ) (38)

(for the sake of argument, we keep the general notation
k, and D, for the scaling parameters). Changing the in-

tegration variables to r'= r/D„we find

I

M„) (kl,'D)=D 1 d r'[
k

"k (D,r')]
II r' —De,z

M„) (mk()', D )=»„M(n(mkll'D ), (47)

with a dimensionless, "doubly reduced" matrix eleinent

Mn)m (k((, D)

The separation property of the reduced matrix element
holds for any choice of k, and D, that renders the prod-
ucts (43), (44), and (45) independent of Z. From a formal
point of view, the simplest choice would be something
like k, =Z and D, = 1/Z. A choice of this kind, however,
could be hardly motivated on physical grounds and
would not lead to the desired simplification in the
description of resonant electron transfer.

We find it useful to rewrite Eq. (46) in the form

Xf'„)'(D, [r' De;])—. (39)
21/2)i 3/2 jd 3pi[~ 2(n)(ri) ]»

e(z')
ir' —De, i

(]c„) (ax'„)
/Yk (+r) X k

Ii II

(40)

Exploiting the well-known scaling property of hydrogenic
wave functions,

y(Z) (pr) —p
—3/2y(PZ)(r) (41)

where p is an arbitrary scaling parameter, we then obtain
from Eq. (39)

I

M' '(k;D)=D'/ d r'[v " ' (r')]'. -
z'

(zas )

XP„& ' (r' —De, ) . (42)

We note that the possibility to remove the D, dependence
from the perturbing potential is related to the fact that
this potential is a homogeneous function of the coordi-
nates.

To proceed further, we exploit scaling properties of the
wave functions we have chosen to describe the initial and
final states. From Eq. (A10), it is seen that for an arbi-
trary scaling parameter a,

Xf(„&"'(r' —De, ) . (48)

—(z; v, )

The full matrix element JR«m (k)(,D) is obtained
from the doubly reduced matrix element M«(k(~,'D ) by

multiplication by the factor [cf. Eqs. (13), (47), and (A7)]
I /2

(49)ib i»„'/2= (k2 —k2()
0

This matrix element is independent of Z and Vo, i.e., in-

dependent of the parameters that characterize the
strength of the ionic potential and the conduction-band
potential, respectively. For a given set of ionic quantum
numbers, it is a uniuersal function of the scaled parame-
ters k~~ and D (note that M„, is defined, as a function of
ki, on the interval 0 ki ( ).

By introducing the scaled variables kii and D into the
closed-form expressions for the transition matrix ele-
ments derived in Ref. 26, we also arrive at the factorized
form (47) for the reduced matrix element, thereby obtain-
ing a cross check for the scaling procedure. The resulting
closed-form expression for the doubly reduced matrix ele-
ment M„) (k~)', D) is given in compact form in Appendix
B.

When forming the products ~„D„k,D„and ZD, with
our specific choice for the scaling parameters k, and D„
it turns out that they all are independent of Z:

x„D,—=x„D„=2n,
k, D, —=~„D„=2n,
ZD, =ZD„=2n

(43)

(45)

Upon inserting these products into the expression (42)
and combining the overall factors, we find that the re-
duced matrix element separates into the factor Z' and a
Z-independent part:

(an irrelevant phase factor is omitted). The principal
difference between the two matrix elements arises from
the factor (k„—kii )', which modifies the kii depen-
dence. As we deal in the following with the doubly re-
duced matrix elements only, we do not need to discuss
this di8'erence any further. Results of sample calcula-
tions of (squared) full transition matrix elements, both in

unscaled and in scaled representation, can be found in
Refs. 26,35,36.

In order to give a general impression of the shape of
the doubly reduced matrix element, we display in Fig. 3
the squared matrix element iM„(k))',D)~ (Ref. 46) for
n=8 as a function of kii and D. For kii «1, the D
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FIG. 3. Square modulus of the doubly reduced transition ma-

trix element M„for n =8, plotted as a function of the scaled
parallel momentum k~~ and the scaled ion-surface distance D.

FIG. 4. Square modulus of the doubly reduced transition ma-
trix elements M„for D =1 and a sequence of n values, plotted
as a function of the scaled parallel momentum k~~.

dependence exhibits oscillatory structure that extends,
with a roughly constant average value, out to the classi-
cal threshold distance D =1 (cf. also Fig. 2). Regarding
the k~~ dependence, it is seen that the matrix element be-
comes progressively more localized in the small-k1 range
when D increases. Qualitatively, this behavior is easily
understood. At large ion-surface distances, the transition
matrix element will be largest when the falloff of the jelli-
um wave function with z is slowest. This requires the
normal momentum component k, to be maximum, i.e.,
the parallel component k~~ to be minimum [cf. Eqs. (A2)
and (A3)].

As shown in Appendix B, the extent of the squared
1=0 matrix elements along the k~~ axis can be roughly
characterized, at not too small D, in terms of a width b,

„

that is proportional to (nD } '~ in the large-n limit. The
results of sample calculations agree fairly well with this
estimate (in the range D & 1, a width can be assigned to
the calculated matrix elements after averaging over the
oscillatory structure). For our purposes, it is important
that 6„~0when n ~~, i.e., the matrix elements tend to
become more strongly localized in the small-k~~ range
when n gets larger. In order to illustrate this point, we
display in Fig. 4 the k~~ dependence of ~M„~ at D =1 for
a sequence of n values. By multiplying them with a com-
mon factor of about 1.5, the widths extracted from these
curves can be brought into good agreement with the
values for b, „derived from Eq. (B4).

The qualitative picture exhibited by Fig. 3 changes
somewhat when ~M„I~(kr.,D)~ is considered for nonzero
quantum numbers l and m. Sample calculations have re-
vealed (cf. also Figs. 12—15 of Ref. 26, where matrix ele-
ments corresponding to the fu11 ionic Coulomb potential
V, are shown) that an increase of I at fixed n and m =0
entails an enhanced localization of the matrix element in
the small-D range, without substantial change of the lo-

calization along the k
~

axis. This behavior can be quali-
tatively understood ' in terms of the eccentricity of the
classical electronic orbitals of the ion. Conversely, in-
creasing m at fixed n and (large) l shifts the maximum of
the matrix element to larger k~~ values, leaving its locali-
zation in the small-D range unaffected. This feature,
which formally arises from the presence of the factor k

~~

in the matrix element (B1), may be interpreted in terms of
the change in shape which the ionic wave functions un-
dergo when m changes from small to large values. ' '

However, if n ~ oo at fixed I and m, the matrix element
again becomes increasingly localized in the small k~~

range.

B. Transition rates

X IM
& (kiiiD)l (50)

This expression can be further reduced by using the po-
tential depth Vo as a scaling parameter, in terms of which
quantities having dimension of an energy are scaled.

We define the (dimensionless} scaled binding energy of
the ionic orbital with principal quantum number n as

(51}

so that 0&5„&1for resonant electron transfer into
bound conduction-band states. Further, as we use atomic
units and therefore have dimensional equivalence of
quantities having dimension of an energy and dimension
of a reciprocal time, we can write the transition rate (or

With the form (47) of the reduced transition matrix ele-
ment in scaled representation, we obtain from Eq. (36),

2 ~4 r„
1T p
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(z; vo)
decay width) I »~

' (D ) in terms of a dimensionless, re-
(z; v, )

duced transition rate (or reduced decay width) I „&
' (D )

as

(52)

The reduced transition rate introduced here is to be dis-
tinguished from the reduced rate defined in Ref. 36 for
the specific case I =O.

(z; vo)
From Eqs. (50)—(52), we find that I „&

' (D) depends
on Z and Vo through the scaled binding energy 5„only,

transition rates at different Z values, but at one and the
same value of the electronic energy. We encounter this
case, e.g., in the treatment of resonance neutralization of
highly charged ions, in which successive transfer of metal
electrons with energy close to the Fermi energy entails a
successive change of the effective ion core charge.

Now, by using Eq. (56) and replacing in the integral of
Eq. (53) the upper integration limit with ao, we can write—(8„)
the reduced transition rate I „1~(D ) for arbitrary n in the
approximate form

I „i"(D}= 5„—y„r (D) . (57)

k„
5 f (53)

The dimensionless, doubly reduced transition rate
y„i (D ) defined as

where now

k„=(ix5„—l)'" (54)

y„i (D)= f dkik)iiM„i (kii ,D)i'

=--,' f, dXIM. ..«i;D}l' (5g)

(k„'—k')'"=k =5-'" .n ]) n n (56)

From Eq. (54), it is easily seen that the condition on k„is

fulfilled particularly in two specific cases, viz. , that of
6xed Z and that of fixed ~„—:Z/n. In the first case, we

have k„~n in the large-n limit; in the second case,
k„=const.

The case of fixed Z and varying, large n is realized,
e.g., in resonance ionization of atomic Rydberg states, '

for which Z=1. In the case of fixed ~„,we consider

from Eqs. (37) and (51), and the weight function

f(k k„)=k(k„'—k )' ' (55)

attains its maximum at k~~ =k„/~2. The full transition
(z; vo)

rate I „&
' ' (D } defined by Eq. (23) is expressed in terms

-(8.")—
of I'„&"(D) by using Eqs. (35), (52), and (53). At this
point, it should be noted that the formal development
leading to Eq. (53) for the reduced transition rate has
been, within our model assumptions, completely general
and does not imply any approximations.

The qualitative behavior of the reduced transition rate—(8„)I'„&"(D ) as a function of its parameters is determined by
the overlap of the weight function f(k~~, k„)with the
squared matrix element ~M„& (k~~, D)~ in the integration
interval 0 ~ kl ~ k„.We do not enter a general discussion
of this matter, but confine ourselves to the cases that are
of interest to the present study.

In Sec. V, we will analyze transition matrix elements
and rates in the limit of large principal quantum numbers
n at fixed values of the angular momentum quantum
numbers l and m (in particular, at l =0). As discussed in
Sec. IV A, the matrix elements M„& (k~~, D) for D &0 be-

come, in the large-n limit, increasingly localized in the
small-k~~ range. Therefore, if n is chosen (at fixed,
nonzero D) to be sufficiently large, sizable contributions
to the integral in Eq. (53) will arise only from an arbi-
trarily small vicinity of the point k~~

=O. Then, if the pa-
rameter k„approaches a constant value in the large-n
limit, or increases with n, we can approximate the second
factor in the weight function (S5) as
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FIG. 5. Doubly reduced transition rates y„for a sequence of
n values, plotted as a function of the scaled ion-surface distance
D.

is independent of Z and Vo. For given ionic quantum
numbers, it is a universa/ function of D Equat. ion (57) is
supposed to become an exact relation in the limit n ~ ao.

—(8„)
The factorized form of I „&"(D ) bears a resemblance to
the factorized form (47) of the reduced transition matrix
element M„'& '(k iD), which, however, holds exactly for
arbitrary n, l, m.

The convergence behavior in Eq. (57) is expected to be
qualitatively different, depending on whether Z or a.

„

is

kept fixed. In the former case, we have k„~00 for
n —+ ao, so that convergence requires only the existence of
a fixed (n-independent) cutoff' value of k~~ beyond which
the matrix elements effectively vanish. The approximate
n '~ dependence of the actual cutoff [cf. Eq. (B4)] ac-
celerates the convergence. For fixed v„, where
k„=const, convergence is achieved only through the
n ' dependence of the cutoff. So we expect in this case
a much slower convergence than in the case of fixed Z.

In Fig. 5, we show the D dependence of the doubly re-
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duced transition rate y„(D) for a sequence of n values.
The qualitative behavior of the curves is, of course, com-
patible with that observed in previous calculations of the
full transition rate (36).' ' ' ' We note that, contrary to
the behavior of the transition matrix elements at k~~

=0
(cf. Figs. 3 and 7 below}, the D-averaged rates in the
range D & 1 do not exhibit a more or less constant value,
but decrease by about one order of magnitude when D
varies from zero to unity. This behavior apparently
refiects the increasing localization of the matrix elements
in the small-kl range, as expressed by the D ' depen-
dence of the width b„.At D =0, the rates y„arefound
to be independent of n,

iry„(0)=— (59)

10o;

10$

10&

n=5, I=O

Vp = 0.5 a.u.

within the accuracy of the numerical calculation [cf. also
Eqs. (B5) and (B6)].

Using Eqs. (52) and (57) along with the results of Fig.
5, we can generate approximate transition rates for
specific parameter values, which may be compared to
rates calculated exactly from Eq. (50). In Fig. 6, exact
and approximate rates are compared for n =5, I =0, and
V0=0.5 a.u. The Z values are chosen so as to corre-
spond to an atomic Rydberg state (Z =1) and to an ionic
state with energy in the vicinity of the Fermi level of a
typical metal (Z =3.125; this value corresponds to the a„
value used in the calculations of Ref. 35), respectively.
As is to be expected from the discussion above, the agree-
ment between exact and approximate results is much
better for Z=1 than for Z=3. 125. %ith increasing D,
the agreement becomes closer, in conformity with what
one anticipates from the localization properties of the
transition matrix elements [cf. Eq. (B4)].

From Eq. (57},the transition rates for a Rydberg series

of atomic states at fixed Z are seen to be suppressed, in
comparison with the rates for fixed a„,by a factor n
This feature appears to result qualitatively from the in-
creasing mismatch in linear momentum, which occurs be-
tween the initial and final states when their binding ener-

gy goes to zero.

V. LARGE-n LIMIT AND SCALING LAWS

The formal analysis of the preceding section has shown
that, within our model, transition matrix elements and
rates in scaled representation can be expressed essentially
in terms of reduced, universal functions which do not de-
pend on the parameters characterizing the electronic po-
tentials in the ion-metal system. In the following, we will
achieve a further reduction by systematically analyzing
the limit of large ionic principal quantum numbers n.
This enables us, in particular, to establish scaling laws
that connect transition matrix elements and rates for
different (finite) values of the principal quantum number.
In the analysis, we combine the results of Sec. IV with
the evidence derived from explicit numerical calculations.
A purely formal examination of the large nlimi-t, based
solely on manipulating closed-form expressions, is inhib-
ited by mathematical intricacies.

In our previous analyses of the large-n behavior of
resonant-electron transfer, ' we had chosen as our
starting point, somewhat arbitrarily, sequences of calcu-
lated transition matrix elements for kl=0. Here, this
choice appears to be simply a consequence of the strong
localization of the matrix elements in the vicinity of
kl =0, which we have elaborated upon in Sec. IV. This
localization suggests that the scaling properties of the
transition rates in the large-n limit bear similarities to
those of the ki =0 matrix elements.

Throughout this section, we will consider the ease l=0
only. This is consistent with the neglect of angular
momentum effects in the definition of the scaling parame-
ter D, . Vfe will briefly comment on the case l & 0 in Sec.
VI.

A. Transition matrix elements

103
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10&
Co 105
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10&

108

10-9
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scaled ion-surface distance

2.5

In Fig. 7, doubly reduced matrix elements IM„I (Ref.
46) for k1=0 are shown as a function of D for a sequence
of n values. In the range D & 1, the curves are seen to os-
cillate about an approximately constant average value
and acquire the common value ~ at D =0 [cf. Eq. (B6)].
A notable feature, which requires a little more analysis, is
the near coincidence of the values of the matrix elements
at the classical threshold D = 1.

In Fig. 8, values of IM„(0;1)I are shown for n values

up to 40. %e interpret the progressively slower decrease
with n as an indication for convergence of the matrix ele-
ments towards a nonzero limiting value:

(z'~o)
FIG. 6. Transition rates I

„

for the indicated parameter
values, plotted as a function of the scaled ion-surface distance
D. The curves labelled "exact" refer to the direct evaluation of
Eq. (50), the approximate curves to a calculation using Eqs. (52)
and (57).

»m IM„(0;1}I'=IM.(0;1)I'&0.
1g~ 00

An extrapolation of the values of Fig. 8 gives
IM„(0;1)I=0.55. From the numerical calculation, we
cannot exclude, of course, the possibility of a weak fallo8'
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FIG. 7. Square modulus of the doubly reduced transition ma-

trix elements M„for k~~
=0 and a sequence of n values, plotted

as a function of the scaled ion-surface distance D.

1. The classically forbidden range

Universal behavior of the matrix elements in the large-
n limit is most easily revealed by first analyzing the classi-
cally forbidden range D & 1. It is seen from Fig. 7 that

persisting even at asymptotically large n values. Howev-
er, when multiplying the calculated squared matrix ele-
ments by ln n, we find that the resulting values continue
to increase with increasing n (cf. Fig. 8}. We therefore
conclude that even a logarithmic falloff is unlikely to
occur asymptotically. We note that an analytic evaluation
of M„(0;1)from the closed-form expression (Bl), particu-
larly in the large-n limit, has not been achieved.

the ratios of squared matrix elements corresponding to
adjacent curves (i.e., to n values differing by three units)
are, for fixed D ) 1, largely independent of n. For quanti-
tative analysis of this behavior, we consider ratios of
squared matrix elements for adjacent n values, i.e., for n

values differing by one unit. In Fig. 9, calculated ratios
are shown for a sequence of pairs of n values with n up to
20. The ratios are seen to converge rapidly towards a
limiting function, so that we may write

lim ~M„(0;D)/M„ I(0;D)~ =:-(D), D ~1 . (61)
7f —+ oo

The dimensionless function =(D) is a uniuersal (n in-
dependent) function of D satisfying, in conformity with
Eq. (60), :-(1)=1. From the definition of the doubly re-
duced matrix elements M„(k&,D), it follows that "(D ) is
identical to the function f(D } introduced in Ref. 35 in
the analysis of the full matrix elements JR„(0;D} for fixed
a.„,and identical to the function =(D ) introduced in Ref.
36.

We have not managed to obtain a closed-form repre-
sentation for =(D), but the uppermost of the (thick)
curves in Fig. 9 (n =20/n =19) is supposed to give a
very good numerical approximation to this function. In
the range of asymptotically large ion-surface distances,
D))1, we obtain, by keeping in Eq. (Bl) the leading-
order term (r=0) only and taking the limit n —+ oo,

:-(D)=16D exp(2 —4D)=118.2D exp( 4D), D—)&1 .

This approximation to =(D ) is shown in Fig. 9 as a thin,
long-dashed curve.

In view of the rapid, monotonic convergence of the
matrix-element ratios towards the limiting function
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FIG. 8. Solid circles: square modulus of the doubly reduced
transition matrix element M„for k~i =0 and D = 1, plotted as a
function of the principal quantum number n. Empty circles:
values given by the solid circles, multiplied by ln n.

FIG. 9. Square modulus of ratios of doubly reduced transi-
tion matrix elements M„for kI~

=0 and a sequence of pairs of
adjacent n values, plotted as a function of the scaled ion-surface
distance D. The thin, long-dashed line corresponds to the
asymptotic approximation (62) to the function =(D ).
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:-(D ), we may now use Eq. (61) as an approximate rela-
tion for finite principal quantum numbers n. Be repeated
application of this relation, we can write, for arbitrary
principal quantum numbers n, and n2,

JM„(0;D)f'=[=-(D)]"' "'[M„(0;5)[',D&1, (63)

thereby establishing a scaling law for the doubly reduced
transition matrix elements at k~~

=0.
Using Eq. (13), (30), (47), and (63), we can immediately

write down scaling laws for the full matrix elements given
by Eq. (11}. In doing so, we distinguish the cases of fixed
ion core charge Z and of fixed ~„(cf.Sec. IV B}. In the
former case, the penetration coefilcient b attains a con-
stant limiting value when n ~~, while in the latter case
it is independent of n. The only difference between the
two cases then comes about through the factor a.„'~ in Eq.
(47), so that we obtain

range D & 1 can be established also in the classically al-
lowed range D & l. An immediate extension of Eq. (61)
appears to be not feasible. The oscillating character of
the matrix elements for D & 1 (cf. Fig. 7}is likely to inhib-
it the convergence of their ratios towards a universal lim-
iting function. However, details of the oscillatory struc-
ture are not expected to play a significant role in the dy-
namics of resonant-electron transfer, the more so since
orthogonalization of the initial and final states (cf. Sec.
IIC) tends to smooth out this structure. We therefore
consider average values of the squared matrix elements
with respect to D.

Without performing the averaging explicitly, we infer
from calculations like the one shown in Fig. 7 that, ex-
cept for the vicinity of D=1, the D-averaged values of
the squared matrix elements, ~M„(0;D) ~ stay close to the
common value which the unaveraged matrix elements at-
tain at D =0:

IAK( '(0;D)l'= [:-(D)] ' 'IA( j(0;D)l' D &1
n) "2

(64)

for fixed Z (superscript "[Z]"}and

IJK(')(0;D)l =[:-(D}]' 'IAK( )(0;D)l D &1
1 "2 (65)

iAt( )(0;D)i = [:-(D/D„)]'
1 1n&

(66)

for fixed a„,i.e., for fixed electronic energy (superscript
"[e]").By using Eqs. (29), (31), and (33), we can trans-
form these relations back to the "unscaled" representa-
tion in terms of the ion-surface distance D:

IM, (0;D)I =17, D &1 (68)

2n, z/'~, 4M„(0;D)

]M„(0;D)/',
M„(0;D)

(69)

where n, =n, n"Sp—ecia.lizing to the case n2=n3 and
changing notation, we can write in particular

[cf. Eq. (B6)]. In order to deal with the vicinity of D =1,
we derive from Eq. (63) scaling laws that allow a smooth
continuation across this point.

Let us assume Eq. (63) to be written down twice, for
pairs of principal quantum numbers n &, n2 and n3, n4, re-
spectively. By eliminating the function =(D) from the
resulting equations, we find

and

102-

fAt(')(0;D)f =[:-(D/D„)]' 'fA„'(0;nzD/n, )f
1 1 "2

D &DR (67)

(the different powers of n2/n, in the arguments of At(„z)

and A(') arise from the difference in the ratio D„/D„"2 2 1

for the two cases).
The scaling law (63) and its specific forms (64)-(67) are

approximate relations that may be used to generate ma-
trix elements with arbitrary quantum number n& from
the function "(D) and a single, known matrix element
with quantum number n 2. The error made when applying
this procedure apparently decreases with increasing n2 if
n

&

—n2 is kept fixed, and with decreasing n
&

—n2 if n2 is
kept fixed. For n& )n2 ~10, the order of magnitude of
the error is estimated from the curves of Fig. 9 to be less
than 10%.

2. The classically ollocved range

It is appropriate to ask whether scaling laws similar to
those obtained for the transition matrix elements in the
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FIG. 10. Square modulus of doubly reduced transition ma-
trix elements M„for k~~

=0 and n =8, 14, plotted as a function
of the scaled ion-surface distance D. The curves labeled "ap-
prox. " correspond to the approximate evaluation of the matrix
elements from the relation (70), with n& =5, n, =2 for n =8, and
nz= 11,n3=8 for n =14.
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(70)

As the matrix elements are defined in the range
0&D & ac, the scaling laws (69) and (70) are formally
defined also for D & 1 and, in this respect, are more gen-
eral than Eq. (63). When these laws are applied in an ap-
proximate calculation of transition matrix elements in the
range D & 1, knowledge of at least two matrix elements
for di6'erent n values, instead of one matrix element and
the function =(D), is required. However, if matrix ele-
ments with n values close to that of the element to be cal-
culated are available, Eqs. (69) and (70) may be more ac-
curate than Eq. (63). The transformation of Eqs. (69)
and (70) to the unscaled representation is obvious and
will not be carried out here.

In order to illustrate the suitability of Eq. (70), we com-
pare in Fig. 10 matrix elements for n =8 and n =14 eval-
uated from this equation to the exact matrix elements (cf.
Fig. 7). The exact n =2 and n =5 (n =8 and n =11)ma-
trix elements have been used as input to calculate the
n =8 (n =14) matrix element. The good agreement ob-
served for D &1 persists in the range D &1, until the
phase di8'erence between the oscillations in the exact and
approximate matrix elements becomes too large. We
note that with the approximation (68), the average values

~
M„(0;D) ~

trivially fulfill Eqs. (69) and (70).

3. The case k~~ &0

By continuity arguments, the scaling laws for k~~=0
are expected to hold, to a certain degree of accuracy, also
for k&&0. In Fig. 11, we show the D dependence of
~M„(k Di) ~

for various pairs of adjacent n values and a
number of k~~ values. For k~~ &&1, the ratios deviate by
less than 10% from the universal function =(D ) derived

for k~~
=0 and n ~~. With increasing k~I, the deviations

tend to become larger, particularly in the vicinity of
D = 1, where the ratios start to exhibit oscillatory
behavior. Nevertheless, for sufficiently small k~~, we can
generalize the relation (63) by writing

ki «1, D +1 . (71)

Correspondingly, the relations (64)—(67), (69), and (70)
can also be extended into the range 0 & k

~~

&& I.

B. Transition rates

Following closely the procedure pursued for the transi-
tion matrix elements, we now analyze scaling properties
of the transition rates in the large-n limit. We consider
the doubly reduced transition rate y„(D)defined by Eq.
(58). According to the discussion of Sec. IVB, the in-
tegrand in this equation is localized, in the large-n limit,
in the immediate vicinity of k~~

=0. However, it would be
premature to conclude therefrom that, for Pnite principal
quantum numbers n, the scaling properties of the rates
y„(D)are necessarily identical to those of the squared
matrix elements ~M„(0;D)~ . Rather, we have to study
explicitly the effect of the k~~ integration in Eq. (58) at
finite, fixed n.

We start from the observation that, unlike the k~~
=0

matrix elements shown in Fig. 7, the doubly reduced
transition rates of Fig. 5 exhibit a rapid decrease with n

at the classical threshold D =1. In order to analyze this
feature, we display in Fig. 12 the values of y„(1)for a se-
quence of n values ranging from 1 to 20 in a log-log plot.
For large n, the calculated values are seen to follow close-
ly the straight line, which corresponds to an exact n

dependence. The appearance of a simple power law for
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FIG. 11. Square modulus of ratios of doubly reduced transi-
tion matrix elements M„for various k~~ values and pairs of adja-
cent n values, plotted as a function of the scaled ion-surface dis-
tance D. The thin solid curve corresponds to the universal func-
tion =(D) introduced in Eq. (61).

principal quantum number

FIG. 12. Doubly reduced transition rate y„atD =1, plotted
as a function of the ionic principal quantum number n. The
solid straight line, which has been adjusted to the calculated
values at n =20, corresponds to an exact n dependence.
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the n dependence of y„(l),in particular with a half-
integer exponent, is a surprising result, for which we are
not able to present a formal proof. We note that a power
n shows up as an overall factor in the large-n ap-
proximants to the hydrogenic wave functions. This fac-
tor may provide a formal explanation for the overall fac-
tor n in the reduced transition rate (57), but obviously
cannot be related to the occurrence of a power n in
the doubly reduced rate.

Now, by writing for arbitrary D,

y„(D)=n ~ y„(D), (72)

we introduce "triply reduced" transition rates y„(D). In
view of the evidence expressed by Fig. 12, we suppose
these rates to converge, at D =1, towards a nonzero lim-
iting value when n ~ ao:

lim y„(1 )=y„(1))0 .
n~oo

(73)

This relation parallels the relation (60) for the k1=0 tran-
sition matrix elements. From extrapolating the calculat-
ed values for y„(1) shown in Fig. 12, we find

y „(1)=0.22.

I The.classically forbidden range

In the range D & 1, we analyze ratios of triply reduced
transition rates for pairs of adjacent n values. In Fig. 13,
these ratios are displayed for those n-values for which ra-
tios of k~~

=0 transition matrix elements were shown in

Fig. 9. The ratios of the rates are seen to exhibit, with in-
creasing n, monotonic convergence towards a limiting
function. If we take the curve for n=20/n =19 to
represent this function, we find that its values are con-
sistently larger by about 1% than those of the corre-
sponding curve in Fig. 9. Yet it is plausible to assume
that the ratios of the rates y „(D) converge precisely to-

wards the universal function ~™(D), which determines the
limit of the ratios of the squared matrix elements
~M„(0;D)~ . We therefore write

lim [y„(D)/y„,(D)]=:-(D), D ~1 .
n —+ oo

(74)

(75)

Using Eq. (72), we then have
' 3/2

n2
[:-(D)] ' 'y„(D), D~ 1 . (76)

For the full transition rates in scaled representation, we
find, by using Eqs. (52), (57), and (72),

The difference between the uppermost curves of Figs. 9
and 13 is ascribed to a faster convergence of the ratios of
the transition rates, in comparison with the ratios of the
transition matrix elements, towards "(D). Consequently,
we suppose the curve for the rates to give an even better
numerical approximation to =(D) than does the curve
for the matrix elements.

A faster convergence of the ratios of the triply reduced
transition rates is anticipated already from a comparison
of the large-n behavior of transition matrix elements and
rates at D= 1 (cf. Figs. 8 and 12). The rates approach
their asymptotic n dependence much faster than the
matrix elements approach their constant limiting value.
We note that, since lim„„[n/(n—1)] ~ =1, the rela-
tion (74) is formally fulfilled also for the doubly reduced
transition rates y „(D). With these rates, however, the
convergence in Eq. (74) would be very slow.

Using Eq. (74) as an approximate relation for finite n,
we can now immediately write down scaling laws for the
transition rates, which bear a close resemblance to the
scaling laws (63)—(69) for the k~~

=0 transition matrix ele-
ments.

For arbitrary principal quantum numbers n& and n2,
we obtain, in analogy to Eq. (63},

9/2
n2

[=(D)] ' 'I „(D),n2
(77)
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' 3/2

n2
r(&)(D )—

n&
[:"(D)] ' 'I „'(D),

n&
(78)

for fixed electronic energy. The difference by three units
between the exponents of the first terms of Eqs. (77) and
(78) arises from the factor 8„ in Eq. (57). By using Eqs.
(29) and (35), we transform the scaling laws (77) and (78)
back to the representation in terms of the original ion-
surface distance D:

9/2
n2 [:-(D/D„)]' 'I (n D/ )
n) 1 "2

FIG. 13. Ratios of doubly reduced transition rates y„for a
sequence of pairs of adjacent n values, plotted as a function of
the scaled ion-surface distance D. and

D ~D„(79}
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I.( )(D ) =Pl
)

n2

n,

' 3/2

[:-(D/D„)]' 'I'(')(n D2/ n),

D ~D„. (80)

When used in the approximate calculation of transition
rates from known rates, the scaling laws (75)—(80) are, be-
cause of the faster convergence in Eq. (74), evidently
much more accurate than are the corresponding laws
(63)—(67) in the calculation of k~~

=0 transition matrix
elements at the same n

&
and n z.

Combining Eqs. (61) and (74), we conclude that the ra-
tio y„(D)/~M„(0;D)~ converges towards an (n
independent) universal function Y(D). In order to im-
prove the convergence, we define Y(D ) with respect to
"normalized, " doubly reduced matrix elements, which
are required to attain at D =1 the value M„(0;1)(cf.
Fig. 8), and write explicitly

, /M„(O;I)/'
y. (D)=&(D)IM„(0;D)l' ",D~ 1

M„(0;1)
(81)

as an approximation relation for finite n. In Fig. 14, we
display ratios of triply reduced transition rates to normal-
ized, doubly reduced k~~

=0 matrix elements for a se-
quence of n values. The convergence is seen to be still
slow, but the curve corresponding to n =20 is expected to
provide a fairly good numerical approximation to Y(D ).

2. The classically allowed range

In the range D & l, the qualitative behavior of the tri-
ply reduced transition rates y„appears to be diferent
from that of the doubly reduced matrix elements M„.
While the oscillations of the latter quantities tend to per-
sist with roughly constant amplitude when n becomes
large (cf. Fig. 7), the rates shown in Fig. 15 exhibit, for

FIG. 15. Triply reduced transition rates y„for a sequence of
n values, plotted as a function of the scaled ion-surface distance
D.

D & 0, a tendency for convergence towards a smooth lim-
iting curve. We are thus tempted to write

lim y„(D) =Q(D ), 0 & D & 1,
gf ~ 00

(82)

with a universal function Q(D ). Since, according to Eqs.
(57) and (72), y„(0)diverges in the limit n ~ ao, the con-
vergence in Eq. (82) is supposed to be nonuniform. This
is an irrelevant feature as long as Eq. (82) is used as an
approximate relation for finite n. A fairly good numeri-
cal approximation to Q(D ) is given by the uppermost of
the curves of Fig. 15. In the range 0.2&D &0.9 the
latter curve follows an exponential dependence.

It is instructive to transform Eq. (82), for finite n, to
the unscaled representation for the full transition rate

I „'' (D). Using Eq. (35), (52), and (57), and (72), we

find

23/2 Z 3

Vo n

0&D &2n2/Z . (83)

y„(D)= y„(D)
y„(D) (84)

In conjunction with the numerical approximation to the
function Q(D) provided by Fig. 15, Eq. (83) gives a very
simple, explicit representation of the transition rate in the
classically allowed range.

The convergence of the rates y „(D) towards the limit-

ing function Q(D) is fairly slow (cf. Fig. 15). So, from
the point of view of applications, it is useful to adopt also
the procedure leading to Eqs. (69) and (70) for the k~~

=0
matrix elements in order to extend the scaling laws for
the transition rates into the classically allowed range. By
eliminating the function =(D) from Eq. (74), we find for
arbitrary D

12 34
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[
— (D)] 13 23

[
— (D )] 12 23

(85)

An example demonstrating the suitability of Eq. (85) is

given in Ref. 36.

VI. DISCUSSIGN

We now present a summarizing discussion of our re-
sults and make some brief remarks concerning quasiclas-
sical aspects and possible applications of these results as
well as possible extensions of our analysis.

A. Summary of results

The general result of the theoretical analysis performed
in this paper is that, within the framework set by our
model assumptions, resonant electron transfer in
ion-metal-surface interactions exhibits pronounced
universal behavior and obeys simple scaling laws. A clue
to this finding lies apparently in our selection of the clas-
sical threshold distance as a scaling parameter for the
ion-surface distance.

From the formal analysis of Sec. IV, the factorized
form (47) of the reduced transition matrix element
M„'I'(ki', D ) has emerged as a central result. This allows

—(z; v, )

the full matrix element A„l' (ki, D) to be expressed
essentially in terms of the doubly reduced matrix

M„I (ki,'D), which is independent of the parameters Z
and Vc that characterize the strength of the electronic
potentials in the initial and final states. The universal
behavior expressed by this independence reflects scaling
properties of the perturbing potential and of the wave
functions we use to describe the initial and final electron-
ic states. Notably, Eq. (47) holds exactly for arbitrary
ionic quantum numbers n, l, m, although the scaling pa-
rameters depend on n only. The specific symmetry prop-
erties of hydrogenic wave functions are likely to be re-
sponsible for this feature.

As a consequence of Eq. (47), the transition rate
(Z; Vo)I „t' (D) can be expressed in terms of the reduced rate

—(8„)I „t"(D). This rate depends on Z and Vo via the scaled
orbital binding energy S„only. In the large-n limit, the
reduced rate can in turn be expressed in terms of the dou-
bly reduced rate y„I (D), which is independent of the
potential parameters.

Using the results of Sec. IV as well as detailed evidence
obtained from explicit calculations, we have systematical-
ly analyzed in Sec. V the large-n limit of transition matrix
elements and rates for the specific case l =0. The princi-
pal result is that the behavior of the matrix elements and
rates is, to a large extent, governed by three universal
functions which depend on the scaled ion-surface dis-
tance D only.

The function =(D) determines ratios of squared k~~
=0

matrix elements for difFerent n values in the classically
forbidden range, as expressed by the scaling law (63) and
its specific forms. From Eq. (63), the more general scal-
ing laws (69) and (70) have been inferred. These laws cov-
er the full range of ion-surface distances. It is precisely

the function =(D ) that also enters the scaling law (75) for
the triply reduced transition rate y„(D). By analogy to
Eqs. (69) and (70) for the matrix elements, the more gen-
eral scaling laws (84) and (85) hold for the transition
rates.

The simultaneous appearance of the function "(D) in
the scaling laws (63) and (75) implies the relation (81) to
hold between the transition rates y „(D) and the squared
matrix elements ~M„(0;D)~ . This relation involves the
universal function Y(D). In Eq. (82), another universal
function, Q(D), emerges as the large-n limit of the triply
reduced transition rates y„(D)in the classically allowed
range. The occurrence of this function has enabled us to
write the full transition rate in the simple, explicit form
(83).

For the functions "(D ), Y(D ), and Q(D ), we have ob-
tained numerical representations in graphical form. The
accuracy of these representations can be improved by
performing calculations at n values larger than those con-
sidered here. Closed-form representations for the univer-
sal functions, it they exist at all, will be extremely dilcult
to achieve.

While most of the details of the results appear to be at
least plausible, some of them remain as a surprise. Exam-
ples are the n ~ law for the doubly reduced transition
rate at D = 1 [cf. Eqs. (72) and (73)] and the occurrence of
one and the same universal function in the scaling laws

(63) and (75).

B. (}uasiclassical asi3ects

The large nlimit i-s the quasiclassical limit for the elec-
tronic motion in the unperturbed ion. Therefore, the re-

sults we have obtained by analyzing transition matrix ele-

ments and rates in the large-n limit are supposed to
re6ect, to some extent, quasiclassical features of resonant
electron transfer. To put this conclusion into proper per-
spective, a few remarks are in order.

Within the adiabatic approximation, one may attempt
to analyze the quasiclassical limit by using WKB-type
methods directly when solving the stationary Schrodinger
equation at fixed ion-surface distance. It turns out, how-

ever, that these methods are actually applicable only in
the range of asymptotically large distances D &)D„(Refs.
27,28), i.e., in the extreme tunneling regime of resonant
electron transfer. As the range of physically important
ion-surface distances extends from the asymptotic regime
far down into the classically allowed range, ' the direct
application of %KB methods appears to be not well suit-
ed for elucidating quasiclassical features.

When applying the first-order adiabatic approximation,
one may think of replacing the unperturbed ionic radial
wave function with its WKB approximant. This pro-
cedure, however, would destroy for the simple model
used here the possibility to evaluate the transition matrix
element in closed form. This difBculty is circumvented,
at least partly, when large-n approximations are intro-
duced only after the reduction of the matrix element to a
one-dimensional momentum space integral. Using
asymptotic expressions for the radial momentum space
wave function, one is then left with an integral whose
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properties still have to be explored in detail.
One may, of course, consider resonant electron transfer

also from a purely classical point of view. The classical
rate for electronic transitions out of the ion into the met-
al ("electron loss" ) is given essentially as the product of
the frequency associated with the classical Coulomb orbit
and the probability for the electron to hit the surface
within the area of the potential saddle. This rate is
found to be proportional to 1 —D, in contrast to the
essentially exponential behavior of the quantal rate at
large n in the classically allowed range [cf. Eq. (83) and
Fig. 15]. The overall factor Z /n in the classical rate
differs from the factor Z /n ~ in the quantal rate.

imposed on the values of the quantum numbers I and m,
we have confined ourselves to the case l=0 when sys-
tematically analyzing the limit n —+ Do. By invoking con-
tinuity arguments, we suppose the results obtained in this
limit to hold also for fixed I & 0. However, if we consider
the case of finite n and if we aim at deriving scaling laws
for the case of fixed n and varying I and m, we have to
take into account the l and m dependence explicitly in
the scaling procedure. Without entering a systematic dis-
cussion, we suspect that for m =0 it will be appropriate
to scale the ion-surface distance in terms of the 1-

dependent classical threshold distance

C. Applications and extensions

The conceptual framework we have developed here as
well as our specific results may find applications in vari-
ous directions.

Our scaling procedure may be useful as a guideline for
introducing scaling concepts into more sophisticated
treatments of resonant electron transfer. This pertains, in
particular, to the definition of scaling parameters and to
the systematic search for reduced quantities depending
no longer on the full set of system parameters. The ulti-
mate goal will be a quantitative analysis of the extent to
which transition matrix elements and/or transition rates
derived from more advanced treatments follow the scal-
ing behavior disclosed within the present model. Prere-
quisite to such an analysis are systematic calculations
within the advanced models, dealing, in particular, with
the range of large ionic quantum numbers. Calculations
of this kind will clearly be extremely laborious. Never-
theless, it appears that they could be attempted within
nonperturbative approaches like the complex-scaling
method or the coupled-angular-mode method.

Transition rates determined from our scaling laws or
directly from the explicit expression (83) may serve as
quantitative input to time-dependent calculations of oc-
cupation probabilities of ionic states. Our rates are par-
ticularly accurate in the large-n limit, so that the main
areas of application are conceived to be in the treatment
of resonance neutralization of highly charged ions and of
resonance ionization of Rydberg atoms. As the "freez-
ing" distances ' and ionization distances' associated
with the occupation probabilities appear to be rather in-
sensitive to changes in the transition rates, we believe our
results to be applicable also in the small-n range, the
more so since their convergence is fairly fast. For appli-
cations of this kind as we11 as for qualitative discussions,
it will be helpful to find simple, analytic parametrizations
for the D-dependent universal functions. A subtle ques-
tion, to which we do not try to find an answer here, is
whether suitably designed experiments might be able to
directly reveal scaling behavior of resonant electron
transfer. Extensions of the present analysis within the
scope of the first-order adiabatic approximation should
include the consideration of nonzero ionic angular mo-
menta at all stages of the analysis as well as an adequate
treatment of image-potential effects.

While in our general analysis no restriction has been

[1+[1—l(l+1)/n ]'i I,2
(86)

which is obtained, in generalization of Eq. (29), by taking
into account the centrifugal term in the one-electron po-
tential. As this potential, and consequently the classical
threshold distance, do not depend on m, i.e., on the orien-
tation of the ionic orbital with respect to the surface nor-
mal, one has to look for a more general parameter to in-
troduce an m-dependent scaling of the ion-surface dis-
tance. A possible choice for this parameter is the quanti-
ty [(z )„,]', where (z )„I is the expectation value
of z in the state with wave function g'„&

' (r). This quanti-

ty provides a simple measure for the spatial extent of the
ionic orbital along the surface normal. '

We note that when using hydrogenic wave functions to
describe the ionic states, one may work in the parabolic
(Stark) representation instead of the spherical representa-
tion (the use of the Stark representation is indicated in
cases where orbital hybridization is strong). Formally,
these representations are completely equivalent as they
are connected by a unitary transformation. %'e could
therefore think of exploiting this transformation to derive
scaling laws for resonant electron transfer in the Stark
representation from the laws in the spherical representa-
tion. This procedure, however, would presuppose that
we were able to infer scaling laws connecting the different
I substates of a given n manifold. As long as this has not
been achieved, we may envisage an independent analysis
of scaling properties in the Stark representation. The
shape of the wave function associated with a Stark state
is characterized by its dipole moment. Therefore, this
quantity may serve as a starting point for defining an ap-
propriate scaling parameter for the ion-surface distance.

In order to deal with image-charge effects, we would
have to include them not only in the sca1ing parameters,
but also in the perturbing potential. Then, however, the
transition matrix elements are no longer amenable to a
closed-form evaluation, and so a systematic treatment of
these effects is beyond the scope of the present work.
Adopting in this situation a heuristic view, we may as-
sume that the general structure of our results is not
severely affected by image-charge effects and that quanti-
tative changes are mainly brought about by the change in
the classical threshold distance. We may then suggest to
use, at least for qualitative considerations, one or the oth-
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er of our results with the scaling parameter D„replaced
with the classical threshold distance for the full one-
electron potential including the image potentials.

A comment is in order regarding the influence which
the choice of the density of conduction-band states has on
our results. In specific cases, the realistic density may ex-
hibit an energy dependence departing considerably from
that of the free-electron density assumed in the present
analysis. The influence of the density of states will be
strongest in those of our results in which transition rates
at substantially different electronic energies are connect-
ed. This is the case for the fixed-Z scaling laws at sma11
n values. On the other hand, in the scaling laws for fixed
K„,i.e., for fixed electronic energy, the density of states
apparently cancels out.

VII. CONCLUDING REMARKS

In conclusion, we wish to emphasize the necessity of
studying scaling properties of electronic processes in
ion-metal-surface interactions. Resonant electron
transfer is only one process among a variety of electron-
transfer and emission processes, which are strongly cou-
pled in general and which influence the observable prop-
erties of the ion-metal system in an intricate way. For an
adequate understanding of the interaction, the contribu-
tions from the individual processes must be disentangled
by performing detailed analyses. To achieve this goal,
one has to work within a theoretical frame that is simple
enough to be tractable and yet keeps the essential physi-
cal information. In this situation, scaling concepts ap-
pear to be well suited for identifying those parameters
which primarily determine the characteristics of the vari-
ous processes, and for simplifying actual calculations.

In the present paper, we have demonstrated the useful-
ness of scaling concepts for analyzing resonant electron
transfer, which is a genuine one-electron process. As a
next step, one may envisage the analysis of Auger-type
two-electron processes. These processes involve, on the
level of the transition matrix elements, a larger number of
parameters than the one-electron process and therefore
require the introduction of a more general scaling
scheme. The greater complexity of the two-electron pro-
cesses will make simplifications arising from the applica-
tion of scaling concepts particularly welcome.

APPENDIX A: JELLIUM VVAVK FUNCTIONS

For the bound-state case k, /2& Vo, the jellium wave
functions corresponding to the potential (4) read

(Vp) ( vp)
Pi, '(r)=exp(ik x)exp(ik y)gk

' (z), (Al)

where

( Vp)
gk

' (z)=[exp(ik, z)+a exp( ik,z}]e(—z)—

., =(2V, —k2) i~2&0 (A3)

The refiection coefficient a and the penetration coefficient
b are given by

and

k iK
lal= 1

kz +LKz

2k, 2k,b= . = I+g lbl'=
k+iK, '

V0

(A4)

(AS}

(k —k )
2

0
(A7)

where k~~ is defined by Eq. (22). The wave function
( Vp)(r} in the range z ~0 can be written in the resonant

case as

(A8)

where the reduced wave function

(K„)yz" (r)=exp(ik„x)exp(ik y)exp[ —(k~~+a„)'~z] (A9)

depends on Z via the Z dependence of ~„,but no longer
on Vo and k, . As the transition matrix elements depend
on the azimuthal angle about the k, axis via an overall
phase factor only, it is sufficient for our purposes to as-
sume that the vector k lies in the (x,z) plane. The re-
duced wave function is accordingly written in the form

(K„)yk" (r) =exp(ikllx )exp[ —(k
II

+
II

(A10)

APPENDIX 8: CLOSED-FORM EXPRESSION
FOR REDUCED TRANSITION MATRIX ELEMENTS

The closed-form expression derived in Ref. 26 for the
(Z; Vp)transition matrix element A„&' '(k;D) is rather in-

volved and will not be repeated in full detail here. For
our purposes, it is sufficient to write the doubly reduced
matrix element M„im(k1,D) defined by Eq. (48) in the
compact form [cf. Eqs. (90) and (70)—(72) of Ref. 26]

MI
(2~)3/2km(2k2 )

n-
il

n

Xexp( —2nk+D) g 6„'P(ki )[2nk+D]" ' (Bl)
~=0

(m ~0), where

respectively. %hen normalized over an infinitely large
volume, the wave functions (A 1 }satisfy the condition

& yI,
'

ling
'

& =(2~)'&'(k —k') . (A6)

If the resonance condition (10) is fulfilled, we can rewrite
l
b l in the form

+b exp( —a;z )e(z ) k =(k'+1)'".
II

(B2}

and The function 6„'I (k i ) is a polynomial of degree
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' 2 1/2

4nD
(B3)

n —(1+m )/2 —1 in k
1

if I+rn is even, and can be writ-
ten as k+ times a polynomial of degree
n —(1+m+1)I2—1 in k~~ if 1+m is odd. For 1=0, in

particular, M„(k 1,D }depends on k
1

via k
1

only.
After averaging over the oscillatory structure, the mag-

nitude of the matrix element M„appears to be a mono-
tonically decreasing function of k~~. We may characterize
the decrease in terms of the width b,„("halfwidth at half
maximum"} associated with the k~~ dependence of the
squared matrix element ~M„~ at fixed D. For not too
small D, the exponential term in Eq. (Bl) is expected to
dominate the k~~ dependence of the matrix element. We
then find

and, for large n,

ln2

2nD

1/2
—:0.589(nD ) (B4)

This estimate breaks completely down at D =0. It fol-
lows from Eq. (Bl} that at this point the falloff behavior
of ~M„~ in the range k

1
))1 is independent of n:

(B5)

At kl=0 and D=0, the l=0 matrix elements can be
shown to attain a common, n-independent value:

(B6)

If not further specified, the term "ion" is understood to
comprise positive ions as well as neutral atoms.
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