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Coulomb-blockade phenomena and quantum fIuctuations are studied in mesoscopic metallic tun-
nel junctions with high charging energies. If the resistance of the barriers is large compared to the
quantum resistance, transport can be described by sequential tunneling. Here we study the infiu-
ence of quantum Suctuations. They are strong when the resistance is small or the temperature is
very low. A real-time approach is developed that allows the diagrammatic classification of resonant
tunneling processes where different electrons tunnel coherently back and forth between the leads
and the metallic island. %'ith the help of a nonperturbative resummation technique we evaluate the
spectral density, which describes the charge excitations of the system. Prom it, physical quantities of
interest such as current and average charge can be deduced. Our main conclusions are as follows: An
energy renormalization leads to a logarithmic temperature dependence of the renormalized system
parameters. A finite lifetime broadening can change the classical picture drastically. It gives rise
to a strong flattening of the Coulomb oscillations for low resistances, but in the Coulomb-blockade
regime inelastic electron cotunneling persists. The effects become important at temperatures that
are accessible in experiments.

I. INTRODUCTION conductance o.o,

Quantum transport through mesoscopic metallic is-
lands coupled to large reservoirs has been the subject
of many theoretical and experimental investigations in
recent years. The small size of these systems implies
a very strong Coulomb interaction which gives rise to
a variety of single-electron phenomena. When the tem-
perature T is low compared to the charging energy E~,
tunneling can. be suppressed by the Coulomb blockade.
However, when the energy diH'erence 60 between two ad-
jacent charge states is comparable to the temperature or
the bias voltage, a current can now through the system.
As a consequence, the difFerential conductance shows a
peak structure as function of an external gate voltage
Vs (linear response) or the bias voltage V (nonlinear re-
sponse). In the absence of a dissipative environment,
the smearing of these oscillations is dominated by the
temperature provided that the resistance R~ of a sin-

gle barrier is much higher than the quantum resistance
R~ ———"» i.e., o.o = 4, & && 1. In this classical
regime, transport through the system is achieved by se-
quences of uncorrelated tunneling processes which can
be described by lowest-order perturbation theory in the
coupling between the leads and the metallic island. The
corresponding classical rates can be used to set up a mas-
ter equation from which the charge probabilities and
the current can be calculated. However, for very low
temperatures or when the coupling o.o becomes larger,
quantum Huctuations set on and the classical picture
breaks down for two reasons. First, the resummation
of the leading logarithmic terms in ae ln(2 ~&) leads to
a renormalization of the gap Ao and the dimensionless

Ap &o

&+2~oln(2s~)
' ' I+2neln(~ )

'

provided that Ap & T. Throughout this work, we set
h = k = 1 and consider only the case of a wide junction
with many transverse channels. This renormalization is
only important if T & 2o exp[ —1/(2o.e)j, which is an ex-
perimentally relevant temperature if ao is not too small.
Secondly, the consideration of coherent processes where
the electrons can tunnel an arbitrary number of times be-
tween the leads and the island (resonant tunneling) gives
rise to an energy and temperature dependent broaden-
ing of the charge states. Thus, one cannot only over-
come the Coulomb blockade by thermal broadening but
also by quantum fiuctuations due to higher-order pro-
cesses. For 40 )& T, this phenomenon is known as in-

elastic cotunneling ' and can be obtained by a system-
atic analysis to second-order perturbation theory in o.o.
Important results of the present work are that, resonant
tunneling processes describe the crossover from cotunnel-
ing to sequential tunneling and can also give rise to im-

portant corrections to the classical result in the regime
& T, where the conductance reaches its maximum

value. Furthermore, we will show that they are espe-
cially important when ~no 1, which for fl.nite temper-
atures can be realized for a suKciently large value for
o!0. Thus, by lowering the height of the tunneling barri-
ers we expect that effects due to energy renormalization
and Rnite lifetimes are observable in a real experiment
at realistic temperatures. The observation of pure en-

ergy renormalization eKects without the infIuence of 6-
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nite lifetime broadening is difficult since 2o.o ln( @~&) 1
together with pro. p &( 1 is only possible for very low tem-
peratures.

Charge fiuctuations in the equilibrium case (single-
electron box) have been studied before by many authors.
In Ref. 13, a systematic perturbation expansion has been
performed up to second order in o.p including all possi-
ble charge states. This is a good approximation when-
ever the parameter 2as ln (2 ~&) (and, consequently, also
mao) is small compared to unity, i.e., the energy renor-
malization and the finite broadening are accounted for in
a perturbative way. In Refs. 11, 12, and 14 the leading
logarithmic terms together with certain improvements for
larger values of no (Ref. 14) have been considered in the
two charge state approximation. Since finite broadening
efFects are neglected, these approaches are valid in the
low temperature regime, where map (& 1 and lead to the
same renormalization effects as given by Eq. (1). In the
nonequilibrium case (SET transistor), the crossover from
sequential tunneling to inelastic cotunneling has been
studied in (Refs. 18—21) by introducing a finite and con-
stant lifetime into the expression of electron cotunneling.
The results agree with experiments ' in the parameter
regime 2oo ln (2 ~&) (& 1 and n crs (& 1, where renormal-
ization efFects and the energy dependence of the finite
lifetime can be neglected.

In the present work, we will develop a systematic di-
agrammatic technique in real time to identify the pro-
cesses of sequential tunneling, inelastic cotunneling, and
resonant tunneling. Using the two charge state approx-
imation, we can resum the corresponding diagrams an-
alytically and obtain closed expressions for the density
matrix and all Green's functions. The spectral density
describing the charge excitations of the system is shown
to contain an energy renormalization as well as a finite
broadening. Both are retained which is crucial to ob-
tain a conserving theory which obeys sum rules and cur-
rent conservation. The basic starting point of our tech-
nique, the real-time representation of the density matrix,
is closely related to path integral representations formu-
lated in connection with dissipation 4' or tunneling in
metallic junctions. It is a well-suited method to per-
form a nonperturbative analysis in the coupling to the
reservoirs while taking into account exactly the strong
correlations due to the Coulomb interaction. Thus, usual
Green's function techniques, either for equilibrium ' or
nonequilibrium ' systems, cannot be used here. The
same problem arises in the context of local strongly cor-
related Fermi systems like, e.g. , the Kondo or Anderson
model. ' For these systems very similiar diagrammatic
techniques to our ones have been used by Barnes for the
equilibrium case starting &om a slave-boson description.
Another example is a work by Rammer, who developed
the same graphical language within a density-matrix de-
scription of the dynamics of a particle coupled to a heat
bath. Finally, the whole technique presented in this work
can also be formulated very elegantly in terms of Liouville
operators using projection operator techniques developed
by Loss and Schoeller in Ref. 35. These relationships
as well as the generalization to other systems like, e.g. ,
quantum dots with arbitrary many-particle correlations

or time-dependent Hamiltonians will be the subject of
forthcoming works.

II. HAMILTONIAN AND PHYSICAL
QUANTITIES

A small metallic island coupled via high tunneling bar-
riers to two leads and capacitatively to an external gate
voltage (SET transistor, see Fig. 1) is described by the
following Hamiltonian

H = HL + HR + Hi + V + Hz —Hp + Hz . (2)

Here,

t
~V& —g E7g~ G~~~ GJere, y

kn

~I = g.~l~cl„cl~t

ln

describe the noninteracting electrons in the two leads r =
L, R and on the island where n is the transverse channel
index which includes the spin. The wave vectors k and
l numerate the states of the electrons for fixed r and n
(a subindex k„or L„has been omitted for simplicity).
The Coulomb interaction V obtained by straightforward
electrostatic considerations ' ' is given by

V(N) = Ec(N —ne), (4)

~h~r~ E~ ——. ~~ is the charging energy, en~ = CLVL +
C~V~+CsVs, C = Cr, +C~+Cs, and V„C, (s = I,R, g)
are the voltages and capacitances of the circuit according
to Fig. 1. N denotes the excess particle number operator
on the metallic island. The charge transfer processes due
to tunneling are described by

Q= eN R

v,
Vg

VR

FIG. 1. Equivalent circuit for the SET transistor.

HT = ) ) (TI"„"a„„„c~„e' + c.c.),
r=L,R kin

~h

where T&&" are the tunneling matrix elements and e+'~
changes the excess particle number on the island by +1.
P is the phase operator canonical conjugate to N, i.e.,

[Q, N] = i. The states N = 0, +1,+2, ..., correspond to
discrete charge states with Coulomb energy V(N) given
by (4). They are treated independently of the degrees of
&eedom described by the field operators cl„,cl„. This
is a good approximation when the total charge on the is-
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land (excess charge plus background charge) is very large
which is certainly the case here due to the dense level

spectrum of the metallic island.
The two leads as well as the island are treated as large

equilibrium reservoirs which are not affected significantly

by coherent tunneling processes where only a small num-

ber of electrons are involved. Thus, we describe the elec-
trons in these three "reservoirs" by Fermi distribution
functions f, (E) = 1/exp[P(E —((t, ) + 1] (t = I, B,I)
with fixed chemical potentials p, or equivalently by the
grand canonical density matrix,

—iQ(t} ip(t'})

i/(t' } —ip(t}
)

(12)

which are independent quantities since we do not assume
equilibrium here. In the stationary limit, i.e. , to m —ae,
the correlation functions depend only on the relative time
difference ~ = t —t' and we can define the Fourier trans-
form,

0
pR

——
o exp P ) (H; —p;N;)

i=L,R,I
(6) and analog for C~(u). From a theoretical point of view,

an interesting quantity is also the spectral density,

where P =. 1/T and N, are the number of electrons in
the leads and the island, respectively. In the following,
we will always set the chemical potential p, l of the island
to be zero.

The coupling between the reservoirs and the discrete
charge states via (5) changes the probability P~ for a
certain excess particle number N on the island. To cal-
culate the distribution P~(t) at time t, we start from an
arbitrary initial distribution P~ ——P}v(to) at time to and
write formally,

P}v(t) = ((IN)(NI)(t))„

A((u) = [C~ ((u) —C~ (~)],
1

which describes the charge excitations of the system, At
the end of Sec. IV, we will see that within our approxi-
mations all quantities of interest like the probability P~,
the current I&~&R, and the correlation functions C+, C+
can be related to the spectral density. Thus, its specific
form which is related to energy renormalization and fi-

nite lifetime broadening effects will be the central point
of our analysis.

where po ——pRP is the initial density matrix of the
whole system, P is a diagonal operator with matrix
elements P& ——(N]P ~N) and ~N) denote the discrete
charge states.

The stationary distribution follows from

III. DIAGRAMMATIC TECHNIQUE

To start with, we consider the probability distribution
(7) and write it in the form

P~ ——lim P}v(t) = lim Ppg(0),
t +ao to —+ —OO

and will turn out to be independent of the initial choice
for P~. Note that this distribution is not the equilibrium
one if the chemical potentials p, L,~R of the leads are differ-
ent. The average charge of the island can be calculated
&om

N = ) NP}'v',
N

which is an experimentally measurable quantity via the
electrostatic potential of the island.

The current flowing through the barriers r = I/R is

defined by I„(t) = e& (N, (t)) . After a straightforward
calculation, one obtains

I„(t) = 2e 1m I) TiP ((u~ c& e~)(t)) ), „„„
and for the stationary current,

I" = lim I„(t) = lim I„(0).

In Sec. IV [see (45)], we will show that the stationary
current can also be related to the following two real-time
correlation functions:

(16)

where TrR is the trace over all reservoirs, T~ } (T~ })
are the (anti-) time-ordering operators, and H~(7. )o de-
notes the tunneling part of the Hamiltonian (2) in in-
teraction representation with respect to Ho. Note that
the Coulomb interaction V is included here in Ho and
will be treated exactly in the following. Equation (16)
has also been used as a starting point by other authors,
e.g. , by Feynman and Vernon24 (see, also, Ref. 25) for a
system coupled to a heat bath or by Eckern, Schon, and
Ambegaokar for the same system we are considering
here. After integrating out the reservoirs within a real-
time path integral representation, these authors obtained
an effective action where the two propagators occurring
in Eq. (16) are coupled to each other. Expanding the
exponential of this action in terms of the tunneling, one
can arrive at a graphical language in real-time space.

In this work, we will use an alternative approach which
is easily generalizable to other systems as well, as, e.g. ,
quantum dots, Anderson and Kondo models, etc. The
procedure is first to expand the propagators in H~ by



50 MESOSCOPIC QUANTUM TRANSPORT: RESONANT. . . 18 439

(y) ki f,
' drHT (~)0

OO t T1 T)t 1

= ) (+i) dpi d)2
no=0 tp tp tp

x (HT ()i) . .HT ()~)j,
0
N

N N -1=N

II ~N&&NI

N N -1=N

and, in a second step, insert the form (5) for HT and ap-
ply Wick's theorem with respect to the reservoir field op-

erators a&„„and cf„. This is possible since Ho is bilinear
in these operators. As a consequence, the vertices cor-

responding to the charge transfer operators e+'~ become
coupled by reservoir lines, either &om the two leads or the
island. This is indicated in a graphical language by solid
lines for the leads and wiggly lines for the island as shown
in Fig. 2. There the upper (lower) horizontal line corre-
sponds to the forward (backward) propagator and the
vertices change the discrete charge states as indicated by
the particle numbers associated with the horizontal lines.
The two charge states at the left end of the diagram at
time to are the same and lead to the factor P~, &om the
initial probability distribution. The two charge states at
the right end at time t are identical to N if we want to
calculate P~(t). Graphically we indicate the relationship
of the upper and lower states at the two end points by
external vertices given by Po and ~N)(N~. All the other
vertices are called internal vertices. Furthermore, we as-
sign to each line a certain energy, the Coulomb energy
V(N) to the horizontal lines and the energies e (E) to
the lead (island) lines. The rules to translate a certain
diagram in time space are the following ones.

(1) Assign a factor e '*» to each vertex where wz is
the time variable and zz is the difference of the energies
entering the vertex minus all energies leaving the vertex.

(2) To each loop formed by 2s reservoir lines, we assign
a factor

&1)~ ~ ~ )&a)91) . )9e E Eh1 ~ ~ ~ ey 1 s)~ ~ o g

) ~ ) Pt ]tli7ggy
( E )Pt )tLlJgl7)

( E )
~ ~ ~ )

P1' ~ T40gfJ ~

( E )'
e 1

where eq, . . . , e, and Eq, . . . , E, are the energies associ-
ated to the lead and island electrons, respectively, or-
dered in the direction of the loop, r) ——L/R specifies the

tp

FIG. 2. Example of a diagram in time space for the prob-
ability Pw(t). Time is increasing from left to right. The
dots represent the vertices which are connected by horizontal
lines (propagators), solid lines (leads) or wiggly lines (island).
e~, E~ are the corresponding energies, r~ are the lead indices,
and N denotes the excess particle number.

left or the right lead and each sign n~, g~ = + indicates
whether the reservoir line with energy ez, E~ runs to a
larger (—) or a lower (+) time with respect to the closed
time path formed by the two propagators. The quantities
I' are defined by

(e E) = ) .T)P T) P b(e e) ~)

xb(E —ei„)f„(e)fI (E),

where f,+ = f; (i = L, R, I) is the Fermi distribution
function and f; = 1 —f;

(3) The prefactor is given by (—i)M( —1) (—1)', where
M is the total number of internal vertices, m the number
of internal vertices on the backward propagator, and c
the number of crossings of reservoir lines. Finally, one
has to integrate over all time variables 7~ &om Co to
and over all energy variables of the reservoir lines.

For the current (10) and the correlation functions
(12,13), the procedure is completely analog, the only dif-
ference is that the external vertices have to be changed.
As can be seen &om Fig. 3 one has to introduce an ex-
ternal vertex with two reservoir lines at the right end of
the diagram to calculate the current, and two external
vertices to calculate the correlation functions.

So far, the diagrammatic rules are formulated in time
space which is not the most convenient one to calculate
stationary transport properties. Therefore, using (8) and
(11), we set t = 0 and to ———oo in every diagram for
PN (t) and I„(t) and evaluate the time integrals analyt-
ically for a given fixed ordering of all tiIne variables by
using the identity

—gZM ~M g~1 .M 1 1
&M & ~ ~ ~ e =z

xy +i@xy + x2+ig xy + x2 + + XM + zg

(20)
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i „(t) = -i e

C'(t t )

i4e

FIG. 3. Graphical represen-
tation of (a) the current I„
through lead r and (b) the cor-
relation functions C, C in
time space. The dots indicate
the external vertices. Further
internal vertices together with
their connections are not indi-
cated.

-j8
e

where e" ' (r) m 0+) is a convergence factor which is
related to the adiabatic turn on of the coupling part HT .
The rules in energy space are as follows.

(1) For each auxiliary vertical line which does not cut
any vertex and has always a vertex to its left, we assign
a resolvent &&+. , where LE is the difference of all en-

ergies crossing the vertical line Rom right to left minus
all energies crossing it from left to right (see Fig. 4).

(2) For each loop we assign the same factor as given
by Eq. (18).

(3) The prefactor is given by (—1) (—1)', where m
is the total number of internal vertices on the backward
propagator and c the number of crossings of reservoir
lines. Ftuthermore, if we are calculating the current, we
have to multiply with an additional factor —ie and we
have to assign a factor —1 if the external vertex to the
right has an incoming lead line.

For the Fourier transform (14) of the correlation func-
tions, we write

and, again, calculate all time integrals analytically by us-
ing (20) and fixing the time ordering of all time variables
including the integration variable 7. Rule 1 has then to
be supplemented by rule 4.

(4) If an auxiliary vertical line lies between the two
external vertices, we have to add ku to the energy dif-

ference AE when the vertex e+'@ lies to the left of the
auxiliary line (see Fig. 5). If we imagine a virtual line

which connects the two external vertices from e '~ to e'~
and assign an energy ~ to it, we can simulate the same
by, consequently, applying rule 1 including this virtual
line. The graphical representation of C~(u) and C (u)
in energy space is given in Fig. 6.

IU. PHY'SICAL PROCESSES

Usually, tunneling processes within the SET transistor
are described by a classical Master equation, '

C (~) = d~ e-" iim C~(o, r)tp~ —OO C (t) = ). C'(t)&~~ —C'( )~t~~
'

(22)

+e' lirn C~ (7, 0)
tp ~—OO

where p~~~ are classical transition rates calculated by
the golden rule in second-order perturbation theory in

HT,

N

N

e-1

I

t

&E = V(N-1)-V(N+1)+ei+ez-Ei-E z

I
N-1

I'
AE = ~+ V(N-1 )-V(N+1)+ e-E

FIG. 4. Graphical determination of the energy denomina-
tors. The energies of all lines contribute to AE which are cut
by an auxiliary vertical line.

FIG. 5. If an auxiliary vertical line cuts the virtual line
connecting the external vertices, the energy u contributes to
the energy denominators.
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C ((o) 2i Im

i@

O)~ ~ -i@
e

with pw pr = pN m —8N N Q~ AN, we will now show
that the exact kinetic equation has the form

t

PN(t) = ) dt PN'(t )ZN'N(t t)~
N'

C'(m) = -2 i Im

e '~

(0 e

where non-Markovian effects are included and Z denotes
the sum of all possible correlated processes. For the sta-
tionary solution PNt, this gives

FIG. 6. Graphical representation of the correlation func-
tions in energy space.

0 —) P~~ ZN'N ~

N'

YN'1V = 27l') n„(AN)bN~, N+1 + np (AN 1)bN—',N 1—
(23)

Here, b,N = V(N + 1) —V(N) is the change of the
Coulomb energy if we increase the excess particle number
by 1 and

~bt

where Z~ ~ =i j d7Z~ ~(v) Thi.s equation can im-
mediately be obtained by using our diagrammatic tech-
nique in energy space. The self-consistent equation for
PNt is shown in Fig. 7. Here, Z is defined graphically as
the sum of all possible irreducible self-energy diagrams,
which are defined such that any vertical line cutting them
will cross some reservoir line (see Fig. 8). According to
our diagrammatic rules 1, 2, and 3 in energy space, the
equation corresponding to Fig. 7 reads

ap(~) = J dE a,++(~ + 8, E) (24) Piv —PN + ) P~, Z~~~
N' farl

(30)

a.+(~) = (~ —~.)ao n.+(~) (25)

where

as =) O'""I' "pl = (26)

are the transition rates for tunneling in and out processes.
Assuming constant tunneling matrix elements T""= TI",&"

and neglecting the energy dependences of the density of
states p"„(c),pr" (E) in the leads and the island, we obtain
the well-known expressions,

Multiplying with ig and performing the limit g ~ 0+,
we arrive at (29) and can identify the sum of all possible
correlated tunneling processes diagrammatically by the
irreducible self-energy Z. Furthermore, the solution of
Eq. (29) is independent of the initial choice for P& which
has dropped out of Eq. (30) by performing the limit g -+
0+. In the same way, one can also set up a self-consistent
equation in time space to get the time-dependent kinetic
equation (28).

By moving the last vertex to the right of each diagram
of Z up or down, one can easily show that

P~ (t) —).Pm (t)&~~
Nl

(27)

is the ratio of the quantum resistance R~ —— ~ to
the tunneling resistance RT, of barrier r, n+ (u)
1/(exp[P(u —p„)] —1) is the Bose function and n„
1+n+. Furthermore, we introduce the notations no ——

+„ao, a+(~) = P„a(((u), a„(u)) = n+((u) + n„((u),
and n((u) = n+((u) + n ((u).

Physically, the Master equation (22) describes se-
quences of uncorrelated lowest-order processes (sequen-
tial tunneling) where each single process describes one
electron entering or leaving the island. Retardation ef-
fects and higher-order correlated tunneling processes are
neglected within this approach. Writing (22) in the form

) ZNN' = 0)
N'

(31)

) (PN& ZN'N P~ ZNN') ~

N'gN
(32)

This has the form of a balance equation for each charge
state ~N). Furthermore, by changing the vertical position
of all vertices and the direction of all reservoir lines one
can easily see that ZN N is purely imaginary, i.e., there
exists a real solution of (29) and (32).

Calculating Z~ ~ in first order in ao (see Fig. 9), we

get

which provides the possibility to write Eq. (29), also, in
the form

st
N

N

N

+ g st

N

N

'I IN&&NI

N

FIG. 7. Self-consistent equation for the
stationary probability PN . The self-energy
Z denotes the sum of all irreducible diagrams
which cannot be cut into taro parts by an ar-
bitrary vertical line.



18 442 HERBERT SCHOELLER AND GERD SCHON

I

I

I

I

I

I

I

I

l

FIG. 8. Examples for irreducible diagrams. An arbitrary
vertical line will always cut through some reservoir line.

Ziv+i N —27I 'EQ (Aiv) Ziv i iv —27l i(1 (AN ] )

(33)

(1 l

N+1, N

N

which, after insertion in Eq. (29), leads to the classical
result (27) in the stationary limit.

Before starting to include higher-order processes in E,
we will introduce two important approximations which
will simplify the following analysis considerably.

First, we assume that the number Z of transverse chan-
nels is very large. Since each loop contribution (18) is
proportional to ZI", this has the consequence that all
loops with 8 = 1 will dominate in each given perturba-
tion order in I'. Thus, we can restrict ourselves to the
loops with two reservoir lines which give the contribution
nP'+(e, E). Since the rest of the diagram depends only
on &u = e —E, we can integrate o.„+'+(u + E, E) over E
and get the contribution nP(&u) defined by (24,25). Fur-
thermore, we represent all loops with two reservoir lines
&om now on graphically by single solid lines with one
energy variable u (see Fig. 10).

Secondly, for a large charging energy E~, we will use
the two charge state approximation which means that
only the two charge states with N = 0, 1 will be consid-
ered. This is possible when the energy difference of the
two charge states b, o

——V(1) —V(0) and the bias voltage
V = VL, —V~ are small compared to the charging energy.

FIG. 10. Replacement of a loop consisting of one lead and
one island line by a single solid line. The arrow direction is
the same as of the lead line.

The classical approach breaks down for low temper-
atures or for large values for the dimensionless conduc-
tance o.p. Speci6cally, we will see in Sec. V that the
classical master equation is valid for koln(2 &) « l.
To go beyond this regime we consider now higher-order
correlated tunneling processes in E. Figure 11 shows an
example in second order in o.p which corresponds to in-
elastic electron cotunneling processes ' when the leads
r and r' are different. Here, one electron enters the is-
land kom lead r, the system stays in a virtual inter-
mediate charge state with N = 1 and, finally, another
electron leaves the island via lead r'. However, the cal-
culation of all second-order diagrams for Zpq ———Epp
or Z]p = —Zyy is plagued by several irregular integrals
which occur since the complete self-energy depends non-
analytically on np. Thus, instead of regularizing the in-
tegrals by unclear procedures, we will directly perform a
nonperturbative resummation of higher-order diagrams
and discuss the second-order result as a limiting case at
the end. By this, we are also able to clarify certain sin-
gularities which are present in the usual expressions for
inelastic electron cotunneling. ~ Furthermore, we are
able to go beyond the cotunneling theory and can inves-
tigate the inBuence of resonant tunneling processes which
will modify the classical result of sequential tunneling sig-
nificantly if no ln (2 ~&) 1.

A very illustrative example of a resonant tunneling pro-
cess is shown in Fig. 12. Here, the charge of the island
is alternating between 0 and 1 via an in6nite number
of intermediate virtual states. The electrons going back
and forth between the leads and the island are all differ-
ent since we have assumed a large number of transverse
channels. This is in contrast to the usual mechanism
of resonant tunneling where only one level of the island
is involved. Of course, the diagram of Fig. 12 is not
the only one which is important to describe higher-order
processes. In order to get a systematic criterion which
diagrams might be the relevant ones, we remember that
the states corresponding to the upper and lower hori-

N+1 N 8+1 ~r m N

-- N N —1 N

FIG. 9. First-order diagrams for Z which correspond to the
classical transition rates.

FIG. 11. Second-order diagram for Zpp which contributes
to inelastic electron cotunneling when the two leads r and r'
are diferent.
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1 0 1 0

1 0 1 0

FIG. 12. Higher-order diagrams which contribute to reso-
nant tunneling.

zontal lines are matrix elements of the density matrix.
Before integrating out the reservoir degrees of freedom,
we can also follow up the states within the leads and the
island. Our criterion now is that we take into account
only those matrix elements of the total density matrix,
i.e., reservoirs plus charge states, which diHer at most by
one electron-hole pair excitation in the leads or (equiv-
alently) in the island. Graphically this means that any
vertical line will at most cut through two solid lines each
representing a pair of one lead and one island line (see
Fig. 13 for examples). The sum of all these diagrams
can be represented as shown in Figs. 14—16. We get for
N =0, 1,

I
I
I
I
I
I

I
I
I

FIG. 13. Example of a diagram which is taken into account.
All vertical lines cut at most through two solid lines. The cut
through the two horizontal lines is trivial and is not counted.

Imps((u) = pn. +
~II((u))', (40)

where

Ag —— d n+h IIh A= duII u 41

Since Imo'(u) = mc—r(u), the solution of this integral
equation is

~N1 = —21Im du N ~

together with the self-consistent equation,

(34)

and the real part of @~(ur) can be obtained from (39)
and the Kramers-Kronig relation although it is not nec-
essary for the following. From Eq. (40), we can calcu-
late Img~(u) with the help of (37,38) and obtain from

Eq. (34) a nonperturbative expression for the transition
Inatrix elements,

4%(~) = ll(~) ~.'(~)b~o —~, (~)~»

—a„(~)f dw'

.A+
~01 — ~00 —2~~ )

A
'

.A
Z10 ———Z11 ——2m

A
(43)

where

ll( )=

Defining

q ()=~' — " rl()+ rf()
A„(d (17 (d O.' 41

( )
K(~) + ~. (~)„( )

~ (~)ll( )
hP 0!~ 4P 0! 4P

(37)

1,o.((u')

u) —b, o —0 (~)
' u —~'+ xg

(36)

Inserting these quantities in the kinetic equation (32) and
solving it, we obtain for the stationary probabilities,

P"=A, P"=A (44)

where A+ + A = 1 has been used which ensures the
normalization P08t + Pist 1. Furthermore, both prob-
abilities are strictly positive. The solution (44) is the
final result for the density matrix and will be discussed
in detail in Sec. VB.

In order to calculate the stationary current I„'t, we re-
late it to the correlation functions C+(&u) and C+(u) as
indicated in Fig. 17 which gives

which are quantities independent of r due to Eq. (35),
we obtain the integral equation,

I„' = —ie d(u a„+ u) C u) +o.„u) | u . 45

l~ —&o —~(~)l &+(~)

n+((u), n((u'), ).
o!(id) (d —(d + X'g

(39)

This relation is exact in the limit of a very large number
of transverse channels. Otherwise, the current will also
depend on correlation functions involving more than two

charge transfer operators e+'&.

X )
—— 2i im ld~ X

r

FIG. 14. Graphical representation of the
self-energy Z~~ within our approximation.
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C
N

(u)) &so +
0

N, l

+ z ld'
N

@II(~ )*

0 1

0

FIG. 15. Self-consistent
equation for PN(cu).

+ y ld~'
N

@N(M )*

0
0

The correlation functions can now be calculated &om
the diagrams shown in Fig. 18, where we have used the
same criterion as for the calculation of the density matrix
with one exception. If a vertical line lies between the
external vertices, we allow for a cut through at most one
solid line. Thereby, we have used the fact that such a
vertical line will, in addition, always cut the virtual line
connecting the external vertices. The sum of all these
diagrams gives

Furthermore, we obtain for the spectral density (15),

&(~) = ~(~)Ill(~)l' (50)

(51)

which is normalized to unity f duA(~) = l.
Using (41), (44), (45), (48), (49), and (50) we can ex-

press all our 6nal results in terms of the spectral density,

) ) Pst d I 4N( )
ld —(d + t'g

%=0,1 r=L jR
(46)

c (.) = ..r (;'n{.).
+) ) ~" d' ~~~ ~ n(~))(d —4) + gg~=0,1 v =L/R

(47)

2,.E.~.(~)f. (~)„(
)a(u))

~&( ) 2,E.~.(~)f.'(~)~(
)o.(&u)

(54)

(55)

which yields with Eqs. (37), (38), (40), and (44),

C~(~) = -2~tn-(~) (11(~)(',
C~(~) = 2vri a+((u) ~II(u))~ .

(48)

(49)

where we have used the relation u+(u) = a„(w)f,+(a).
These results satisfy conservation laws and sum rules.

Current is conserved, i.e., P„I„' = 0, and is zero in
the equilibrium case when p,„=0. All probabilities are
positive, the spectral density is normalized to unity and

FIG. 16. De6nition of II. To each energy
denominator one has to add u in order to
obtain II(~).
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FIG. 17. Graphical representation of the
relation between the current and the correla-
tion functions. Here, the line connecting the
external vertices is a real one. All the other
internal vertices are not indicated.

we get the correct relationships between the correlation
functions and the spectral density in the equilibrium case.
The classical result can be recovered from (51)—(55) if we
use the lowest-order approximation in no for the spectral
density,

where

R((u) = D(~)~ Q l l
+ @ l

1+
(2+T ) ( 2'ET )

A(o}((u) = b((u —6o). (56)

Thus, we can conclude this section by the observation
that quantum Buctuation e{Fects due to energy renor-
malization and broadening manifest themselves in the
spectral density via the real and imaginary part of the
self-energy o (u) given in Eq. (36). This will be the main
subject of the detailed discussion in the next section.

—2Reg l
i 2ilTj'

I((u) = D((u)ir(u coth
l

(58)

is the digamma function and we have chosen a
Lorentzian cutoff function D(u) = Ec/(u + Ec) with
a bandwidth given by the charging energy E~. For
Ec )& lw —y,„l )& T, the self-energy 0'(w) behaves
marginally,

V. RESULTS AND APPLICATIONS

A. The spectral density

0(~) = —) o.o [R(u) —y,„)+iI((u —p„)j, (57)

Using Eq. (25) one can evaluate the self-energy 0'(ur)

given by Eq. (36) as

~(~) = —).o.o 2(~ —p')»
l

I+till~ —v'I&l~-s. l)

(6O)

Since the imaginary part is linear in ~, the broadening
eEects manifest themselves in a very unusual way.

We will now analyze two limiting cases, either T «
lur —y,„l « Ec or lu —p,„l & T « Ec. Furthermore, we

(a}
C'(ta) = 2 I Im

st

i@
0 1

+ X /dM
r, N

4N (m')*—

I Qe

I I (to) tu

(b}

C'(u)) = — 2 I Im p
St

1

-ig
1 0 0

* ~ i@
n(to) t0 e

1 1

FIG. 18. Graphical represen-
tation of (a) C~(ur) and (b)
C (u) within our approxima-
tion.

+ z /d PN"
r, N

I@
0

i @
t1(~)* ~ e

0 1 1
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&(~)~(~)
~p [~ —&(~)]'+ (~&(~)~(~))'

T«~~[«Z~, (61)

where 4 and 6 are the renormalized parameters

b.((u) =
@c 1 + 7l' cl((d)
l~I

(62)

assume for simplicity and with regard to the applications
we are discussing in Sec. VB and VC that all chemical
potentials of the reservoirs are zero.

In the first case, i.e. , T « ]~[ &( Ec, we can use
Eq. (60) and obtain &om Eqs. (50) and (36) for the spec-
tral density,

by (64) for Ko )) T and by (66) for Ap ( T This has
also been proposed in Ref. 14. Furthermore, we can see
here that the correct replacement to get (66) &om (64) is

given by Ap ~ 2mT on the r.h.s. of (64). Furthermore,
by using our solution (50) for the spectral density, we

can also describe the crossover regime kom Ap & T to
Ap &) T and we are able to account correctly for the 6nite
broadening if vr6p approaches unity. The latter case is not
only of academic interest, since it is possible to achieve
experimental parameters like 2 T 3, np 0.5 (Ref. 38)
which gives n6o 0.75 by using Eq. (66). Finally, we
consider the case where 2apln(2 ~&) 1 but x6o (( l.
E.g. , for 2np ln (2 ~&) = 0.1, vr6o &( 1 requires oo ~ 0.01
according to (66) which gives a temperature of the order
of 0.001Ec.

()=- 0!p
(63) B. Charge Quctuations in the single-electron box

Approximately, A(u) will have a maximum value at
4p ——b, (bp) with a broadening of the order of mApcxp

where ap = 6(Ap). This broadening can be neglected for
x6p « 1 and in this case, we obtain

In the equilibrium case where p,„=0, the SET tran-
sistor becomes equivalent to the single-electron box. The
average excess particle number can be calculated &om
(9) and (52),

Qp

1+2o.p ln
, (64)

1+ 2o,p ln

N = du) f(ur)A(~)

for the renormalized gap and the renormalized dimen-
sionless conductance. This result coincides with the
renormalization group analysis in Ref. 14 and for small
o.p with Ref. 11, where Ap has been replaced by Ap on
the right-hand side (r.h.s.) of Eq. (64). Thus we can
conclude that the leading logarithmic terms are included
in our diagram series.

For ~w~ & T (& Ec, we can approximate R(u) by
2~ ln (2 ~~) and obtain

&o nous coth(q~)Ald)=
&o (~ —bo)2+ [vrnpcu coth(~~)]2

i~i & T && Ec, (65)

where the renormalized parameters are now

Within the classical approach given by Eq. (56), one ob-
tains ¹'= f(b,p),

where the bare gap b, p
——Ec(l —2t gVs) can also be

expressed in terms of the external gate voltage. Thus,
¹ (Vg) shows a step at Vg

l = -222- (or Ap ——0) which is
smeared by temperature.

As can be seen &om Figs. 19 and 20, there are clear
deviations from the classical result if ap increases or if
the temperature T is decreasing. To estimate this, we
have neglected efFects &om the Gnite broadening, i.e. )

crap « 1, and have assumed that 4~ p —222- give the en-

ergy of the ground state and the erst excited state near
the degeneracy point where V(l) = V(0).i4 In this case,
the partition function reads

&o Clp
) 0'p = (66)1+ 2npln ( ~&) 1+ 2o.pin (2 ~&)

which is the result (1) quoted in the Introduction. If
Ap ( T, the spectral density (65) has approximately a
maximum at Ap with a broadening of the order of m& pT.
Again, for x6p « 1 this broadening is small compared to
6p. However, the results (65) and (66) are independent
of the value of Ap and can be used always when we need
the spectral density only for ]u] & T. This is indeed the
case for the calculation of the difFerential conductance in
linear response as will be shown in Sec. V C.

As far as we are only interested in the maximum point
Ap of the spectral density, we can conclude that it is given

(~,lZ= 2e 4T cosh~
( 2T )

and we obtain for the average excess particle number
N = n —Ts~ lnZ [see Eq. (4)]

From (64) and (66), it follows for Ap )) T as well as for

Ap & T that &0 —&', where we have used 6p && 1.
0 0

Thus, we find
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I I
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0.4

0.3

0.2

FIG. 19. Average charge as function of
the gap energy for different values of o.p.
Ec = 1, T = 0.01 and (a) op ——0, (b)
oo ——0.01, and (c) np = 0.1. Curve (a) is
the Fermi distribution function which corre-
sponds to the classical result. For increasing
exp the deviations become more signi6cant.

O. I

0 77 g

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

—&p ——Ec(2C,V„—1) [Ec]

1 1N= — 1—
2 1+2apln(2 ~~)

x tanh'
(2T(1+ 2ap ln (2~~)) )

if 2ap ln (2 &) 1. Thus, by increasing np or decreasing
T, quantum Buctuations become more important. For
bp )) T, Eq. (72) coincides with the result obtained in
Ref. 11 for the T = 0 case.

The slope at A0 = 60 = 0 is given by

b,p & T, vrap « 1 (71) 86p
bp ——0

1

4T[1+2o.

pin�(2

~ )]" (73)

whereas the classical result would predict

~ p~ '+2~"n(ia:i))
840

Ap ——0

1

4T (74)

ZLp )) T) x6p « 1. (72)

For b, p & T given by Eq. (66), this means that we
get significant deviations &om the classical result (68)

Thus, we conclude that an anomalous temperature be-
havior of the slope of the Coulomb staircase at the de-
generacy point would be an indication of coherent higher-
order tunneling processes.

0.8

0.6

0.4—

FIG. 20. Average charge as function of the
gap energy at zero temperature. At 6nite
~p = 0.03 there are clear deviations from a
pure step function.

0.2

0 I I I I I

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

—&o = &c(2C&V& —1) [Ec]
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Figure 21(a) shows a comparison of the fits (71), (72)
with the correct result obtained from Eqs. (67) and (50).
Both line shapes agree quite well for m'o. o « 1, where
6nite lifetime broadening efFects are not important. Fig-
ure 21(b) shows the same comparison for 7rnp 1 and
we can see here clear differences for 40 & T, whereas for
b, (T the approximation (71) still seems to be reason-0
able.

C. Conductance oscillations in the SET-transistor

In the linear response regime, we obtain for the current
from (53),

Due to the derivative of the Fermi function, the integra-
tion variable ~ is in the regime u & T. Thus, we can
use (65) and obtain after some straightforward manipu-
lations,

exp (d coth (+&7, )
2'

(ld —ZLp) + [7I Crp ld coth ( &&)]
(77)

where clap
——ap + np~ and b, p are given by Eq. (66).

Two analytic results can be obtained &om this formula.
First, the maximum conductance at Ao ——40 ——0 is
given by

I~ —— Ir" ——G—(VL —VR) )

with the conductance G given by

(75)
G = —2n ' ' ——arctan

~IDR3C
2crp& )

2

(76)
and secondly, the integral of the conductance over the
gap Ap (or equivalently over e~ cs V~) is equal to

(2)

0.8

0.6

0.4

0.2

0
-0.2 -0.15 -0.1 -0.05 0.05 0.1 0.15 0.2

0.8

—4p ——Ec(2' Vg
—1) [Ec]

F/Q. g].. A.verage charge as function of
the gap energy using (1) the correct result
E . (67) (2) the fit (71), and (3) the fit (72).
Ec = 1, T = 0.01 and (a) oo = 0 02 and ( )

q. ) )

b
o.o ——0.2. When finite lifetime broadening
effects set on in (b) the deviations grow.

0.6

(2)

0.2

0
-0.2 -0.05 0.05

l

0.1 0.15 0.2

4o = Ec(2CqV» —1) [Ec]
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2 ~R~L
dBo G(b, o) = —m T.

h O.p

The broadening p of the conductance peak is then given
by

f db. p G(b, p)

G
vr T[1 + 2uo ln ( ~ )]

In the regime z'ap « 1, (78) and (80) reduce to

2 P Pe cl A 1
G = —2~

ap 1+2upln(z ~)
(Eci—T 1 +2apln

~2 (2 IrT )

(81)

(82)

1
msx T lnT, (83)

i.e., the maximum value as well as the broadening go to
zero. For 2apln(z ~&) 1 and z'cap 1, we have to ac-
count for energy renormalization effects as well as effects
from finite lifetimes which lead to the complex formulas

(78) and (80). Figure 22 shows the conductance ver-
sus Lp for several temperatures calculated numerically
from the correct formula (76) which demonstrates the
predicted behavior.

With respect to the conductance apart &om the degen-
eracy point Ap = 0, we can make the following analytic
analysis. For Ap & T and vrap « 1, we can replace the

From these results, we can make the following predic-
tions which might be observable in a real experiment. In
the regime 2apln(z ~T) && 1, G is constant and p is
proportional to T, which is the classical result &om se-
quential tunneling. For 2aoln(z &) 1 and xnp « 1,
G „and p contain logarithmic terms in the temperature
which are an indication for energy renormalization effects
due to higher-order tunneling processes. For T + 0, we
have

last fraction in Eq. (77) by b(u —Ap) since the broaden-

ing is of the order x6 pT « T and the function

is varying on a scale of ~ T. Thus, we obtain

G= — apso i ~, bp))T, 7rap&1, (85)
e'Sz4 R I (T't
h 3

where the renormalization factor [1+2np ln (z T, )] has
dropped out. Thus, in the Coulomb-blockade regime,
we recover the usual expression of inelastic electron
cotunneling provided that x6p ( 1 and Qp )) T.
Therefore, the inBuence of resonant tunneling processes
seems to be easier observable at resonance where Ap & T.
Here, we expect significant deviations from sequential
tunneling already in the regime 2apln(z &) 1 and
effects from finite lifetimes [see Eq. (78)] for map 1.

Finally, we will compare our result (77) with the
one obtained in Ref. 20 which also coincides with other
approaches ' It read

e', npRap~ „(u/T
apts coth(&&)

((u —b,p)z + [7rnpb, p coth(~~)]
(86)

Here, the energy renormalization effects in Q.p and Ap
have been neglected and the integration variable cu is re-
placed by 6p in the broadening part of the last denomi-
nator. This corresponds to the introduction of a constant

G= —2m ) Lp &T, m6p «1)e z aoao ~oIT
ao sinh(b, piT)

(84)

which is the classical result but with renormalized pa-
rameters Ap and ap.

For Lp )) T and +exp ( 1, we can replace the last
denominator in Eq. (77) by —,since u & T (( b,p and

0

m6pu & xapT & T « Ep. This gives

0.1

0.68

I

0.06

0.04

FIG. 22. Conductance as function of
the gap energy for various temperatures.
Ec = 1, ao = 0.02 and (1) T = 0.05, (2)
T = 0.02, (3) T = 0.005, and (4) T = 0.0005.
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0
-0.15 -0.1 -0.05 0.05 0.1 0.15

Eo —Ec(l —2Cg V~) [Ec]
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and 6nite lifetime into the usual expressions of inelastic
electron cotunnneling ' which regularizes the integrals.
This is only justified in the regiine 2Ii.oln(2„T) « 1,
where the renormalization factor [1+2cxo ln (2 c&)] and
the broadening nap4J cath(&~) 7roIpT (( T are unim-
portant. Thus, the replacement u m Ap within the
broadening does not change the result for sequential tun-
neling significantly (b,p ( T) and for Ao )) T Eq. (86)
leads to the correct value for electron cotunneling since
the numerator of the last &action of Eq. (77) has not
been changed. However, for 2npln(2 oT) 1 or +no 1,
Eq. (86) can no longer be used at resonance as is demon-
strated in Fig. 23.

VI. CONCLUSIONS

In this paper, we have aimed at presenting a de-
tailed theory of quantum fluctuation effects in transport

through small metallic islands with strong Coulomb in-

teraction. With the help of a diagrammatic technique
in real-time space, we have identi6ed and evaluated the
contribution of correlated higher-order tunneling events,
Assuming a wide junction with many transverse chan-
nels, we have allowed difFerent electrons to tunnel an
arbitrary number of times coherently between the leads
and the metallic island. Using the two charge state ap-
proximation, we have included in a closed analytic form
sequential tunneling, inelastic electron cotunneling, and
resonant tunneling processes.

From a theoretical point of view it has turned out that
the efFects of quantum fluctuations can be understood
very clearly by investigating the spectral density which
describes the charge excitations of the system. In the
classical regime, the spectral density has a sharp max-
imum at the gap energy 4p which is the difFerence of
the Coulomb energies of two adjacent charge states. In
the quantum regime, the maximum point renormalizes to
Ap and we obtain a 6nite broadening which can be esti-

0.1

0.08 (1)~- (3)

0.06—

004-

0.02

0 I

-0.02 -0.015 -0.01 -0.005 0.005 0.01 0.015 0.02

1,4

1.2

cu J~
0.8

0.6

4o = Ec(l —2CgVg) [Ec]
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I
I

I
I

I
I

I
I

I

FIG. 23. Conductance as function of the
gap energy using (1) the correct result (76),
(2) the fit (86), and {3)the fit (84). Ec = 1

and (a) T = 0.001, no —— 0.02, and (b)
T = 0.05, ap = 0.6. In both cases are clear
differences to the classical result (86). {a)
can be described by renormalized parameters
given by (84), whereas in (b) finite lifetime
broadening effects dominate.
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&o = Ec(l —2CyUg) [Ec]
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mated to be of the order of rrno max(b, o, T), where ao is
the renormalized dimensionless conductance of a single
barrier. Both features together with the complete form
of the spectral density is described by the real and imag-
inary part of the self-energy o (~). It contains an anoma-
lous dependence on energy and temperature which leads
to a variety of unexpected features in the line shapes of
several experimental quantities.

To estimate the experimental consequences of quan-
tum Buctuations, we have calculated the average charge
of the single-electron box and the linear conductance of
the SET transistor as function of the gap energy Aq
or equivalently the external gate voltage. For the av-
erage charge, we have compared our results to previ-
ous investigations where renormalization group tech-
niques have been used to study the zero temperature
case. Using the temperature as a cuto8', one can calculate
the average charge &om these theories in the two limiting
cases Ao » T or 40 & T. These results agree with our
solution in the case mao && 1, i.e., in the regime where fi-
nite lifetime efFects are not important. For m@0 1 there
are significant deviations at least for Ao & T. Further-
more, our complete solution is capable of describing the
complete crossover from 40 & T to 60 » T and shows
that the temperature has to be introduced into the renor-
malization of the system parameters by the replacement
Ap -+ 2~T.

For the conductance in the linear response regime me

have seen that the classical description of sequential tun-
neling near the resonance (Ao ( T) is only valid for
2aoln(2 c&) (( I and rrao ——rrcto/[I+ 2croln(2 c&)] (( l.
Nowadays, it is possible to leave this regime experimen-
tally. Therefore, we expect that resonant tunneling of
coherent higher-order tunneling processes should be ob-

servable in a real experiment by measuring the line shape
of the conductance peaks as function of no and tempera-
ture. The renormalization of the system parameters Ao
and ao is important for 2cro ln (2 cz) 1 and leads to an
anomalous logarithmic temperature depeadence of the
conductance peak and the broadening. For T + 0 the
conductance maximum goes down to zero like I/ ln T and
the broadening increases proportional to TlnT. Fur-
thermore, for ao.o 1, the inBuence of finite lifetimes
becomes very important and leads to a very significant
Battening of the Coulomb oscillations. Both effects are
important and we have seen that it is very difEcult to
separate them at realistic temperatures.

Finally, our approach describes also correctly the con-
ductance in the Coulomb-blockade regime where trans-
port is dominated by inelastic electron cotunneling. Our
analytic formulas give the correct crossover &om resonant
tunneling at the degeneracy point to inelastic cotunnel-
ing. We have seen that cotunneling persists in the regime
Ao » T and m6O & 1. For x6O » 1, cotunneling as well
as the validity of our approach will break down. In this
regime, the charge will no longer be well defined and one
should go beyond the two charge state approximation.
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