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We present a macroscopic, phenomenological theory for the heat flow between two material half-
spaces of differing temperatures whose surfaces are separated by a gap of width /. Our calculation paral-
lels Liftshitz’s calculation of the van der Waals force between two dielectric slabs. For [ sufficiently
small, the heat flow is enhanced by a contribution from evanescent waves, and in the limit of a very small

gap varies as ] "2,

I. INTRODUCTION

As early as 1930, London! realized that quantum-
mechanical fluctuations of electric dipole moments could
give rise to a force between bodies separated by macro-
scopic distances (the van der Waals force). London
showed that the force between two neutral atoms which
did not possess permanent dipole moments and which
were separated by a distance R varied as R ~". His result
did not take into account retardation effects, and hence
was valid only when R was much less than the wave-
length that corresponds to a transition between the
ground and excited states of the atom. In 1948, Casimir
and Polder? investigated the effect of retardation and
showed that when this was included the force between
two atoms varies as R ~® for large distances. One can
also consider the corresponding forces between closely
spaced macroscopic bodies. Casimir® showed that these
forces could be considered to arise from the variation of
the energy of the zero-point fluctuations of the elec-
tromagnetic field with respect to changes in the distance
between the bodies. In 1954 Lifshitz* in a classic paper
derived an expression for the attraction between two
semi-infinite dielectric slabs using a theory of electromag-
netic fluctuations developed by Rytov.” He found the
force between the two materials by evaluating the
Maxwell stress tensor for the fluctuating electromagnetic
field in the gap between the slabs. His result is expressed
in terms of the dielectric properties of the two materials.
Thus, the theory is a macroscopic theory, and does not
take account of nonlocal phenomena, such as the anoma-
lous skin effect. In principle, the van der Waals force de-
pends on temperature through the temperature depen-
dence of the magnitude of the fluctuating electromagnetic
field. However, Lifshitz shows that the temperature-
dependent correction to the force is very small at normal
laboratory temperatures.

Abrikosova and Derjaguin® made the first direct mea-
surements of the van der Waals force between macro-
scopic bodies. They measured the force between two
parallel plates of quartz separated by 1000-4000 A.
Several groups’ made further measurements of this type,
and the results are in reasonable agreement with the
Lifshitz theory. In 1941, Schiff® observed that formation
of films of superfluid helium on the walls of containers is
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due to the van der Waals attraction between the substrate
and the helium. The theory of Lifshitz was generalized
by Dzyaloshinskii, Lifshitz, and Pitaevskii® to include the
interaction between a substrate and thin liquid films.
Measurements by Sabisky and Anderson'® of the thick-
ness of liquid-helium films are in excellent agreement
with this generalized Lifshitz theory. The existence of
the fluctuating field outside of a dielectric has also been
directly observed!! in studies of inelastic scattering of
low-energy electrons. Finally, we mention that a recent
experiment by Sukenik et al.'? has demonstrated the van
der Waals force between an atom and two parallel plates.

While the theory of the van der Waals force is well es-
tablished, little attention has been given to the role these
fluctuations might play in heat transfer between two
solids. Let us begin by considering the free surface of a
single semi-infinite solid. Fluctuating currents inside the
material will produce a fluctuating electromagnetic field,
which extends beyond the surface of the material. This
external field can be divided into propagating black-body
radiation together with evanescent waves, which do not
satisfy the radiation conditions. If a second material is
placed at a large distance from the surface of the first ma-
terial, the energy transfer will come solely from the radia-
tion part of the field, and the rate of heat transfer be-
tween the two solids will be given by Stefan’s law incor-
porating the emissivity and absorptivity of the materials.
If the gap between the two materials is sufficiently small,
however, it is possible for energy to be transferred across
the gap by the evanescent waves, and it is the calculation
of this energy flow that is the subject of this paper.

II. CALCULATION OF THE EVANESCENT
HEAT FLOW

One can consider that the heat flow arises from the
emission of a photon by an electron in one material, fol-
lowed by the absorption of the photon in the other ma-
terial. In this regard it is important to recognize that
there is an essential incompatibility between the momen-
tum scales for electrons and photons. In a typical metal,
the momentum scale is set by the Fermi momentum pj.
However, the excess energy of the electron is k3 T and so
if the electron is to emit a real photon, the photon
momentum must be no larger than kz7T/c. At room
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temperature, this is typically smaller than py by a factor
of the order of 107°. Thus, one can consider that the
vast majority of photons emitted by an electron are virtu-
al and end up being reabsorbed by the same or another
electron that is nearby. It is when the second electron is
in the other material that energy is transferred between
the two bodies.

Our calculation of the energy flow between two half-
spaces is similar to the method used by Lifshitz* in his
derivation of the van der Waals force. In any material
there will be spontaneous electrical and magnetic mo-
ments that originate from quantum and thermal fluctua-
tions. These fluctuating moments produce fluctuating
electromagnetic fields inside and outside the material.
These fluctuating fields can be calculated by adding ex-
traneous fluctuating inductions'® to Maxwell’s equations
in much the same way that a random force is added to
Newton’s equations to solve the problem of Brownian
motion. Of course, these extraneous inductions are ran-
dom variables and cannot be completely specified. How-
ever, correlation functions for these variables can be
found by using the fluctuation-dissipation theorem.
Lifshitz solved Maxwell’s equations including these
source terms to find the fields both in the materials and in
the gap. The force between the dielectrics was found by
averaging the xx component of the Maxwell stress tensor,
where the x direction is taken to be normal to the sur-
faces of the two materials. Since the field amplitudes are
proportional to the extraneous fluctuating inductions, the
stress tensor contains averages over the products of the
components of the inductions. The fluctuation-
dissipation theorem can be used to calculate these aver-
ages in terms of the dielectric constant and the tempera-
ture of the material. To calculate the heat flow we can
follow a similar procedure, but, since we are interested in
energy transfer, we calculate the Poynting vector rather
than the Maxwell stress tensor.

We consider two semi-infinite materials with plane-
parallel surfaces separated by a vacuum of thickness /
(Fig. 1). The coordinate system is chosen so the yz plane
is parallel to the surfaces of the two materials, the surface
of the left slab is at x =0, and the surface of the right slab
is at x =I. For convenience, the three regions will be la-
beled as follows: region 1 corresponds to the left half-
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FIG. 1. Coordinate system used in the calculations.
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space, region 2 corresponds to the right half-space, and
the gap is denoted as region 0. The materials in regions 1
and 2 are characterized by complex dielectric constants
€,(w) and €,(w), respectively. We assume that the ma-
terials are nonmagnetic, although it would not be difficult
to extend the calculation to consider magnetic effects.

It is convenient to begin by considering the electric and
magnetic fields that are generated by the component of
the fluctuating induction g(r,¢) that has a particular fre-
quency . To calculate these fields we have to solve
Maxwell’s equations in the form

VXE(r,a))=i%H(r,w) , (1)

VXH(r,w)=~i%eE(r,w)—i%g(r,w) , @)

where g(r,w) is the Fourier component of the extraneous
electrical induction with frequency w.!> The fluctuation-
dissipation theorem gives the average value of the prod-
uct of different components of g at two different points in
space. Since we are describing the materials by a local
dielectric constant, there is no correlation between the
extraneous inductions at different space points. Explicit-
ly, we have'®

8i(r,0)g/ (1,0 )= A€"(0)8;;8(r,—1,)8(0—0') , (3)
where

1 1 fiw
A=4h | —+ =2ficoth .
2 explfiw/kgT)—1 ce 2k T

(4)

T is the temperature and €'’ is the imaginary part of the
dielectric constant (e=¢€'+i€’’). The use of this form of
the fluctuation-dissipation theorem restricts our results to
materials, which can be described by a local dielectric
constant.

The extraneous inductions in Eq. (2) act as sources of
electromagnetic waves; these waves propagate some dis-
tance and are then reabsorbed in the medium. The net
energy transfer P from region 1 to region 2 is the
difference between the rate P,, at which waves generated
by extraneous inductions in 1 are absorbed in 2, and the
rate P,; at which waves generated in 2 are absorbed in 1.
We first calculate P, and then find P,; by symmetry. To
calculate P, we begin by considering an infinite volume
of material with a spatially independent dielectric con-
stant €, in which the amplitude of the fluctuating induc-
tions in the right half-space is set equal to zero. Thus,
waves are generated only in the region x <0, and these
waves are able to propagate into the region x >0 without
undergoing reflection. This is an artificial situation that
cannot be realized physically but it is nonetheless useful
for our calculations. Subsequently, we add the effect of
the gap and the second medium on the propagation of
these waves.

To solve Maxwell’s equations in the form of Egs. (1)
and (2) we write the fields in terms of Fourier components
as

E= f_w a(k)eik"'dk, Hzif_w kXak)e®dk . (5
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Additionally, we write g as
gn=[" gkle*dk . ©6)

By substituting Eqs. (5) and (6) into (1) and (2), a(k)
can be expressed in terms of g(k) as follows:

1

2 (k2—w?/c?)e

eg(k)—(k g(k))k (7

The absence of fluctuations in the right half-space has
the consequence that it must be possible to express the
fields in this region as a sum of waves propagating to the
right. To do this we first note that as a function of the x
component of k, g(k) cannot have any poles in the upper
half of the complex plane since g(r) is zero for x >0.
Thus, a(k) has a simple pole in the up;)er half of the com-
plex plane at k, =s,, where s, =(w%,/c?—¢?)"'/?, and
q=k,y+k,z. The sign of s, is chosen so that the imagi-
nary part of s, will be positive. The integration over k,
can, therefore, be carried out by completing the contour
in the upper half plane. After integration the fields in the
right half-space can be expressed as

; 2
E(l')=f tza)
c’s

expliq-p+is;x]
1

X [g(k)—(k-g(k))k/k?*]d*q, (8)

H(r)—fc expliq-p+is,x ][k X g(k)]d?> (9)

where p=y§+2z2, k=q+s5,%, and the integrals are over
all of q space. Having written the fields E and H in terms
of waves propagating to the right, we can now introduce
the gap and second dielectric into our calculation.

As the next step, we create a surface at x =0 by setting
the dielectric constant equal to 1 for x 20. With the in-
troduction of the discontinuity in the dielectric constant
at x =0, the waves which originate in the left half-space
will be only partially transmitted into the region x >0
and, in addition, refraction will occur at the interface.
The transmission coefficients depend on the orientation of
the waves relative to the plane of incidence. Consequent-
ly, we divide the electric field in the region x >0 into two
contributions, ‘E and 'E, which arise from waves polar-
ized perpendicular and parallel to the plane of incidence,
respectively These fields are given by

f l‘IT(L)

exp iq-p+ipx]

X[g(k)-(qu)](qX’i)dzq , (10)
IE= [ im ity Liqp+ipx]
exp iq-p+ipx
Vieg's

X[q gx(k)—sl(q-g(k))](q

where ', and It |, are the transmission coefficients when
the electric field is perpendicular and parallel to the plane
of incidence, respectively, and p =(w?/c?—¢q?)'/? is the x
component of the wave vector in vacuum. The electric
field transmission coefficients are given by

R—pq)d’q, (1
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t =
0 p+s,’

t Ve (12)
10~ e,p+s1'

The magnetic field can be divided in a similar way.

The gap is now introduced by setting the dielectric
constant equal to €, for x > 1. A plane wave of unit am-
plitude incident on the surface of dielectric 1 from the
left produces a field in the gap given by

tlo(é.ipx+ro eip(21—x)+r 170 eip(2[+x)

trorieP W T4 p2 p2 WA Ly L (13)

where r(; and r(, are the reflection coefficients for a wave
incident from vacuum on material 1 and 2, respectively.
When the electric field is perpendicular to the plane of in-
cidence ry, and r, are

_pP—S

L, PS5
01 p+s1 ’

Y 14
roz >+, (14)

and when the electric field is in the plane of incidence
these coefficients are

€0 —S,
702 e +s, ’ (15)

ro = P ,

€p +s;
where s, =(w?,/c2—¢?*)!/? is the x component of the
wave vector in material 2. It follows from Eq. (13) that
the perpendicular and parallel components of the electric
field in the gap are

e ipx+ lroze 2ipIe —ipx

.9
g, = [ T2 44 explig-p) .
gap fczqzs] 106xpliq-p 1—1rg, Troge !
X [g(k)-(gxR)])(gX%)dq , (16)
"Egap=f————“t10exp(tq -p)

€9°s

e X—pq)ei""+(q2x+pq)||r02e2iple_“”‘

1—lrg, ro,e 2!
X g%, (k)—s1(q-g(k))]d’q . (17)

With expressions for fields in the gap we can calculate
the Poynting vector in the gap. This vector is

Z—Re[EgapXH;‘ap] (18)

Into this expression we insert our results for the fields,
now using the full expressions including the integral over
the frequency. The result for the Poynting vector is then
a double integral over products of the Fourier transforms
of the fluctuating induction. This result can be simplified

by averaging over these fluctuations. It follows from Eq.
(3) that

——— - Ai€" 1
k k' ’ - -
8i(k,w)g;( )= Q) ko—k*
X8;;6(q—q')d(0—0’) . (19)

Using this result we can find the average value of the
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Poynting vector. As expected, the result is independent  tions in 1. To calculate the net energy flow between 1
of x and is a vector in the X direction. The magnitude of  and 2, we then subtract the flow due to waves generated
this vector is the rate at which energy is transferred to  in 2 being absorbed in 1. The final result for the power P
medium 2 by the waves launched by fluctuating induc-  per unit area flowing from 1to 2 is

PZ—%fowwda)

8

1 1
CXp(ﬁ(L)/kBTl)”_l exp(h(l)/kBTz)—l J

L2
w0 1 1 . 110!
X d —+—— |Re{p[1—"roexp(2ipD) ][ 1+*r&exp(—2ip*])] -
fo q aq 51 st {p 02 'p 02 }’l'lrml"ozez”qz
L Re(pl1—ropexp(2iph 11+ rdyexp( —2ip*D)]] Kl , 20)
le sy st P 02€XPLEP 026Xpt =P 1—lrg, Irye 2?2

For computational purposes it is convenient to change the integration variable from g to p and to replace p by wp /¢
and s by ws /c to give

— # ® 3
P——czﬂ_2 fo w’dw

1 1
exp(fio/kgT,)—1 explfio/kgT,)—1 l

(sytsT sy +s3)
l(p +5,)(p +5,)—(p —5,)(p —s,)e?Pel/e|2

X fp3dp

(es,teisT)Ners, +es3)

+ ooy (el 1)
[(€p +5,)(€p +5,)—(€p —5,)(€p —5,)eXP/e|

where s, = \/61 —1+p?ands, =\/62— 1+p2. The p integration goes from 1 to O and then along the imaginary axis to
oo. The portion of the integration along the real axis corresponds to the familiar black-body radiation while the in-
tegration over the positive imaginary axis gives the contribution from the evanescent waves.

III. SMALL GAP SIZE

Clearly, for very large gaps the evanescent waves will make a negligible contribution to the heat flow, and are not of
importance. In the limit of a very small gap the evanescent contribution will dominate. However, even in the limit of
very small / it is not easy to give a rigorous discussion of the variation of the evanescent heat flow with . The dielectric
constant may have a complicated dependence on frequency, and this makes it difficult to derive general results.

We first separate out the evanescent part P, of the heat flow in Eq. (21) and make the substitution of ip for p to get

h ® 3
P, = do
v 20 fo @

1 1
exp(fiw/kpT,)—1 explfiw/kgT,)—1 ]

(S, —St)NS:—S,)
l(p +8,)p +8,)—(p =S, )(p —Sy)e /2

X fomp3dp

(6:5’1 '_flst )(625; _6;S2}

+ —2pwl/c|2
|(e,p+S,)(€p+S,)—(€.p =S )(€p—S,)e P/

]e Tapelse (22)

where S , z\/pz—el’2+ 1, and the sign is chosen so that the real part of §; , > 0.

Consider first how the integrand varies with p for a particular fixed value of . The effective upper limit of the p in-
tegration will be set by the factor exp(—2pwl /c) as

C
Pmax™ 7% 7 - (23)

For sufficiently small /, p,,, must become >>1. If we examine the remaining part of the integrand (i.e., excluding the
exponential factor), we find that it increases with increasing p, both for p <<1 and for p >>1. Consequently, provided
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that the condition p,, >>1 is satisfied, the major contribution to the integral over p will come from the range in which
p >>1. Thus, we can make the approximation (see further discussion below)

1_61’2
2p

S,,~p+ +e

If we insert this approximation to S , into Eq. (22) and retain only the terms of highest order in p we obtain

1 1

#i o
Pevzﬁfo od

0

€6

Y |expfio/ky T —1  explfior/kgT,)—1

x [ rdy

Thus, for small gap sizes the heat flow varies as / 2 In
order for the expansion (24) to be valid in the dominant
range of the integration it is necessary that

V |1_61,2| <<Pmax -

This is equivalent to the condition

C

2(0\/ Il_el’z' '

Hence, a sufficient condition is that (26) holds for all
frequencies up to kg T /#, where T is the larger of T, and
T,. Above this frequency the condition need not be
satisfied because the Planck functions in Eq. (22) cut off
the integral over . For some materials this condition
may not be necessary. For example, the form of e(w)
may be such that the heat flow is dominated by frequen-
cies much less than kz T /#. Then the / ~2 dependence of
the heat flow could hold out to larger gap sizes.

It is clear that if the real and imaginary parts of €; and
€, are of the order of unity or smaller, the heat flow will
always be proportional to / 2 when the gap is less than
the thermal wavelength fic /kg T divided by 2. The heat
flow due to the evanescent waves in this regime is larger
than the radiation term by a factor of the order of
(fic /lkg T ).

For small gap size the main contribution to the heat
flow comes from evanescent waves with polarization vec-
tor perpendicular to the plane of incidence. It is interest-
ing that it is also these waves that make the largest con-
tribution to the van der Waals force in the limit of small
gap size.*

For very small gaps other factors must enter to limit
the increase in the heat flow. In the first place, we have
treated the fluctuations as being pointlike in Eq. (3), i.e.,
we have assumed that it is sufficient to use a local dielec-
tric constant. Second, by assigning each material a single
temperature we are assuming that the thermal conduc-
tivity of the materials is sufficiently large that there are
negligible temperature gradients in the surface regions
where the evanescent waves are generated.

] << (26)

IV. HEAT TRANSFER FOR SMALL GAP SIZE
USING RYTOV’S FORMULA

In his book,’ Rytov derived an expression for the ener-
gy density of evanescent waves close to the surface of a

(e, +1)(e,+1)—(e,—1)(e;—1)e ~7|? ¢

24)
- (25)
—
material. His result can be written as
uy(w) "
U, (@)~ =2 € L 27)

4 |e+1)? (wx/c)

In this expression u,(w) is the contribution to the energy
density of the evanescent waves from waves of frequency
o, and uy(w) is the energy density of black-body radia-
tion, which is given by

_ fiw’ |1 1

= —+ . 28
d 172(;3 2 exp(ﬁa)/kBT)—l ¢ )

Uy,

Rytov’s formula is valid when x <<c /. It can be de-
rived by calculating the average energy density of the
electric and magnetic fields starting from Egs. (10) and
(11).

Rytov’s expression can be used to find a simple expres-
sion for the heat flow between two materials when one of
the materials has a sufficiently small dielectric susceptibil-
ity that it only weakly perturbs the fluctuating fields gen-
erated by the other. Let material 2 be the weak dielec-
tric. The average rate of energy dissipation in material 2
is

el wey )
[dVRelE-j*|= [av fdco—zﬂ (E¥@)), (29

where (E*w)) is the contribution to the average
squared electric field from fluctuations at frequency w. It
follows from Rytov’s results that for the evanescent wave
field close to a surface the energy density is primarily in
the electric field, rather than in the magnetic field. Thus,

(E¥w))=~87u, (o) . (30)

When this result is inserted into Eq. (29) we obtain the
rate at which 2 absorbs energy from the fluctuating fields
generated in 1. The result varies as / 2. Then by using
the fact that there must be no net energy flow when the
two media are at the same temperature zero, we arrive at
the following result for the net flow P from 1 to 2:

i o 1
P J wdo explfio/ky Ty )—1
_ I e,
exp(fiw/kpT,)—1 | | +1]2

(31)
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This formula is valid for a small gap in the sense dis-
cussed in the previous section. It is also necessary that
the absorption length of all evanescent waves, which
make a significant contribution to the energy transfer, be
large compared to the gap and, in addition, that the real
part of €,—1 be sufficiently small that the waves are not
appreciably reflected on going from the gap into material
2. These conditions are required so that the presence of
the material 2 does not significantly perturb the evanes-
cent field of material 1.

The result (31) is in agreement with our general formu-
la for a small gap when the susceptibility of material 2 is
made very small.

V. HEAT TRANSFER FOR DRUDE MATERIALS

In this section we consider heat transfer between two
materials with the same dielectric constant € given by

e=144mi0 (32)
w

where o is independent of frequency and temperature.
For simplicity, we will set T{=T and T, =0, and calcu-
late the power P flowing as a function of T. This involves
no loss of generality since we can clearly use our result
for P(T) to calculate the net heat flow between the two
materials for arbitrary values of the temperatures T'; and
T,.

It is convenient to introduce dimensionless variables
o', ', o', and P’ defined by the following relations:

o'kgT 1'#ic o'kgT

=—, I= y OF , P=P'P, , (33

T Ta T © & b o (33

where Py, is the energy transfer rate for black-body radi-
ation, given by

Py, =mkpT*/60%°c? . (34)

Figure 2 shows the reduced heat flow P’ as a function of
the reduced gap !’ for a number of different values of the
reduced conductivity o’. These results include both the
radiation and the evanescent component and are calculat-
ed from Eq. (21). The dependence of the power on the
gap and on the conductivity is complex and is summa-
rized in Fig. 3. The o'-l' plane can be divided into the
following regimes.

(1) In this regime the dominant contribution to the
heat flow comes from the radiation contribution, i.e., the
part of the integral over p in Eq. (21) for which p is real.
For sufficiently large gap the heat flow is independent of
gap size. For o'<<1, i.e., 0 <<kgT /#, the power is in-
dependent of 0. However, for o >kgT /# the heat flow
decreases with increasing o because the emissivity de-
creases.

(2) This regime corresponds to the small gap limit,
which we discussed earlier. The heat flow varies as
o'l'"%. For a sufficiently small gap this region is always
reached regardless of the value of o’. The value of the
gap along the boundary between regions 1 and 2 i.e., the
gap at which evanescent waves begin to dominate the
heat flow) depends on the value of ¢’ because the evanes-
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FIG. 2. Heat flow between two Drude materials as a function
of conductivity o and gap /. The quantities plotted are the
power P divided by the black-body power Py, and the dimen-
sionless gap I’ equal to lkpT/#ic. The different curves are la-
beled by the dimensionless conductivity o’ equal to o#/kpT.

cent wave contribution to the heat flow varies as o',

while the radiation contribution is independent of o’ in
this region. Thus, the boundary between 1 and 2 is given
by the condition I'~¢’!/2. In this regime the main con-
tribution to the heat flow comes from evanescent waves
with electric field vectors lying in the plane of incidence.
(3) In this region the power transmitted is proportional
to the conductivity and independent of the gap. The heat
flow is dominated by evanescent waves with polarization
perpendicular to the plane of incidence, i.e., parallel to
the surfaces of the materials on either side of the gap.
The boundary between this region and region 2 is set by
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FIG. 3. Plot showing the different regions of the gap-
conductivity plane. [’ and o' are the dimensionless gap and
conductivity, respectively, as defined in Eq. (33). The depen-
dence of the power on I’ and o in the different regions is indi-
cated.
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the condition [ ~o ~3/2,

(4) In this region the heat flow varies as I’ ! and
comes from waves polarized perpendicular to the plane of
incidence. The boundary between regions 3 and 4 occurs
for I ~c /(ow)'?, i.e., essentially when the gap becomes
equal to the classical skin depth.

-4:

VI. RELATION TO EXPERIMENT

For a measurement of the evanescent heat flow it is
clearly desirable to have the contribution from evanes-
cent waves dominate over the contribution from propaga-
ting radiation. To achieve this condition it is necessary
to have the gap between the materials significantly less
than the thermal wavelength fic /kzT. Thus, at room
temperature it is desirable to have a gap of 1 um or less.
One practical way to produce a small gap is through the
use of a scanning tunneling microscope, although the gap
in such a device is not a planar gap of uniform width that
we have considered here. Williams and Wick-
ramasinghel‘"16 developed a scanning thermal profiler for
imaging the thermal properties of materials. This device
consists of a conical tungsten tip (radius ~ 1000 A) coat-
ed with an insulating film except at the very end. A nick-
el film covers the insulator and the exposed tungsten tip,
producing a thermocouple junction with linear dimen-
sions of only a few hundred angstroms. Measurements of
the heat flow across a gap between the substrate and the
tungsten tip gave interesting results.!” When the spacing
was greater than the mean free path of the air molecules
(~700 A), the heat flow could be understood in terms of
classical conduction through the air. In this regime the
power increases steadily as the gap decreases. For small-
er gaps the power became independent of gap size. This
is the expected behavior for heat flow through a gas when
the gap is less than the mean free path. However, when
the gap was decreased to about 100 A the heat flow began
to increase very rapidly.

Dransfeld and Xu'® proposed that in this experiment
the heat transfer was mediated by thermally excited
evanescent electromagnetic waves. As a specific example,
they discussed heat transfer from a metal tip to a sub-
strate that is an ionic crystal. They argued that the opti-
cal phonons in the ionic crystal produce an evanescent
electric field above the surface with an energy density of
the order of magnitude

2 kyT
= (35)

where x is the distance from the surface. They then esti-
mate the heat transfer, Q, to a conical metallic tip insert-
ed into this evanescent field using

T
— Ac(1-R), (36)

. B k
=E jea-pr)==2
87

18 523

where A is the area of the flat part of the conical tip, ¢ is
the speed of light, [ is the distance of the tip from the sur-
face, and (1—R) is the fraction of the incident infrared
radiation which is absorbed. Thus, they calculate the
power absorbed by treating the evanescent waves as
though they were propagating waves incident on the sur-
face of the tip. For the optical reflectivity R they used
the value 0.98 taken from other experimental measure-
ments. When this is done the heat flow is found to be
comparable to the heat flow through air at a gap of
around 1000 A. Thus, the power that they calculate is
considerably larger than that measured by Williams and
Wickramasinghe. However, this discrepancy is perhaps
not surprising since Dransfeld and Xu have performed
their calculation for an ionic substrate outside of which
one may expect there to be stronger evanescent fields
than for other materials.

To confirm that the heat flow that is measured is
indeed associated with evanescent waves one could re-
move the air. This would be very interesting, but ap-
parently has not been done. In addition, one could study
the effect of different choices for the substrate. The cal-
culation of Dransfeld and Xu is specifically for ionic crys-
tals; they mention that there should also be a significant
heat flow when the substrate is a metal, but the effect
should be much smaller for a nonionic insulator. Since it
is not yet certain that the experiment is actually measur-
ing evanescent heat flow and because of the complicated
tip geometry that is involved, we have not attempted to
make a comparison of our theory with these experiments.

To perform a room-temperature test of the theory it
would be desirable to perform an experiment with a gap
down to a few hundred A and with reasonably flat and
parallel surfaces. This appears to be feasible. However,
it may be easier to perform a low-temperature experiment
where the thermal wavelength A is much larger and it is
easier to make the gap size much less than A;. For ex-
ample, at 0.1 K, the effect of evanescent waves should be-
come apparent when the gap is decreased into the milli-
meter range. The main experimental difficulty in a low-
temperature experiment appears to be finding materials
that have a reduced conductivity not too far removed
from unity in this temperature range, i.e., which have
conductivities within a few order of magnitudes of 10'°
s~ 1. The most promising candidates appear to be highly
doped semiconductors.
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