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%e present a quantum theory of interaction between quantum-well excitons and electromagnetic eigenmodes

of a multilayer dielectric cavity. The coupled exciton-photon modes are obtained by analyzing the exciton

spectral function. The design of the cavity allows us to obtain enhanced spontaneous emission or a normal-

mode splitting. We find very good agreement with the normal-mode splitting data of Weisbuch et al. [Phys.
Rev. Lett. 69, 3314 (1992)].

Embedding quantum wells (QW's) in semiconductor mi-

crocavities has opened an interesting field in the study of the

interaction of both confined excitons and photons. Through
the design of QW s and dielectric mirrors the excitonic reso-
nance position as well as the dispersion and linewidth of the
cavity quasimodes can be tailored almost at will, leading to a
larger variety of phenomena than known from the well-
understood bulk system. In bulk material photons have a
vanishing linewidth and a simple linear dispersion deter-
mined by the speed of light in the medium. For fixed polar-
ization an exciton state with given wave vector Q can inter-
act with only exactly one photon state determined by
conservation of momentum. As a result two normal modes,
the radiatively stable polaritons, arise. In two dimensional
systems, generally speaking, the momentum is conserved
only in the plane of the layers, thus a dipole allowed exciton
may couple to a whole continuum of photon states. As a
result, as shown for a simple QW, radiatively unstable polar-
iton states arise. ' With increasing reflectivity of the mirrors
in a dielectric cavity the continuum of photon modes "con-
denses" into Fabry-Perot quasimodes which have a finite
linewidth. Roughly speaking, the following two limiting situ-
ations occur: If the linewidth is larger than the expected
normal-mode splitting (the so-called weak coupling case),
the spontaneous emission of the exciton will be enhanced at
the crossing point between exciton and cavity mode. If, in
contrast, the linewidth is smaller than the expected splitting
(the strong coupling case), two split normal modes arise
which are radiatively unstable. Enhanced spontaneous emis-
sion has been reported experimentally by Ochi et al. and
Yamamoto et al. , whereas normal-mode splitting has been
observed by Weisbuch et al. and Houdre eI; al.

So far, most of the theoretical investigations concerning
modified spontaneous emission "or the transition between
modified spontaneous emission and normal-mode
splitting ' have dealt with cavity-embedded localized point
dipoles. Citrin' pointed out that these calculations missed
the extended nature of the exciton state and the related
strongly QIi-dependent properties (QII being the in-plane
wave vector). In Ref. 14, the transition between modified
spontaneous emission and normal-mode splitting was dis-
cussed for a cavity consisting of two planar metallic mirrors.
Savona et al. ' considered the case of perfectly reflecting
metallic mirrors and fitted the value of the excitonic oscilla-
tor strength to the experimental values of Ref. 7. This model,

due to the vanishing linewidth of the cavity modes, is
equivalent to a simple interacting two-level system and pre-
dicts a normal-mode splitting for any interaction strength, in

contrast to experiments. Weisbuch et al. modeled their ex-
perimental results with an analysis introduced by Zhu et al.
where the linewidth of the cavity and the exciton features
were introduced as input parameters. Thus, at present, no
theoretical results based on a realistic and parameter-free de-
scription of the multilayer cavities exist.

In this paper we present the quantum theory of interaction
between QW excitons and electromagnetic eigenmodes of a
multilayer dielectric cavity. These cavities consist typically
of a central layer surrounded by two distributed Bragg reflec-
tors (DBR's), each consisting of a stack of alternating
quarter-wave layers of two dielectrics. The dielectric con-
stant is therefore a piecewise constant function of the z co-
ordinate (the z axis will be taken as growth direction). The
experiment of Ref. 7 is a normal-incidence reflectivity ex-
periment (QII=0) where only T polarized excitons interact-
ing with TE electromagnetic modes can be excited. At

QII
= 0 the electromagnetic normal modes of such a structure

are described by properly matched right and left traveling
plane waves (with respect to z) which serve as a basis for the
expansion of the vector potential (exponentially decaying
modes can occur only at QII 4 0). Experimental samples are,
in general, not symmetric with respect to z, due to the inter-
face to air on one side and an interface to the substrate on the
other side. However, in the sample of Ref. 7, to which all our
numerical results will refer, the reflectivities of the two mir-
rors were balanced by using different numbers of quarter-
wave layers on each side. Therefore it is justified to restrict
the theory to symmetrical structures. In addition, for a single
QW or an array of QW's placed symmetrically with respect
to the center of the structure, only the even electromagnetic
modes interact with the excitons, which allows a reduction of
the basis set.

With these simplifications the vector potential can be ex-
panded in terms of creation and annihilation operators for
electromagnetic modes (ct,c~) as

2mI c'
AY(r)=g (c +ct) R(z), (1)

p ( tap e, HMM/

where we have chosen the polarization parallel to eY. The
modes with QII= 0 but different energy can be distinguished
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by p which corresponds to g, in the surrounding medium

characterized by the dielectric constant e, . co~=cp/~e, is
the frequency of the modes, R(z) is the properly matched
linear combination of right and left traveling plane waves,
and M (M) is a normalization area (length). &is the normal-
ization constant of the electromagnetic modes which is given
by ~A,

~

+ ~B,~, where A, and B, are the field amplitudes in
the surrounding layers. This result is derived in Ref. 17 for a
simple waveguide structure and can be generalized to more
complicated structures by induction. A, and 8, are related to
the amplitudes at the interface central-layer/DBR, A, and

8, , by a transfer matrix, which incorporates the proper
boundary conditions at the interfaces. The relation

M =~-' TN~ (3)

N is the number of pairs of quarter-wave layers and the
matrix T, which describes the transmission through one pair
of them, is given by

t Tii iTizT=' . ~ =D2PzDz DiPiDi
Tzz)

(4)

The matrices D; are the dynamical matrices and P; the
propagation matrices for the ith layer. They are given by

tA i tA i 1 ~ exp(iP)=M i=—MlB,) lB,) 2 l exp( —rp, )&

holds, where P, = ~e, co I, /c with e, the dielectric constant
of the central layer and 1, half its width. The 2&2 transfer
matrix M is given by' '

Ht„',)=g C~(c~+ct )(Bt+B)
P

ex
(10)

H = fi A,„BtB+H,m+ Ht„,i+HI„, (12)

Hamiltonian (12) can be diagonalized exactly by solving the

corresponding Heisenberg equations, by the generalized
Hopfield transformation, ' or by summing the Dyson
series. ' Any of these equivalent procedures yields the ex-
citon self-energy

cap 2 cd p I
C

plg(m)= &z g
&~( @z zj 0 (p) ~ (13)

P

where Bt (B) is an exciton creation (annihilation) operator
and the coupling constant is

)

Ci, = p, Q,„P(0)O(p)
lcp e, 8&)

Here p, is the dipole matrix element e (c~x~x) between the
bulk band-edge Bloch states for conduction (~c)) and va-
lence band (~v)) and 0,„ is the exciton frequency. $(0) is
the exciton relative function at vanishing electron-hole sepa-
ration in the QW. The function O(p) is a measure of the
overlap between QW subband functions and electromagnetic
modes. It will be given explicitly further below.

The Hamiltonian for the coupled exciton radiation system
can now be written as

) I 1

—n;)
(5) with real part

P;=
i exp(i@;)

0

o

exp( i P;))— (6)

ReX(o)) = 4p co '" dp 1

~0 P ~s~
(14)

where n; is the index of refraction in the ith layer and the

phases @; are given by @;=+e; co i; /c with the layer thick-
ness I;. As T is a unimodular matrix the ¹hpower can be
evaluated using the Chebyshev identity to be

T» UN- i(x) UN z(x)—
iT21 UN —1(x)

iTiz UN i(x)

T22 UN i (x) UN 2(x))—— —

(7)

where x = 1/2 (T»+ Tzz) and UN(x) are the Chebyshev Poly-
nomials defined by

sin[(N+ 1)arccosx]
UN(x) =

1 —x2

For x~1 a similar relation with hyperbolic instead of
trigonometric functions holds. With the expansion (1)
the expression for the electromagnetic field energy
(I/8m) j(K D+ B ) d V reduces to H, = X kco~ctc~.

The exciton-photon interaction can be derived from the
terms linear and quadratic in the vector potential by the pro-
cedure described in Refs. 3 and 20. It yields the expressions

and imaginary part

( iN
1 c 2

~N
8= —

~ cos P, + —— sin @,
(&2) ~s &~t)

(16)

where a, and a2 are the dielectric constants of the DBR
layers. This expression is proportional to the corresponding
expression in a simple waveguide with an effective dielectric
constant of the surrounding medium given by
e,= e,(ei /ez) . Therefore, using Eq. (16), Re X(co) can

27Tp, Q) 1
Imz(~) = 84'(0) O'(p) .

e~c

As shown in Ref. 20 the integration in Eq. (14) can be done
analytically for a simple waveguide. For the complicated
structure discussed here no closed expression for Re X(cu)
could be found. Therefore the integration in Eq. (14) was
performed numerically. In addition, we also used an approxi-
mation for 8 which could be handled analytically. This ap-
proximation consists in neglecting the variation of the phases

@, and Pz in the DBR layers for different energies and set-
ting @,= @z= w/2. In this case 8 reduces to
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be evaluated by standard contour integration and summation
of the contributions of the infinite number of poles, as de-
scribed in the Appendix of Ref. 20. As result we obtain

2vrp, co (1—u)sing, cosP,

C

(17)

A~"'"" ~ ~Im
~s ~'

P""™~«(-+ ~)'- -,'] "
~ ' (19)

where 5 is the expansion coefficient in Eq. (1).Therefore a
numerical analysis of I/O reveals the cavity mode structure.
For the approximate 8 given in Eq. (16) position and line-
width of the cavity modes can be given analytically. The real
part of the cavity frequency is the same as in the metallic
cavity of Ref. 15, but due to the finite linewidth this approxi-
mation goes beyond Ref. 15.

The samples investigated in Ref. 7 consisted of an odd
number (1—7) of GaAs QW's of width L = 75 A with a HH
exciton resonance at Ii.0,„=1583 meV. These QW's were
Lz = 100 A apart and the whole array placed at the center of
a wedge shaped layer of Alp26ap8As. The DBR's were
formed by alternating li. /4 layers of AIAs and AIO4Gao 6As,
where k was adjusted to the exciton frequency
(&= 2mU/0, „, U is the speed of light in the individual lay-
ers). The width of the X/4 layers was constant throughout the
sample. The whole structure was grown on a GaAs substrate.
The wedge shaped central layer had a width around k and
allowed for a tuning or detuning of cavity and exciton fre-
quency by probing different spots of the sample. For the
numerical calculations we used the values (for A, co= 1.6 eV)
a, = 11.78 (corresponding to Alo 2Gao sAs), s, =8.76 (AjlAs),
e 2

= 11.02 (Alo 4Gao 6As) and e, = 12.53 (GaAs). For the
HH exciton oscillator strength f, which is related to the
quantities p, and $(0) by p, P (0)= (fi, e2/2mEg) f, we took
the value f=32.9X10 5 A . This value for the oscillator
strength was obtained by solving the momentum-space two-
particle Schrodinger equation including LH-HH mixing with
a modified quadrature method. For a sample with an odd
number now of QW's that are placed symmetrically with
respect to the sample center the function 0 (p) is given by

where a=(e, /s, )(si/e2) . As a check for the numerical
integration which requires a large number of grid points due
to the oscillating behavior of the integrand, we also evalu-
ated Eq. (14) numerically using Eq. (16).A very good agree-
ment was obtained.

The spectrum of the coupled exciton-photon excitations
[i.e., position and linewidth of the exciton (the two polariton
branches) in the weak (strong) coupling case] is given by the
exciton spectral function defined by

A'"(o)) = —2 ImG'"((o)

Im $(co)
OC

[o)—0,„—Re X(a))] +[Imp(cu)]2 (18)

where G"'(co) is the retarded exciton Green's function.
Similarly, the bare cavity modes are determined by the

bare photon spectral function. It is straightforward to show
that
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FIG. 1. Spectral function for different numbers N of pairs of
quarter-wave layers in the DBR's. The situation corresponds to co-
inciding exciton and cavity frequency.

(n Q~ —1)/2

o'(p) =
k = —(nQ~ —1)/2

(

cos ! k p(L+Ls) . (20)
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FIG. 2. Energy detuning of the normal modes relative to fiQ,„
versus cavity detuning fiA„—fiA,„.Dashed lines correspond to
the analytical approximation, full lines to the full calculation.

This term is a constant if we neglect the weak dependence on

co and set p= ~e, 0,„/c. Under this condition it can be in-

terpreted as an effective number n, rr of QW's. ' It equals 1
for n&w= 1, 2.62 for n&~= 3, 3.38 for no~= 5, and 3.47 for
n&~=7. There is a saturation for large n because the addi-
tional QW's have to be placed further away from the anti-
node position of the cavity mode where the overlap is large.
This saturation has been seen in Ref. 7.

In Fig. 1 we present numerical results for the spectral
function for different numbers of DBR layers as a function of
co. The width of the central layer which comprises an array
of five QW's is k and therefore A,„=Q„„.In addition a
phenomenological exciton damping of y= 1 meV was intro-
duced. For N=13 the spectrum consists of one broad peak
corresponding to enhanced spontaneous emission. A similar
sample was investigated in Ref. 6. As N increases, the line-
width of the cavity mode decreases and two split normal
modes emerge. This is the situation corresponding to the ex-
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periments of Ref. 7. Next we fixed N=33 and varied the
width of the central layer. The position of the bare cavity
mode was determined by the maxima of 1/8 and the posi-
tions of the split normal modes by the maxima of A'"(co).
Figure 2 shows the positions of the normal modes relative to
fiA,„versus the cavity detuning hQ„„—A, A,„. The full
lines show the results for the full calculation which agree
very well with the experimental results of Ref. 7 shown as
squares. The dashed lines correspond to the analytical ap-
proximation which clearly overestimates the level splitting.
In order to reproduce the experimental data within this ap-
proximation a value of fn, tt= 31X10 A has to be used,
as is the case in the theory of Ref. 15.

In conclusion we have presented an accurate theoretical
explanation for the experimentally observed exciton-photon
mode splitting in cavity-embedded QW's. We have shown

that, whereas the normal-mode splitting can be predicted
qualitatively by a simple interacting two-level system, a
theory which describes properly the transition between en-

hanced spontaneous emission and normal-mode splitting re-

quires a complete description of the multilayer mirrors. Re-
cently angle resolved luminescence experiments have been
performed which extend the experiments of Ref. 7 to the
case Ql 4 0. It is straightforward to extend the presented
theory to this case.
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