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This paper investigates the interaction of a surface state with a one-dimensional scattering
object on the surface of a metal. Examples are straight rows of regularly spaced adsorbed atoms,
and straight step edges. The layer —Korringa-Kohn-Rostoker method is employed to investigate the
electronic structure of periodic arrays of rows of adatoms ou the Cu(111) surface iu a 6x 2 geometry,
as well as periodic arrays of missing rows to simulate step edges. From these band structures, the
behavior of one individual scatterer is extracted by means of a one-dimensional model. Thus we
obtain the rates of re6ection, transmission, and scattering into the substrate. Rows of adsorbed
Cu, Fe, S, and C are considered as well as single and double missing rows. It is found that none
of these scatterers comes close to total re8ectivity (R=l). Most cases lead to R around 0.3—0.4.
The rest of the incoming electrons are mainly transmitted into the surface state on the other side,
if the scatterer is a row of Cu or Fe atoms, while they are mainly scattered into the bulk by S and
C. The behavior of missing rows is found to lie in between. By counting the number of outgoing
states that a surface state can scatter into, qualitative information is obtained for two important
situations. First, it is shown that for less than close-packed rows of adsorbed atoms, the ratio of the
scattering rate into the bulk to that into the surface state is enhanced because of Bragg scattering.
On Cu(111), this enhancement starts at an adatom spacing of M & 2. Second, it is argued that
replacing the semi-in6nite substrate by a thin Slm is unlikely to reduce the loss of electrons into
the bulk. While it is found that surface states interact strongly with most adsorbates, our results
suggest that the total confinement of surface states within arti6cially made structures may not be
feasible.

I. INTRODUCTION

Surface states have been studied for quite a long time,
using photoemission and inverse photoemission spec-
troscopy, among other techniques. A great deal of knowl-
edge has been obtained about the binding energies and
band structures of these states on a variety of surfaces.
Recent progress in scanning tunneling microscopy (STM)
has revived the interest in some of these states as they
were found to form standing waves in the vicinity of de-
fects like adsorbates and step edges. 2 4 The states of in-
terest here are the Shockley-type surface states on the no-
ble metal (111) surfaces. These states are distinguished
by their almost perfectly parabolic dispersion relations.

Having observed such standing waves, the next step
was to build structures on the surface in order to cre-
ate boundary conditions. One way of doing this involves
the handling of individual atoms by means of an STM
tip, first using Xe atoms5 and later arranging Fe atoms
on a Cu(ill) surface into circular "quantum corrals"
as well as into other shapes. A variety of other atomic
species was used as well. Another type of waveguide is
provided by step edges. Advances in the techniques of
surface preparation, involving epitaxial techniques and
thermal treatment, allow one to in6uence the shapes of
islands and terraces. Standing surface waves have been
observed in quantum wires formed by narrow terraces on
a stepped Au(111) surface, as well as on small islands on

Ag(ill). s These achievements make it possible to view
the surface as a two-dimensional nanoscale quantum lab-
oratory in which the surface state is subjected to bound-
ary conditions on a length scale where quantum coher-
ence prevails. In contrast to semiconductor heterostruc-
tures, where the transport properties through the device
are of primary concern, STM allows the direct observa-
tion of the electronic wave functions themselves (or at
least, their square moduli). Interesting phenomena can
be observed, e.g. , for a stadium shape, where quantum
chaos is expected. @

However, none of the scattering structures mentioned
above are ideal reBectors of electrons. Leakage occurs
both across the scatterer into the surface state on the
other side, and into the bulk of the crystal. This un-
satisfactory state of affairs has stimulated experimental
as well as theoretical efforts to find better confinement
structures, and to understand how they work. The be-
havior of the quantum corral has been calculated, replac-
ing the ring of adsorbates by a scattering potential of b
function shape. Recently, Crampin has developed a
formalism to treat local surface defects in the &amework
of the layer —Korringa-Kohn-Rostoker (LKKR) method.

In the present work, we want to understand the scatter-
ing mechanism of the Cu(ill) surface state at a straight
row of adsorbates. Numerical results are obtained for
a periodic array of rows, using various types of atoms.
From the band structure of the periodic array, we draw
conclusions about the scattering behavior of one individ-
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ual row. The paper is organized as follows. In Sec. II we
discuss the problem qualitatively. Section III presents the
results of numerical calculations, and in Sec. IV, these
results are interpreted in terms of a one-dimensional band
structure. The results are drawn together in the conclud-
ing Sec. V.

II. QUALITATIVE CONSIDERATIONS:
COUNTING STATES (c) k,

Consider the scattering of a surface state by an object
which is of finite size in one direction along the surface
(x, say) but which extends to plus-minus infinity in the
other direction, y. An example would be a straight row
of adatoms, or a step edge. I.et us 6rst assume that this
scatterer is close packed along the y direction so the unit
cell size in y is not increased. This implies that the y com-
ponent of the Bloch wave vector, k» is conserved in the
scattering. Therefore, the surface state can only couple
with other states which have the same k„.This situation
is visualized in Fig. 1(a). It shows a constant-energy sur-
face, given by the band structure of the bulk of a crystal.
A neck in the constant-energy surface causes a projected
band gap in which a surface state can exist, indicated
by the circle inside the neck in Fig. 1(a). An exaxnple
would be Cu, choosing the (ill) direction as the z axis
and ignoring the necks pointing in the directions other
than kz. Since k„is conserved, the scattering process
has to happen within a plane k„=const cutting through
the constant-energy surface, thus generating a constant-
energy line. In the presence of a surface, the bulk states
at k, and —k, combine to form a standing wave, so we

need only positive k, to label our bulk states (coxnplica-
tions arising &om more than one band are not considered
here). The corresponding constant-energy line is shown
in Fig. 1(b) for normal incidence, i.e., k„=0. The k vec-
tor of the surface state has a complex z component, so it
decays into the bulk. is Only Re(k) is shown in Fig. 1(b).
In the absence of the adsorbed scatterer, all the states
depicted in Fig. 1(b) are orthogonal because they are
Bloch states with different k . If we now switch on our
scatterer, the periodicity along the x direction is broken
and all the states in Fig. 1(b) can couple to each other.
We denote surface states with positive (negative ) k as

g,+ and bulk states as P+. Both are eigenstates of the
Hamiltonian of the crystal in the absence of any adsor-
bates. The index j is understood to be continuous for
a semi-in6nite crystal, while it would be discrete for a
crystal of finite thickness. A surface state v)+ coming in
&om the left and hitting the scatterer gives rise to the
following state:

'0++ rg, + Q. e P. , x( —xo

t g+ + Q. c+ P+, x ) xo.

This equation describes the wave function outside of the
range of the scattering potential, denoted by +xo. The
sum over j covers all outgoing bulk states, i.e., all k & 0
if x ( —xo, and all k ) 0 if x ) xo. For the purpose of
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FIG. 1. (a) A constant-energy surface of a metal which
supports a surface state. The surface state resides in the sur-
face band gap that exists inside the neck in a vertical projec-
tion. It is indicated by a circle within the neck. (b) The con-
stant-euergy line generated from (a) by setting k„=const=0.
The crosses indicate the real part of the k vector of the sur-
face state. (c) The constant-energy surface, showing cuts at
k& = k&p + lAktI =const which arise from the supercell pe-
riodicity of the scatterer. (d) The constant-energy lines cor-
responding to case (c). (e) Top view of the constant-energy
surface. The surface state is indicated by the dashed circle.
(f) If the crystal is a slab of finite thickness, only discrete
values of k, are allowed, displayed as the horizontal dashed
lines. Thus, only a finite number of states are coupled to each
other, indicated by the crosses.

confining an electron by means of added rows, one would
like the reBection coeKcient r to be as large as possible.
The transmission coefBcient t causes escape of the elec-
tron into a surface state on the other side of the obstacle,
while the factors c+ give rise to a loss of electrons into
the bulk. The results of Secs. III and IV indicate that
in most cases of interest, there is considerable scattering
both across the scatterer and into the bulk.

Figure 1 and Eq. (1) provide the framework for the
following discussion. It will be assumed that all the c-
coefBcients scattering into the bulk are of comparab1e
magnitude. The most important in8uence on the scat-
tering rate is then the number of outgoing states that an
incoming state can scatter into.

A. Less than close-packed roars

Suppose that there is an atom adsorbed every M unit
cells along the y direction. A supercell of size M causes
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the reciprocal lattice to shrink by the same factor, so a
state with a certain k„cannow couple to

kyr = ky + l Sky& (2)

where

b,k„=g„/M, (3)

P+gl «y i+Pl Clyl, z(ZP

Ql l fql + Q~l C l ~jl

(5)

We now look at I/I . Since this is a rather mixed-up
quantity, we will average it over the y coordinate, that
is, parallel to the scatterer. All the wave functions Q,+l,

Pl+. are Bloch eigenfunctions of the unperturbed surface,
so they are orthogonal for different kz. Therefore, one
of the double summations over l disappears. We end up
with

where g„is the shortest reciprocal lattice vector of the
substrate:

2x
gy =

a&

In other words, the incoming surface state is Bragg scat-
tered, so the number of outgoing channels increases. The
wave functions and the scattering factors now carry an
extra label l from a Bragg refiection by Eb,k„,so we have
surface states g,+l, bulk states p+.l, and scattering factors

r~, t~ into the surface state and c+.
&

into the bulk.
Let us first consider the limit of large M, i.e., sparse

rows. Figures 1(c) and 1(d) show that there are now sev-
eral cuts through the constant-energy surface separated
by Lk~, which means more states to couple to. However,
this does not mean that the scattering rate increases, be-
cause by increasing M the scatterer is diluted, reducing
its overall eH'ect. The scattering factors go roughly like
1/M which can be seen, e.g. , from the definition of the
T matrix as the matrix element of the scattering poten-
tial between the incoming state and the full scattering
solution. The volume integral implied in this definition
will scale roughly like the number of atomic potentials
that we integrate over. For large M, the number of avail-
able states goes linear with M. This applies both to bulk
states and to surface states (see Appendix A). The wave
function for an incoming surface state g+p takes the form

The number of Bragg refiections (labeled by l) is pro-
portional to the supercell size M. Each term in the sum
over t involves two scattering factors which scale as 1/M
each. Thus, I@I2 is given by the unperturbed density

Ig+p I2, plus a scattered density that scales as 1/M. This
1/M behavior holds for both the bulk and surface con-
tributions so the bulk-to-surface ratio is independent of
M. As M becomes very large, we reach the limit of a
single adsorbed atom with a scattered density around it
that does not depend on M anymore. In this limit, the
y average of the scattered density scales exactly as 1/M.

In the opposite limit of small M (dense rows), the ra-
tio of the bulk to the surface contributions is no longer
independent of M. An incoming electron can be Bragg
scattered by multiples of 2m/(Map). With the Cu(ill)
surface in mind, ass»me a constant-energy surface which
does not quite touch the BZ boundary, as in Fig. 1(e).
Then an electron in a surface state can be Bragg scat-
tered into the bulk if

2kpz

(k, + knz —6)
(7)

where 6 is the distance from the bulk band to the BZ
boundary, k, is the radius of the surface state band, and
knz = x/a„. For Cu(111), that may not yet be pos-
sible for M = 2, depending on the energy, but it def-
initely starts at M = 3. That is not true, however,
for Bragg scattering of an incoming surface state into
an outgoing surface state. The scattering channels into
the surface state at k~ + lAA:„only become available for
M ) g„/(2k,). For the Cu(111) surface, k, is compara-
tively small so M & 6 at the Fermi energy.

The closest distance between adjacent adatoms that
has been achieved experimentally by manipulation with
a STM is 9.5 A. With a nearest-neighbor distance of
2.55 L for Cu, this corresponds to M = 3.72, so for
our discussion, M = 4. In this case, there are already
several Bragg channels open into the bulk, but Bragg
scattering into the surface state is not yet possible. Thus,
the relative importance of bulk scattering over surface
scattering is enhanced compared to the dense limit. It is,
however, less than in the sparse (single-atomic) limit for
a band structure like the one considered here.

It should be stressed that these considerations apply to
straight rows only. Other shapes will cause more compli-
cated interference patterns for which the bulk-to-surface
ratio of the scattering may reach that of the single ad-
sorbate.

B. Finite thickness of the crystal

+2Re rp v/r,+p g, p + ) c,.p g,+p P p

2

+). "l 'jl Og, l W, l ) *+*P
gl

(6)

and a similar expression for x & xo. The overbars indi-
cate averaging over y.

It has been proposed that the use of a thin film could
reduce the number of bulk states that the surface state
can couple to, eventually switching ofF the scattering into
the bulk altogether. We discuss this situation for a close-
packed scatterer, thereby avoiding the complications due
to Bragg scattering. Thus Eq. (1) applies, where the
index j of the bulk states is Bow genuinely discrete. The
bulk states are quantum-well states, their wave vectors
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perpendicular to the surface are given by the requirement
of constructive interference:

2k, Na, + gs+'gr = j 2'

where X is the thickness of the film in monolayers (ML)
and a, is the lattice constant in the z direction. The
phase shifts gg and gy arise &om the reBections at the
surface and at the underlying interface. The discretiza-
tion of k, means that there are only isolated points on the
constant-energy line that are coupled together, as shown
in Fig. 1(f). The minimum thickness is one ML, in which
case the separation of two k, values becomes a maximum:

Here, kpz, denotes the Brillouin zone boundary in the z
direction. Thus, whatever the phase shifts gg and ivy,

there is at least one value of k, available for the bulk
states. This is also clear &om the fact that a single mono-
layer of a metal must have states for its valence electrons,
and they will not all be contained in the surface state.
Thus, there will be a bulk state around the Fermi energy,
no matter how thin the layer.

As to the surface state, it can only exist if there is
a band gap, i.e., there must be a "bulk" of sufBcient
thickness so that the band gap, which is a consequence of
the bulk band structure, can form. The surface states of
interest here, like those on the noble metal (111)surfaces,
have a rather large penetration depth. Calculations show
that, e.g. , for a thin layer of Ag on Pd(111), a thickness
of eight ML is required for the surface state to be fully
developed. The same behavior and order of magnitude
have been found experimentally on thin films of Ag(111)
and Au(ill). i If the film thickness is less than that, the
surface state will feel the presence of the interface. If
the film has been grown on an insulating substrate, this
interface is repulsive and the surface state is likely to shift
up in energy. If the substrate is a metal, then the surface
state will turn into a resonance and couple to the bulk
even without a scatterer on top.

So there will be bulk states available in all practical
situations. However, their number is greatly reduced as
compared to the semi-infinite crystal. In order to es-
timate the effect of this on the reBectivity, we adopt a
simplified situation. The metallic layer is modeled as a
&ee-electron quantum well with hard walls. The assump-
tion of a &ee-electron dispersion relation is not at all bad
in the Cu s band which is the band of interest here. Since

k„is conserved, we consider a two-dimensional system
with x and z as the horizontal and vertical coordinates.
At a given energy E, the eigenstates of this quantum well

are given by

P+(2:,z) =

These states play the role of the bulk states. A quantum

well of this sort does not possess any surface states, but
we will include them in the model nevertheless. Thus,
we have surface states

g, (z, z) = y(z) e'"

The function y(z) is real and drops exponentially into
the vacuum region as well as into the bulk. The normal-
ization is chosen to correspond to that of the P+:

We now consider the currents Bowing along the quantum
well. The current density of a state g is given by j
Ixn(g'7' g) in atomic units (e = 5 = m, = 1), and
the current I = jj dz. Thus, the surface states Q+

carry a current of I = kk while the bulk states P+.

carry a current of I = kK~~. The complete scattering
state described in Eq. (1) is a linear combination of these
states. It possesses a current which is the sum of the
individual currents, plus interference terms between the
surface states and the bulk states:

+Im ) (@++rg, )' V c P. , z & —zo.

A similar equation holds for x ) zo. The cross terms
between g+ and g, vanish, likewise those between P.
for different j. For our qualitative discussion, we will

also ignore the cross terms between the surface states
and the bulk states in Eq. (14). Thus, the infiowing and
outBowing currents at the scatterer are

Iin = &x

~out —~v + ~t + ~bulk

where

(17)

(18)

(19)

Here, Ib„lk is the current into a bulk of Gnite thickness.
We simplify it by assuming equal coupling strength to
each of the bulk modes:

) [;-~'K., = ) ~c+~2 K., = c2 ) K., (2O)

We now look at a thick layer for which the current scat-
tered into the bulk has saturated to its asymptotic value.
For large N, we can replace the s»m over j by an inte-

gral and evaluate it analytically. The m~~ber of running
modes, j, is given by j „=Int(/2ENa, jn'). The
sum over the K z now becomes
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2max

) Z., =v'2E)
( /2ENa, j

ENa,
2

(N large).

Ib„lk,~ ——C ENa~ .

Thus, the current for large N is given by

(21)

(22)

reduced only for very thin layers (N = 1 or 2). As out-
lined above, several monolayers are required to allow the
surface state to form. For N & 5, the scattering into
the bulk is only reduced by ll%%uo or less, compared to the
semi-infinite limit. This result indicates that using a thin
film instead of a semi-infinite crystal is unlikely to reduce
the scattering rate into the bulk by a great amount. The
absolute rate of scattering into the bulk is controlled by
the constant cp which is determined by the scattering
behavior of the actual scatterer.

1
Ibuik = Ibulk, ao ) +aj ~

s
2

The conservation of charge I; = I „t,takes the follow-

ing form, using the probabilities of refiection It =
~v ~,

transmission T = ~t~, and absorption (scattering into
the bulk) A:

R+T =1 —A,

cp EQ Ib~lk2

~a Ibulk, oo

(24)

The ratio Ib„ik/Ii,„ik~ is shown in Fig. 2 for parameters
suitable to describe the Cu(ill) surface at the Fermi en-

ergy E~. The zero of the energy was taken at the bottom
of the 8 band, so that E~ ——0.346H in this calculation.
From the same source, a, = 3.9 a.u. It can be seen Rom
Fig. 2 that the scattering into the bulk is significantly

1.0

0.8-
g .~=%3

Ib„ik is independent of N so the c must behave as 1/N.
This behavior is a consequence of the normalization that
we have chosen for our bulk wave functions. However,
apart &om this, we assume that the scattering at the
adsorbates does not depend on N, i.e., c = c/2oN, where
c, —const.

The current into the bulk for a finite N now takes the
form

III. NUMERICAL CALCULATIONS

The previous section allowed some qualitative insight
concerning the scattering of a surface state by a row of
adatoms, but it contained scattering parameters about
which very little could be said. In particular, there was no
information about the absolute magnitude of the surface-
to-bulk scattering c+. and the the surface-to-surface scat-
tering r, t. In this section, we will try to calculate quan-
titatively the strength of this scattering. However, the
problem of a single added row or step edge is a formidable
one so instead we look at a supercell geometry, that is,
a regular array of added rows. Thus, we have changed
the nature of the problem and we can no longer think
in terms of ingoing and outgoing waves because there is
no "outside, " i.e., no region on the surface without any
adsorbates. Instead, we want to draw conclusions in an
indirect way &om the band structure of this periodic sys-
tem. The idea is that a surface state in the presence of an
array of added rows will be coupled to the bulk. There-
fore, strictly speaking, it is not a surface state any longer,
but a surface resonance with a finite lifetime at the sur-
face. In the surface band structure, it will no longer show
up as a b function in the energy, as with a genuine sur-
face state, but it will be broadened to a certain extent.
From this, we can get information about the strength of
the scattering into the bulk. By performing band struc-
ture calculations for a variety of added atoms, we hope to
identify the best candidates for surface state engineering,
that is, those with maximum reHectivity and minimum
transparency.

E 0.6
Q

a 04

0.2

0.0
0

I

4
L (ML)

FIG. 2. This graph shows Ib„ik/Ib„ik, , i.e., the current of
electrons scattered kom a surface state into a layer of finite
thickness, normalized to the limit of a thick layer. Parameters
pertaining to the Cu(111) surface have been used (see text).
L is the thickness of the layer. The squares indicate multiples
of one monolayer.

A. Numerical method

The electronic structures were calculated using the
layer —Korringa-Kohn-Rostoker (LKKR) method. is In
this approach, layers of atoms are represented by lay-
ers of spherically symmetric mufBn-tin potentials. Each
layer is characterized by its transmission and reHection
coefBcients. Two layers can be coupled to obtain the
scattering coeKcients of a double layer. These in turn
are coupled in succession to get four, eight, . . . ,2 layers,
a technique called layer doubling. In this way, the reHec-
tion coefBcient of a semi-infinite crystal can be obtained.
A small imaginary part has to be added to the energy in
order to ensure convergence.

In order to describe the surface band structure, we
make use of the local density of states (LDOS) in the
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vacuum close to the surface. The LDOS, n(r, E) is given
by

2
n(r, E) = ——ImG(r. r, E), (26)

G(r, r', E) = Go(r, r', E) + G, (r, r', E) (27)

Below the zero of energy in the vacuum, only the scat-
tered part G, will contribute to the local density of states.
It is related to the reQection coefBcient of the surface,

Rgs (k~~, E), in the following way:

G, (r, r', E)=, d'k~~ ) e* ~~+s&'~~

xG, (kii, g, g', z, z';E) e

(28)

where the factor of 2 counts spin. The Green's function
G(r, r, E) in &out of the surface can be written in terms
of the vacuum Green's function Go, plus a part G, that
involves scattering by the surface:

Viewed as a function of k
~ ~

and E for constant
n(k~~, z, E) represents the surface band structure. In the
literature on the electronic structure of surfaces, the band
structure is usually displayed as a gray-shaded area wher-
ever there is a continuum of bulk states, while surface
states are indicated by discrete lines. In our representa-
tion, n(k~ ~, z, E) is a smooth continuous function within
the bulk continuum it is zero in a surface band gap,
and a surface state causes a b function peak as a func-
tion of E. From the value of n(k~I, z, E), we can tell
not only whether a particular point in the (k~~, E) plane
contributes to the LDOS, but also how much.

As mentioned before, we have to add a small imaginary
part to the energy in order to ensure convergence of the
layer-doubling procedure in the LKKR formalism. This
leads to a broadening of the b function into a Lorentzian
shape with a full width at half maximum of 2 ImE, while
the tail of the Lorentzian causes n(k~~. z. E) to be small
but nonzero inside the band gap. The surface state shows

up as a sharp ridge in a contour plot in the (k~~, E) plane.

+
G, (k((, g) g', z, z'; E) = —e" '

Asg (k(~, E) +
e" "

9

Here, the z coordinate points into the sample, g, I' are
two-dimensional reciprocal lattice vectors, and the decay
into the vacuum is given by~~

K+ = kll + I 2 2E (30)

The reQection coeKcient is one of the central quantities
in the layer-KKR method. The Fourier transform of the
imaginary part of G, will be called I'„.it is given by

ImG(r, r', E) = d k~~ ) e'"~~+ l''
(2~)2

XI'. (k~~, g, g', z, z';E) e '"~~+s

(»)

I I. I I,
Fs(k~~, g, g, z, z;E) = —.G, (k~~, g, g, z, z;E)

2i

—G;(—
k~~,

—g, —g', z, z'; E)

(32)

1
n(z, E) = — d rii n(r, E) = d kii n(k

0 BZ

(k[[ E) = —,) I'(k[[ g g» 'E) .

Armed with these quantities, we define n(k~~, z, E), the
local density of states at the distance z kom the surface,
averaged over the parallel unit cell 0 and separated into
contributions &om difFerent k~

~

vectors,

B. Calculations and results

Previous experience in our group suggested that p ele-
ments like sulfur and carbon, which are generally consid-
ered as dirt in surface science experiments, are strongly
repulsive scatterers of electrons so they should be inter-
esting candidates for the task at hand. The element ac-
tually used in Refs. 6, 9 was Fe. We, therefore, performed
calculations for rows of adsorbed. Cu, Fe, C, and S in a
6x 2 supercell geometry, with the added rows in the (101)
direction [Fig. 3(a)]. In addition to that, the presence of
step edges was simulated by looking at a missing-row ge-
ometry in a 6x 1 unit cell, with the missing row(s) again
in the (101) direction [Fig. 3(b)].

The S and C potentials were reused &om earlier inves-

tigations of the adsorption of these atoms on the Ni(100)
surface. ' In these papers, the potentials were gen-
erated by overlapping atomic charge densities, adding
an exchange-correlation energy using the Hartree-Fock-
Slater X scheme and tuning the exchange parameter to
match the nickel d-phase shift to that of the Ni bulk. For
the adsorbed Fe and Cu atoms, as well as for the bulk,
we used self-consistent bulk KKR potentials. For Fe,
the non-spin-polarized case in Ref. 20 was used. The
space between the adsorbates was ulled with spheres
of constant potential, with a mufBn- tin radius equal to
that of the bulk Cu. The constant potential inside the
spheres was adjusted so that the surface state on the
clean Cu(ill) surface, covered with one layer of empty
spheres, occured at the correct binding energy. This
required a value of +0.527 Hartree (1H=27.2 eV). On

top of the layer of empty spheres, a step potential was
used to describe the vacuum potential, with a work func-
tion of 5 eV. Together with the Fermi energy of the bulk
Cu which is 0.314H relative to the constant interstitial
potential, this gives a step height of 0.498H. Since
our potentials are not determined self-consistently in the
kamework of density functional theory, we cannot be ab-
solutely sure that what we call, e.g. , Fe will really behave
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The results of the band structure calculations are s»m-
marized in Fig. 4. The bands are shown in a direction in

k~~ space perpendicular to the added rows [see Fig. 3(c)j.
There are two types of behavior. First, added rows of Cu
and Fe act as attractive scatterers. The surface state is
pulled down in energy and splits up at the Brillouin zone

(BZ) boundary. It survives as a sharp resonance near
the bottom of the first backfolded band, but everywhere
else it is strongly coupled to the bulk, in particular, in
the lowest band. In the case of Cu, the lowest band has
dropped below —1 eV which is the lower boundary of
the figure. The case of C and S is quite different. Now
the lowest band is pushed up in energy, indicating that
these atoms are effectively repulsive, as we expected them
to be. The broadening of the surface resonance is sub-
stantial throughout most of the BZ except close to the
boundary. The next higher band has been pushed up and
broadened beyond recognition.

In addition to these cases, calculations were done
for the missing-row 6xl supercell geometry shown in
Fig. 3(b). For the surface state in the strip between two
missing rows, the boundary condition looks much like a
step edge as seen &om the higher terrace. The resulting
band structure (not shown) corresponds to a repulsive
scatterer and resembles the right two panels in Fig. 4,
except that the broadening of the band is smaller.

Figure 5 shows the spectral form of the lowest band at
the I' point for all cases calculated. It appears that Fe
and step edges produce the least broadening, and that S
and C are worst. Cu is in between and has a somewhat
irregular spectral shape. The energies and the broaden-
ing of the bands in Fig. 4 cannot all be obtained by fitting
Lorentzians because of the asymmetric line shapes. We
have to take care of the in8uence of the bulk band struc-
ture by allowing for a background phase shift ho, thus
generating a Fano line shape:

x1

n(E) = co + cg sin (ho+ b„),
—,'rh„=—arctan (36)

FIG. 3. (s) The geometry of the added rows used in the
calculations. The unit cell is 6x2, and the unoccupied ad-
sorption sites sre Slled with empty spheres (not shown). Ad-
sorbstes are indicated by shaded circles. (b) The missing-row
geometry with a 6x1 unit cell. The missing atoms are re-
placed by empty spheres (indicsted by shaded circles). (c)
The Brillouin zones corresponding to (s) snd (b). The large
hexagon corresponds to the clean fcc (111)surface.

like adsorbed Fe. Thus, if the results were strongly de-
pendent on the assumed input potential, they would not
mean very much. In practice, it turns out that the results
that we are most interested in, namely, the broadening
and the dispersion of the surface state, are quite robust.
They seem to be rather unaffected by the detailed fea-
tures of the adsorbed potential.

Fitting this curve to the spectral shapes depicted in
Fig. 5, we can extract the complex energy of the pole,E„—il'/2. The results of this fit are listed in columns 2
and 3 of Table I.

IV. ONE-DIMENSIONAL
COMPLEX BAND STRUCTURES

Complicated as the band structures in the last section
may be, the behavior of the surface state can be un-
derstood in rather simple terms using a one-dimensional
model. In Appendix B, a method is discussed to calculate
the band structure of a one-dimensional array of scatter-
ers. The scatterers are assumed to be potential wells
or barriers with a constant complex potential, separated
by zero-potential regions. An e8'ective mass m' g 1 is
used in the model. Because of the complex potential, the
scatterers are "leaky" which simulates the coupling to an
extended system like the bulk of a crystal.
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FIG. 4. The surface band structures of the Cu(ill) surface with added rows along 101 in a 6x2 geometry. The direction in
k space is 121 perpendicular to the rows. Contour plots of n(kII, z =- 0, E) are shown (see text). Within each panel, n(kII, z, E)
has been rescaled. The far left panel shows the clean Cu(111) surface, with the surface state folded back due to the sixfold
supercell. In all panels, the positions of the "clean" surface state and of the bulk band edge are indicated as bold black lines.
The lumpy appearance of the surface state is due to the 6nite grid used in the calculation. S and C show an irregularity a, t,

kII/O 0.4 and E —0.6 eV, which is due to convergence problems in the calculation of the KKR structure constants.

A. Typical cases

We discuss two cases, an attractive potential and a
repulsive one. The geometry is chosen as a = 13 A. and
b = 2.5 A which comes close to the added rows in Sec. III.
The scattering potentials are R' = +2 eV, ImV = —1 eV,

O
Q

.N 0.75—
U
E

c
(f)
O
O 0.25—

S.S.
0 ~ 0

—0.5 —0.25 0.0

', Fe

I
f

I I I I
f

I I I

0.25 0.5

E:-Eb (eV)

FIG. 5. The peak in the lowest band at the F point. The
quantity n(kII = O, z = O, E) is shown as a function of E
relative to the bottom of the band, Eg. All peaks have been
rescaled to the same height, but their width in energy has
not been changed. The curve labeled "step" refers to a 6x1
unit cell in which two adjacent atoms are missing in the top
layer, i.e., a double missing-row geometry. The case of S (not
showa) is nearly identical to C. The surface state of the clean
surface is labeled SS. Its linewidth is twice the imaginary part
of the energy in the layer-KKR calculation, which was 0.0027
eV.

and the effective mass corresponds to that of the Cu(ill)
surface state, m' = 0.46.

In the case of an attractive potential, all the bands
are pulled down as shown in Fig. 6(a). The lowest band
has a very large ImE, indicating that its lifetime is very
short. In comparison, the higher bands are doing better,
at least near their low energy edges. The high energy
sides of the bands again suffer rapid decay. A look at the
wave functions explains this behavior [Fig. 7(a)j. The
lowest band comprises essentially bound states inside the
attractive scatterer, i.e., core states. A particle in such a
state spends most of its time in the absorbing region, thus
the high damping rate. As we cross the band gap into

Adsorbate
CU
Fe
S
C
M1
M2

Re(E) —Ep
-0.59
-0.28
0.21
0.23
0.17
0.22

Im(E)
-0.22
-0.077
-0.20
-0.19
-0.09
-0.09

Re(V)
-2.3
-1.29
0.93
1.12
1.17
1.75

lm(V)
-0.59
-0.28
-1.95
-2.04
-0.93
-1.1

One missing row.
A double missing row.

TABLE I. The parameters of the scattering potential nec-
essary to reproduce the lowest eigenvalue at the F point of
the LKKR band structures (see text). Columns 2 and 3 show
the eigenvalue E to be fitted (Ep = —0.44 eV is the energy of
the surface state with no adsorbates), columns 4 and 5 show
the real and imaginary parts of the scattering potential. The
unit cell size is 13.2 4 and the scatterers are 2.2 A in width.
All energies are measured in eV.
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(a) W=—2eV (b) W=+2eV
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FIG. 6. One-dimensional band structures
of a regular array of absorbing scatterers.
The right panels show the energy bands. The
heavy dotted line indicates the free parti-
cle dispersion relation. The left panels show

ImE, which is a measure of the lifetime
broadening of the bands. (a) Attractive scat-
terers, W = —2 eV. (b) Repulsive scatterers,
W = +2 eV. In both cases, ImV = —1 eV.
Note that the energy axis in (b) is shifted
relative to (a).
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the 6rst band, the character of the wave function changes
from bonding into antibonding [panel 3 in Fig. 7(a)]. This
wave function hardly enters the absorbing region at all
so its damping is also very small. As we move up along
the second band, some weight returns to the absorbing
region so the damping increases.

The repulsive potential shows the opposite behavior.
All the bands are pushed up, the lowest band is not very
strongly damped, and the states generally have a longer
lifetime near the top of a band [Fig. 6(b)]. The wave
functions show why: The lowest band now forms a stand-
ing wave between the repulsive scatterers, thus avoiding
the absorbing region. The bonding-antibonding charac-
ter here refers to the area between the scatterers. Thus
at the bottom of the second band, which is antibonding,
the wave function is pushed into the absorbing region,
increasing its damping.

B. Comparison with surface band structures

The generic behavior of the bands in Fig. 6 is already
reminiscent of the LKKR band structures in Fig. 4. To
see how far these similarities go, the parameters of the
one-dimensional model (the real and imaginary poten-
tials within the scatterers) were adjusted such that the
resulting lowest eigenvalue at j. coincided in position and
lifetime broadening with the one from the LKKR calcu-
lation. The lattice constant was taken as a = 13.2 A.

and the width of the scatterer as b = a/6. The required
parameters are listed in Table I.

The main result is that the transition and noble metal
adsorbates act as attractive scatterers, and that the p el-
ements are repulsive. Single and double missing rows are
also repulsive scatterers. The attractive scatterers have
a less absorbing behavior than the repulsive ones. Part

(a) W=—2eV (b) W=+2ev

M

C

N

Cl

2

0

FIG. 7. The square moduli of the Bloch
wave functions of a one-dimensional band
structure, shown in one unit cell with the
scatterer at the center. The real part of
the potential is shown in the lower panels.
The numbers indicate certain positions in
the band structure. 1—bottom of the low-
est band, 2—top of the lowest band, 3—bot-
tom of the second band, 4—top of the second
band. (a) Attractive scatterers, W = —2 eV.
(b) Repulsive scat terers, W = +2 eV. In both
cases, ImV = —1 eV.

)—2—

I I I I

—6 —4 —2 0 2
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of the explanation for this may be found in the argu-
mentation of Sec. II A leading to Eq. (7). The radius of
the surface state band, k„grows with increasing energy,
while the separation b between the bulk band and the BZ
boundary shrinks. Thus, there are more outgoing states
available at higher energies. Repulsive scatterers push
the bands up to higher energies, where the inequality (7)
is true for the case M = 2 that we consider here, so there
is Bragg scattering into additonal bulk states. This ap-
plies for the 6x2 rows of adsorbed S and C, but not for
the 6x1 missing-row geometries which are close packed
(M=1). Consequently, ImV in the missing-row cases is
only about half that of S or C. The attractive scatterers
Cu and Fe, on the other hand, pull the bands down into a
region where the 6rst Bragg channel for M = 2 is closed.

Figure 8 shows two typical examples, Cu and C. Ob-
viously the efFect of the added rows on the surface state
can be modeled quite well. Fitting the scatterers to re-
produce one eigenvalue at one k point, we can reproduce
the behavior over the whole range of energies and k vec-
tors considered. Naturally, the bulk bands are absent in
the one-dimensional model, but the shifts and the broad-
ening of the surface state are fully captured.

(b) C C. A single adsorbed roar

0.5

+ 0.0-:
LU

-0.5

-1 0

0.00 0.50 0.75 1.00

FIG. 8. The surface band structure of the Cu(111) sur-
face with (101) rows of adsorbates in a 6x2 geometry. The
bands are shown along 121 which is perpendicular to the rows.
Contour plots of n(k~~, z, E) are shown (see text). Left pan-
els: the LKKR results. SS indicates the undisturbed surface
state, and BB the bulk band edge. Right panels: the re-
sults of a one-dimensional model (see text). "free" indicates
the free-electron band, "band" the real part of the energy
eigenvalues. The contours have been generated by broaden-
ing the bands with a Lorentzian according to their imaginary
parts. (a) Adsorbed Cu, (b) adsorbed C. Note that the dark
structure at —1.05 eV in the Cu LKKR band structure is a
maximum.

The success of explaining the surface band structure in
terms of a simple model scatterer is not only nice in its
own right, it also allows us to extend our discussion &om
the periodic array of adsorbed rows to the much more
interesting case of a single adsorbed row. The proper-
ties of the one-dimensional model scatterer are taken as
representative for the more complicated real situation.
Prom the reQection and transmission coeKcients r and t
(see Appendix 8), we can get the probabilities of re8ec-
tion R = ~r~, transmission T = ~t~, and absorption, i.e. ,

scattering into the bulk, A = 1 —A —T. The results are
shown in Fig. 9 for adsorbates, and in Fig. 10 for miss-
ing rows. Clearly, none of these scatterers is a particu-
larly strong re8ector of electrons. At the Fermi energy,
R is around 30'%%up, except for Cu and a double missing
row where it reaches 40%%ua (see Table II). Concerning the
loss mechanism, the adsorbates form two distinct groups
[Fig. 9(b) and 9(c)]. The transition metals allow the sur-
face state to sneak through and continue on the other
side (horizontal loss) but they do not couple strongly to
the bulk. Conversely, the p elements are effective barri-
ers horizontally but they send the incoming particle down
into the bulk (vertical loss). The missing rows are in be-
tween, with the vertical loss being somewhat larger than
the horizontal one, especially for the double missing row

[Fig. 10(b) and 10(c)].
Experimentally, the scattering rate of adsorbed Fe was

estimated to be R=0.25, T=0.25, and 2=0.5 (Ref. 9)
by fitting a single-phase shift model to the standing
waves observed in STM. In our calculation, the values
are R=0.24, T=0.5, and 2=0.25 (Table II). There is
an important difference between the experiment;, where
the density of the atomic rows corresponded to M —4,
and our own supercell size of M = 2. With our current
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(a) Reflection (b) Transmission
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TABLE II. The probabilities of re8ection, transmission,
and absorption (scattering into the bulk) at the Fermi en-

ergy. They were calculated from one-dimensional scatterers
which were adjusted to reproduce the LKKR band structure
of the surface state (see text).
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Adsorbate
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Fe
S
C
M1
M2b

Re6ection
0.42
0.24
0.30
0.33
0.26
0.39

Transmission
0.39
0.50
0.17
0.16
0.31
0.21

Absorption
0.19
0.25
0.52
0.52
0.43
0.40

Cu
——Fe—-S""C
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-0.5

One missing row.
A double missing row.
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computing setup, the numerical effort for M = 4 is pro-
hibitive. From the discussion in Sec. IIA, it appears that
our calculation has less scattering channels open into the
bulk than the experiment, hence the smaller rate of ab-
sorption.

1.0
(a) Reflection (b) Transmission
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FIG. 9. The probabilities of an electron in a surface state
being (a) reflected, (b) transmitted, or (c) scattered into the
bulk (absorbed) by a row of adatoms on the Cu(111) surface.

It is clear that these results can only be considered as
semiquantitative. The electronic potential of an adsor-
bate is certainly not equal to that of the same atom in
the bulk, nor can an adsorbate be expected to behave
in exactly the same way on different surfaces. However,
we have looked at a selection of rather different atoms
so the variation of the results gives us an indication of
the possible error span. The main result is that what-
ever the adsorbate, the re8ectivity will, in general, stay
below 50%. Two possible sources of error must be ad-
dressed here. The first concerns the vertical position of
the adsorbed C, which was assumed on an extended lat-
tice site of the Cu substrate. Carbon is a small atom and
it is likely to sit closer to the surface than that. On the
Ni(100) surface, the influence of the vertical position of
the C on the electronic structure is pronounced. Thus,
the LKKR calculation was repeated for a number of ver-
tical displacements of the C from the Cu lattice position,
namely, by —0.4 A, —0.2 A, +0.2 A, and +0.4 zlI. . Re-
laxing the C towards the surface is seen to decrease the
reflectivity even further (Fig. 11), while it enhances the
transmittivity and leaves the absorption into the bulk
nearly unchanged. The second problem may arise from
the non-spin-polarized treatment of the Fe. Recent work
on the scattering properties of this adsorbate indicate
that spin polarization is an important factor.

(c) Absorption

M1

M2

1.0

0.5

-0.5
0.25-

0.0
0.0 0.5 1.0

E-EI (eV)

0 0 I I I I I I I I I I I I I I I

—0.25 0.0 0.25
z-zp (A)

FIG. 10. The probabilities of an electron in a surface state
being (a) refiected, (b) transmitted, , or (c) scattered into the
bulk by missing rows on the Cu(111) surface. Ml—a single
missing row, M2—a double missing row.

FIG. 11. The eKect of altering the vertical position of ad-
sorbed carbon. Positive z —zo is closer to the surface. A,
T, and A are the probabilities of re6ection, transmission, and
absorption into the bulk, all taken at the Fermi energy.
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V. CONCLUSIONS

In this paper, we have investigated the scattering of the
surface state on the Cu(111) surface by straight rows of
adsorbed atoms, as well as step edges. A layer —Korringa-
Kohn-Rostoker (LKKR) formalism was used to obtain
the band structures of the surfaces in question. A peri-
odic structure of added rows or missing rows (the latter
to simulate step edges) was assumed. Calculations were
done for 6x2 superstructures of adsorbed Cu, Fe, S, and
C, as well as for 6x1 structures of one and two missing
rows. From the band structure of this periodic system
of scatterers, the properties of one single scatterer were
obtained by fitting a one-dimensional model. This model
involves scatterers of quantum-well shape. It allows a re-
markably good description of the behavior of the surface
state in the presence of the added rows, including the
lifetime broadening caused by the coupling to the bulk.

The quality of the band structure calculations suH'ers

from the fact that they were not done self-consistently in
the framework of density functional theory. Instead, self-
consistent bulk potentials were used for all layers includ-
ing the topmost one, and the potentials of some adsor-
bates were constructed by using the Xa method. Thus,
our results are not fully quantitative. However, we have
used a considerable variety of adsorbates so the trends
that were identified in the results should be reliable.

The main conclusion &om the calculations is bad news
for surface state engineering. None of the scatterers in-
vestigated shows a reflectivity of more than ca. 40% at
the Fermi energy. The scatterers with d character (Cu
and Fe) tend to leak mainly horizontally (into the sur-
face state on the other side of the scatterer) while those
with p character show predominantly vertical loss (into
the substrate). Single and double missing rows are in
between.

By counting the states that an electron in a surface
state can be scattered into, we obtain some qualitative
insight into the problem. For a band structure similar to
that of Cu(111), an added row which is less than close
packed gives rise to a relative enhancement of scattering
into the bulk compared to that into the surface state.
The total scattering rate decreases because of the dilu-
tion of the scatterer. A supercell of size M switches on
additional (Bragg) channels into the bulk for M ) 2 or
3, while Bragg scattering into the surface state becomes
available only for M & 6. The most densely packed
rows of adsorbates that have been made in practice so
far (M 4) are thus in a region of relatively enhanced
bulk scattering, and therefore, loss. Step edges, on the
other hand, are close packed and do not lead to Bragg
scattering, which may be an advantage.

The eKect of replacing the semi-infinite substrate by
a thin film is considered in a simplified quantum-well
model. It is argued that a big reduction of the scattering
rate into the bulk is unlikely.

All this suggests that the total confinement of a sur-
face state in a closed structure may not be feasible. How-

ever, the results of this paper as well as other theoretical
and experimental findings, ~ show that the interaction
of the surface state with most adsorbates is substantial.

Further exploration of these systems both in theory al)Ld.

experiment is highly desirable.
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APPENDIX A:
NUMBER OF AVAILABLE STATES

k' —
/

—g
qM

The maximum index of the cuts is given by +t

„=Int
i

fMkl
4 gw )

(A2)

Assuming a constant linear density of states pq along
the constant-energy surface, we get the number of bulk
states,

~max

Kg = —kpg )
&max

(l g„l'
Mk) (A3)

In the limit of large M, we can convert this into an inte-
gral, with the result

Thus the number of available bulk states is proportional
to the supercell size M, and also to the area of the
constant-energy surface.

The n»mber of surface states N, is given by the num-

ber of intersections through the constant-energy line of
the surface state in the (k, k„)plane [see Fig. 1(e)]. As-

suming a circular shape with a radius k„and taking only
half of the circle (k ( 0 or k ) 0), we get

In this appendix, we estimate the number of states that
a surface state can be scattered into by a row of adsorbed
atoms. The adsorbed row can be less than close packed,
with one adsorbed atom every M bulk unit cells. We
count only states with the same sign of the wave vector
k, because k ) 0 and k & 0 are counted separately
in the discussion following Eq. (5). Only positive k, are
considered [see Figs. 1(b), 1(d)).

For the bulk states, a spherical constant-energy surface
is assumed with radius k. The number of states that
an incoming state at k„canBragg scatter into is given
by cuts through the surface at k~~ ——k„o+ IAk» where
Ak„=g„/M. We set k&0

——0. Then each cut gives
a circle (or rather, a quarter circle, see above) with the
radius
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C2Mk, )
N, =Int

&s

This n»mber is again proportional to M.

(A5)
as well as the relative weights of the states gi(z) and

f„(z)in the Bloch function,

(BS)

APPENDIX B:CALCULATING
ONE-DIMENSIONAL BAND STRUCTURES

To be more speci6c, the scatterers are ass»med to be
rectangular potential wells or barriers of width b & a:

We follow the approach by Ashcroft and Mermin. 23

Consider a one-dimensional periodic array of scattering
objects each of which is characterized by its refiection
and transmission coefBcients, r and t. The scatterers do
not overlap, so each scattering potential is confined to
a region not larger than the length of the unit cell, a.
Atomic Hartree units e = 5 = m, = 1 are used but the
mass of the particle may be an efFective mass m' g 1.
We assume inversion symmetry. For a single scatterer at
the origin, we can define two scattering solutions Qi and
g„which have outgoing boundary conditions at z ~ oo
and at —oo, respectively,

V(z) =
&

W, —b/2 &z & b/2
(B9)

0, elsewhere.

,-iKS
Pp —(Pp) ' (BI0)

The constant potential W can be complex to simulate the
coupling to an extended system. Using the wave n»mber

Q = /2m'(E —W) inside the scatterer, its scattering
properties are given by

(BI)

—l —iKb
Pp (&p) '— (BII)

z ( —o/2
&.(z) =,—;x.+ „,;x. ),/2

K = v'2m'E.

(B2)

(B3)

K-
K+Q ' (BI2)

Q(z) = A Qi(z) + B @„(z), (B4)

@(a/2) = e'" @(—a/2),

@'(a/2) = e'" @'(—a/2) .

From these equations, one can extract the Bloch wave
vector k,

1 2cos(ka) = — (t —r ) e' + e '

The uppercase K denotes the free-electron wave number
and must not be confused with the lowercase k which
is the Bloch wave vector. The latter is determined by
the Bloch condition of the periodic array, Eqs. (85) and

(B6),

(BI3)

p is the refiection coefBcient of a single potential step of
height W.

Since we have made the potential complex and, there-
fore, the Hamiltonian non-Hermitian, there will be ab-
sorption of some kind in the problem. We want our wave
functions to be normalizable, that is, there should be a
real k vector inside the bands. Within the band gaps,
no such condition is possible so we want the wave vector
to behave in the same way as in the real-potential case.
Thus, in general, we require cos(ka) to be real. This
implies a complex energy. For a given Re(E), cos(ka)
is considered as a function of Im(E) and the condition
Im[cos(ka)] = 0 is solved numerically. A scan of Im(E)
will give many bands, most of which have complex k. A
real k vector exists only if Re(E) lies inside a band.
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