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A number of experimental works provide evidence for the existence of high-field domains in
superlattices when the applied voltage exceeds some critical value. A theoretical description of
the structure of such a domain is developed. We confine ourselves to the case of narrow-band
superlattices, where electrons are strongly localized in the wells. We find that the minimum length
of the high-6eld domain can be larger than one superlattice period. The maximum current in the
oscillating part of the I-V characteristic can be signi6cantly smaller than the value of the current
at the voltage where the 6rst instability comes about. The oscillation period can be considerably
smaller than the value corresponding to the energy separation between the 6rst and second level in
a well. For the case of the domain formation at some distance from the anode, we study the 6eld
distribution in the low-6eld region downstream of the domain.

I. INTRODUCTION

During the past 20 years a number of interesting ex-
perimental works have been performed in order to in-
vestigate transport properties of superlattices in growth
direction. Under a weak applied bias the superlattice
looks like a homogeneous medium and exhibits Ohm's
law. Near some critical field Fqh an instability appears
and destroys the homogeneous state. As a result of the
instability the superlattice breaks down into three re-
gions: the low-field region with transport in the first
miniband, the high-field domain, and the low-field re-
gion where electrons are injected into the second mini-
band kom the high-field domain and then relax down to
the first miniband; see Fig. 1. An electron can move 1000
A in the second miniband before it drops downis is be-
cause the intersubband relaxation rate is relatively small.
A further increase of the applied bias leads to an expan-
sion of the high-field region and the current exhibits an
oscillatory behavior. The period of this oscillation can
be associated with the intersubband space, but generally
it is smaller. ' Under higher biases upper minibands be-
come involved in the transport process.

A phenomenological model that described a superlat-
tice by an equivalent electric circuit was suggested by
one of the authors. In this model each barrier was re-
placed by a nonlinear resistor parallel to the capacitor.
The model explained current oscillations and the hystere-
sis usually observed in the experiment. Prengel, Wacker,
and Scholl considered a model for a realistic superlat-
tice which included electron tunneling between difFerent
levels in the adjacent wells and relaxation processes inside
one well. They obtained multistability of the current-
voltage characteristic and various hysteretic transitions
which arose upon sweeping the applied voltage and which
they associated with changes in the domain size.

The purpose of the present work is not to simulate the
I-V characteristics in a specific superlattice but to under-
stand the general structure of the high-Geld domain. A

diffusion current induced by a charge accumulation at the
domain boundary appears to be very important. We cal-
culate the field and the carrier distribution in the steady
state and get the main features of the current-voltage
characteristic of the superlattice in some interval of the
applied bias. The size and the position of the domain are
also discussed.

The physical processes characterizing transport in a
superlattice are described briefIy in the next section. In
Sec. III we derive the equation for the hopping current
between two levels in the different wells. In Secs. IV, V,
and VI we calculate the field distribution in regions I,
II, and III, correspondingly. We discuss the results and
make some comparisons with available experimental data
in Sec. VII.

FIG. 1. Regions of different conductivity in the superlat-
tice. I and III are low-field domains and II is a high-6eld
domain. Dashed lines show the levels position. Levels are
broadened due to scattering. The second levels in region III
form a miniband and long dashed lines show its edges. Arrows
show the hopping of electrons between the levels. In region
III most of the electrons move in the second miniband. If the
domain is formed near the anode, region III does not exist.
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II. PHYSICAL PICTURE

Let us see what happens when the bias applied to
the superlattice increases and goes beyond the instabil-
ity threshold. If as a result of the instability development
a narrow high-field domain is spontaneously generated,
then the field in the low-field regions is reduced by FH/N,
where F~ is the field in the high-field region and N is
the number of the superlattice periodk. The current in
the low-field region is j = 2joFFti, /(F2 + Fti, ), where
Eqh is the threshold 6eld and jo is the current just be-
fore the instability point. So the generation of the nar-
row domain results in the reduction of the current by
6j =jo(F~/Fti, N) . Usually F~ is only 10 or 15 times
larger than Fth, but the number of periods can range
&om 50 to 100 and therefore the reduction of the current
is small 6j (( j.

The formation of the high-Beld domain is accompanied
by the accumulation of electrons in the well just upstream
of the domain and with the depletion of electrons in the
well just downstream of the domain. The accumulation
of electrons in one well gives rise to a diffusion current
upstream of this well in the direction opposite the total
current. Since the total current is the same across all
of the barriers, the difFusion current across one barrier
has to be compensated for with the conduction part of
the current. It may occur that this compensation is im-
possible because the electric current is too close to its
maximum value jo, that is, for a such a value of the total
current a steady state does not exist. A steady state can
come about only for a domain extended enough when the
total current is not too close to its maximum value jo.
Therefore there exists a minimum length of the high-
field domain and the upper limit of the total current in
a steady state j'.

Generally, after the formation of the high-field domain
with an increase of the applied bias, the total current
drops below j'. A further increase of the bias leads to
the growth of the current and when it reaches j' the
high-6eld domain expands by one period and the current
drops again.

The change of the potential drop across the high-field
domain when it expands by ohe period is usually associ-
ated with the energy space f between the first and second
levels in a well. i's s's io It is assumed that in the high-
field domain the first level in one well is in resonance
with the second level in the neighbor well. The number
of electrons in the first n( ) and second n( ) levels can be
found &om the simple balance equation

(1) (2) (2) (1) —$)T

721

where n( ) + n( ) = n is the total concentration. Here
Al'/Ai2 is the transition time between adjacent

wells, I' is the width of the level, A12 is the over-
lap between the wave functions of the first level in one
well and the second level in the adjacent well, and 721
is the relaxation time &om the second level to the first
one in the same well. If vq && ~21, then the current is
en[1 —exp( —E/T)j/2+2i. This current has to be smaller

III. ELECTRIC CURRENT
BETWEEN ADJACENT WELLS

In this work we consider the case of elastic scattering so
strong that an electron is scattered in a well before tun-
neling to the next well, at least in the first miniband. So
for the calculation of the current we need the transition
probabilities between adjacent wells. Since the widths of
levels are typically much smaller than the energy sepa-
rations between them, only the tunneling between those
levels that are close to resonance is important.

The general form of the transition probability between
such levels is

A~ I'
I'2+ A2 ' (2)

where 4 is the energy separation between levels. In the
low-field region this equation describes the transition be-
tween lowest levels and it is justified for A11 && I'; see
Ref. 18. For the transition &om the first level to the
second level in the adjacent well such an equation was
derived by Kazarinov and Suris. is In this case Eq. (2) is
justified for an arbitrary relation between A and I'.

than j', which does not always take place. If ~& )) F1
the current is en tanh(E/T)/ri H. owever, this quantity is
even larger than jo ——enAii/max(Z~, T), where Aii is
the overlap between the wave functions of the first levels
in adjacent wells; see Ref. 18.

We see that under resonance conditions the current
in the high-field domain sometimes appears to be larger
than the maximum possible current in region I and such a
regime cannot exist. Due to the limitation of the current
in region I, resonance in region II is not reached. The
current in this region is smaller than its resonance value
for two reasons. The tunneling probability is reduced
because of a lack of resonance and not all electrons in
the second level in one well have enough energy to move
to the first level in the neighbor well.

If the resonance between the 6rst and the second level
in adjacent wells does not exist, the expansion of the
high-6eld domain by one period requires a voltage in-

crease smaller than that corresponding to E'. This is the
explanation of a small period of the current oscillations
sometimes observed in experiments.

The well at the boundary between regions II and III is
depleted. The reduction of the electron concentration in
this well corresponds to 6eld discontinuity between the
high-field domain and region III. If the necessary reduc-
tion is larger than the average electron concentration in
a well, then the domain is located near the anode, where
a depletion layer is formed.

In doped superlattices electrons come from the high-
Geld domain to the second miniband in region III and
relax there down to the first miniband. The relaxation
length depends on the relation between the mobilities in
the first and second minibands and an intersubband re-
laxation time. The redistributing of electrons between
two minibands can result in a 6eld inhomogeneity in re-
gion III.
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The overlap integral A and the level width due to elas-
tic scattering I' are difFerent for difFerent pairs of lev-
els. The overlap integral increases with the level number
because the wave function penetration length under the
barrier increases with the energy. The parameter I' in
Eq. {2) is different for the transition from the first level
to the first level and for the transition from the first level
to the second level because in the latter case the presence
of the first level gives more possibilities for momentum
relaxation.

In a part of region III electrons can travel in the second
subband, which can be wide. Therefore in this region
instead of Eq. (2) we use Ohm's law.

The transition probability Eq. (2) gives the following
expression for the electric current from the ith level in
the vth mell to the i'th level in the v+ 1th weB:

when the level in the vth well is higher and

,—[n((('& + 4.„;) —n.'+', ] (4b)I'+ 4'

when the level in the vth well is lower. In these two
equations

n~'l = n{(&'l) =- goT ln(e~" ~ + 1)

is the concentration of electrons in the vth well at the ith
level and go

——m/n h2. We will omit the subscripts of b,
when it does not lead to confusion. The barrier for the
second level is lower than for the first level, so one can
expect that A]i & Ai2 ( A22.

The difference in the square brackets in Eq. (4) can be
simpli6ed

when the level in the vth mell is higher 6„,; ) 0 and

e 2dp 2I'A2, ,

Fi (2nh)2 I'2+ b, 2 ",

(3b)

when the level in the vth well is lower 6„;; ( 0. In
these equations A;;~ is the overlap integral between elec-
tron wave functions of the levels i and i' in the vth and
(v+ 1)th wells correspondingly. The energy space be-
tween these two levels is denoted by 4„;;~.The diagonal
elements of the electron density matrix related to these
two levels p and p' can be considered as a function of the
energy E~ = p2/2m, where m is effective mass of elec-
trons, since the in-plane motion of electrons is isotropic
and this density matrix element is independent on the
direction of p. Usually I' is a smooth function of the
energy and we assume it to be a constant.

We see &om Eq. (3) that the value of the current de-
pends on the shape of the electron distribution function.
Equation (3) is simplified in three cases. The first is the
case of a weak electron heating when the electron distri-
bution function is close to the equilibrium one.

In the second case the electron gas is degenerate and
4 is smaller than the Fermi energy. Then the difFerence
of the distribution function in the integrands of Eq. (3) is
proportional to 6 and the tail of the distribution function
above the Fermi energy does not play any role.

In the third case the electron gas is heated significantly
so that the electron-electron scattering is very efFective
and leads to a fast relaxation of the electron distribution
function to the Fermi function with an efFective temper-
ature T and a chemical potential (,"„', where v is the
index of the well and i is the index of the level. We
should note, however, that even a strong deviation of the
electron distribution &om the Fermi function does not
change qualitative results of the present work.

Under these assumptions the integration in Eq. (3) re-
sults in

in either of two cases ( —b. )) T or ( & T, 4 « T.
In the case when expansion Eq. (6) is used one can

distinguish between the difFusion current and the con-
duction current. The former is proportional to the con-
centration difFerence and the later is proportional to A.
Note that

is not a constant, but depends on the electron concentra-
tion, which can be different for difFerent levels.

IV. LOW-FIELD REGION
UPSTREAM OF THE DOMAIN

We assume that in the low-6eld region upstream of
the domain there are electrons in the 6rst miniband only.
Motion of electrons in the narrow miniband A && I' can be
described in terms of hopping between adjacent wells.
So, a current via each barrier can be found &om Eq. (4a),
where i = i = 1 and these indices will be omitted
throughout this section.

The electric field in this low-field region is inhomoge-
neous only near the boundary with the high-6eld domain.
The Geld distribution near this boundary can be calcu-
lated &om Poisson equation together with the condition
that the current is the same through all barriers in this re-
gion. One can see &om Eq. (4a) that the current through
a barrier is a nonlinear function of the electron concen-
tration near this barrier, and of the field. in this barrier,
A/(ed). For simplicity we consider only the degenerate
electron gas. In this case Bn/0( in Eq. (6) is a constant;
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it is equal to go,' see Eq. (7). This restriction is not very
strong since additional electrons come to this region &om
region III if it exists or from the anode contact. There-
fore the electron gas in region I near the boundary of the
high-6eld domain is typically degenerate.

In this case the condition that allows us to use the
expansion Eq. (6) is b,„&n„+i/go. Since the current
in the superlattice with the high-Geld domain is smaller
than jo, the potential drop per period far &om the do-
main boundary in region I is small, i.e., 4 & I'. On
the other hand, the theory is limited by the condition
I' & E~ and we see that far &om the domain 6 & E~.
The 6eld in the barriers increases with approaching the
high-field domain boundary; however, the electron con-
centration also increases and the necessary condition is
usually ful611ed. It makes sense to note that the nec-
essary condition contains the concentration upstream of
the barrier where it is larger than that downstream.

We introduce here two quantities which can be mea-
sured in practice. The Grst of them is the linear conduc-
tivity in the low subband 0. One can find from Eqs. (4)—
(7) that o = 2e2gdA2ii/hl', see also Ref. 18. The second
one is the critical field Fth. This Geld corresponds to the
instability of the homogeneous steady state. In Ref. 18
it was shown that Fq~ = I'/ed. The substitution of this
quantity into Eq. (4a) gives, for v & vr, where vr is the
number of the well between regions I and II (see Fig. 1),

crF

1+ (F„/F„) (9a)

1j & jo = —~F~h.
2

(9b)

It is convenient to introduce a dimensionless field f„
and displacement h„as

2 [(4- —4-+i)/d F]F—

3(&a'~ —F' )

87reF /e

(10a)

(10b)

where v & ~. Equations (8) take the form

f„—A, 'A„[h] —s2(f„) = 0,
h„+ A, 'b, „[h] —f„=0,

(11a)

(11b)

where

47CC gd Fth

4' dC,g
E'

(12a)

(12b)

It shows that the current in region I is limited &om above
and reaches the maxim»m at F = Fqh

0 Q~ Q +i + (A~ A +i)/eg
1+ [(& —&-+i)/Fti d]' (8a) The boundary conditions for Eqs. (11) are

lim f„=0, (13a)
Here P„ is the diagonal matrix element of the electric
potential in the vth well. The contribution to the current
proportional to the concentration difference on the right-
hand side of Eq. (8a) can be considered as a difFusion
current. In region I the electron concentration grows in
the vicinity of the high-Beld domain and therefore the
direction of the diffusion current is opposite the direction
of the total current. In terms of these potentials 6„;;r =
e4' —e4' +i.

The given de6nition of the potentials allows us to avoid
the consideration of the well polarization. This efFect
is taken into account in Ref. 18, where the integrated
Poisson equation was derived. It provides the necessary
connection between potentials P„and concentrations n„

4„[p]+ A„[n] = (n„—n—) .
efF

(8b)

Here C ~ and & are constants, which can be calculated for
a given superlattice 6„[f]—:f(v+ I)+f(v —1)—2f (v) and
n is the average electron concentration. The second term
on the left-hand side of Eq. (8b) describes the capacitance
of one well.

The system Eqs. (8) has two boundary conditions.
First, when the v goes to —oo the difFerence P„—P„+i
goes to F d. Second, Eq. (8b) for v = ~ contains the
difference P~ —/~+i, which is defined by the field in the
high-Geld region F~ and therefore it is about FHd. Far
&om the boundary with region II Eq. (8a) becomes

2(F~ —F )F
3(F,2„—F2 )

(13b)

1

cosh (Aiv/2 + const)
(14)

The constant in Eq. (14) can be found from the bound-
ary condition Eq. (13b). The important property of this
solution is that it is limited &om above. Such a limi-
tation is not connected with a small value of Aq, but it
is a general property of Eq. (11). This limitation ulti-
mately results &om the limitation of the current in the

The coefBcient A2 depends only on superlattice param-
eters. From the definitions of the e and C,ir in Ref. 18
one can easily get that A2 & 2. The parameter Aq de-
pends on F and therefore on the current through the
superlattice A~i oc gl —j2/j02, see Eqs. (9) and (12a).
Therefore Aq goes to zero when the current approaches
its maximum value.

The analytic solution to nonlinear difference equations
Eqs. (11) can be obtained in some limit cases, but we
consider here only one important example. Later we give
the numerical solution in the general case.

For Ai « 1, A2, the variation of f„and h„ from well to
well is small. Hence the second difference b,„[] can be
replaced with the second derivative d~/dv~ and it can be
neglected in Eq. (lib). The resulting difFerential equa-
tion has the solution
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first miniband; see, e.g. , Eq. (9a). In general, the upper
limit of the solution to Eq. (11),which satisfies boundary
condition Eq. (13a), depends on Aq and A2'.

f~ ( T(Ag, A2) . (15)

Equations (11)can be reduced to the recurrent relation

where the function g(z) depends on the parameters Aq

and A2 and does not depend on v. This function has
to satisfy the boundary condition Eq. (13a), i.e. , g'(z)
vanishes when x goes to zero. For z (( 1 the function
g(z) can be calculated explicitly.

Typical plots for g(z) are shown in Fig. 2. One can get
the sequence of values of f„by iteration of the function
g(z). For example, f~ 2

——g(g(f~)); f~ is given by
Eq. (13b). These iterations are shown in Fig. 2 by dashed
lines. One can see that

T = max g '(z)

I

10 20 30

A2j

40 50 60

where g (z) is the function inverse to g(z),
g (g (z)) = z. The position of this maximum is also
marked in Fig. 2 by a square. In Fig. 3 this maximum T
is plotted as a function of Az for dHFerent values of A&.

A calculation~s shows that A2 ) 4(d~e ff/d~e + 1),
where dye and d~ are the widths of the barrier and the
well, respectively, ~ is dielectric constant in the barrier,
and ~,g is the effective dielectric constant in the well.

1.0

0.8

FIG. 3. T as a function of Az is plotted for difFerent values
of Aq.

Although e,g is proportional to a number of electrons in
the well, usually e,g e and d~ d~. Thus a typical
value of A& is 8—10. It becomes large only in the limit
of extremely narrow wells or very highly doped wells.
The other parameter A~& can be estimated by means of
Eq. (12a). It gives A~& ( e2god = d/24 A. Even if the
superlattice period is 500 A. , A~& ( 20. We plot T for A~~

that ranges from 0 to 60; see Fig. 3. The estimation for
typical values of A2& and Az shows that usually T 1.

The condition Eq. (15) can be rewritten in terms of
the current j by making use of Eqs. (13b) and (9)

0.6
j + j

where j' can be found from

(18)

0.2

0.0

-0.2
0 0.2 0.4 0.8 1.0

FIG. 2. g(x) for difFerent values of A~ and A~ = 20. The
quantities f„, which are proportional to the electric Beld in
the barrier v, can be obtained by iteration of the function g(z)
and the dashed lines show the example of such an iteration.
The iteration starts from the value of f that corresponds to
the field in the high-Beld domain. Squares show the maximum
value of that f

The quantity j' is the upper limit of the current in the
superlattice with the high-field domain. The current
through the superlattice is also limited by Eq. (9b), but
j' ( jo and therefore Eq. (18) is a more strong restric-
tion. This restriction comes from the properties of the
boundary between regions I and II. Indeed, the excess of
electrons in the well at this boundary caused by a large
6eld gradient generates in region I a difFusion current op-
posite the current through the superlattice. Usually the
diffusion back8ow of electrons is compensated by a local
increase of the 6eld. This compensation is possible only
if the current through the superlattice is smaller than the
maximum current in region I.

The condition Eq. (18) also implies that there exists
an upper limit of the 6eld in the low-6eld region. When
this 6eld exceeds that limit value, the system becomes
unstable. The development of the instability leads to the
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expansion of the high-field region and the field in the
low-field region reduces abruptly.

V. DESCRIPTION
OF THE HIGH-FIELD REGION

In the high-field region the main contribution into the
current is the electron tunneling from the first level of
one well to the second level of the neighbor well fol-
lowed by the relaxation &om the second level to the
first level. The main mechanism of the energy relax-
ation is the emission of optical phonons if the intersub-
band energy space 8 is larger than the phonon energy
hOLo. In this case the relaxation time '721 ranges &om
0.5 x 10 ' to 10 ' sec depending on the intersubband
energy space. ~ ' ' It is larger than the relaxation
time in the bulk material because the scattering proba-
bility is inversely proportional to the transfer momentum
squared and the transfer momentum in the intersubband
relaxation 2m'/t —AALo is larger than that in the bulk
material 2m(~E —gE —AOLo) —2mhAr, o/~E; see
Ref. 14. In the case of 8' ( AOg~ the main relaxation
mechanism is the electron-electron interaction and vg1 is
about 10 —10 sec. ' The transition time 7q can
vary in a wide range depending on superlattice parame-
ters. This time has been measured in 40 A./40 A. and in
30 A /30 A. GaAs —GaA1As superlattices (see Ref. 27) and
appeared at about 3.6 x 10 sec and 5.3 x 10 sec,
respectively. In a 123 A/21 A superlattice rq has been
found to be about 6 x 10 sec; see Ref. 25.

In the case when the first and the second level in adja-
cent wells are not in resonance one cannot use the simple
balance equation Eq. (1). The current jqq in region II is
described by Eq. (4b) with i = 1 and i' = 2. The energy
space between these levels 4 = eF„d —E' ( 0. The cur-
rent is equal to the number of electrons that relax &om
the second level to the first level per unit time

&om the value corresponding to the resonance between
the first level in one well and the second level in the
neighbor well E'/e U. sually it is assumed that the devia-
tion &om the resonance is negligibly small. ' ' Actually
the levels can be considered to be in resonance only if
~b

~

& I'. However, it is not always true.
The results of Sec. IV show that the current in the

superlattice with the high-field domain is smaller than j'.
If ~21 is not very large, then

j' (( en/2t2y . (23)

In the other possible case j' —en/2v'2&, the levels have to
be in the resonance and therefore 6 0. The condition
Eq. (23) means that n&2l « n and the last inequality is
satisfied in two cases n((~ l —~b, ~) && n and rq && rsq. In
the first case

I&I » &z, (24a)

i.e., the deviation &om resonance is rather large. In the
second case b, + F » 2A&2F72q/h Usua. lly I' 3—5
meV, 'T21 & 0.5 x 10 sec, A12 &3—5 meV, and therefore
I & A&2+2'/h, that is, in this case

~x~ » gx,*,r „(x&r. (24b)

These inequalities for 4 show that under the condition,
Eq. (23), the increase of the applied bias, necessary for
the extension of the high-field domain by one period, can
be considerably smaller than the resonance value 8'/e.

The limitation of the current by the value of j' orig-
inates &om the boundary between regions I and II; see
Sec. IV. When with the increase of the bias the high-Geld
domain extends over the entire superlattice, this bound-

ary disappears. Then the current jumps up sharply and
reaches the value defined by the conditions of the reso-
nant tunneling

+21
(20)

n e 2A12n

wg + 2r2g h I'+ 4Aq~272g/h
(25)

For simplicity we neglect in these calculations exp( —f/p)
compared to unit because usually E' + T. So the gener-
alized balance equations become

VI. LOW-FIELD REGION
DOWNSTREAM OF THE DOMAIN

n(2)
)

+21
(21a)

(21b)

In these equations the inverse transition time 1/rq
2A' F/h(b, '+ I').

The eliminating of n~2l from Eqs. (21) leads to

e 2A Fn(g~ l + b, )
h 4'+ I'+ 2A2»F~»/h

(22)

This equation, together with Eq. (21), describes the
current-voltage characteristics of the high-field domain,
that is, the dependence of the current on the potential
drop per period Fd. In general, this quantity is diHerent

In this region, if it exists, electrons are injected into
the second miniband &om the high-field domain. They
can move 1000 A before they drop down to the first
miniband. The injection of electrons into the first mini-
band can be neglected. Therefore the current in the first
miniband vanishes near the boundary with the high-field
domain and increases away &om it, owning to the relax-
ation &om the second miniband.

In doped superlattices the screening length is about
one period. In other words, the drop of the Beld at the
boundary between regions II and III causes the deple-
tion of only one well closest to the high-field domain
and all other wells in region III can be considered to be
electroneutral. The relaxation of electrons &om the sec-
ond miniband, where their mobility is high, into the first
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miniband, where the electron mobility is much smaller,
leads to field inhomogeneity on the scale of the relaxation
length. We calculate the field distribution in the most in-
teresting case, when this length is rauch larger than the
superlattice period.

The relaxation length large compared to the superlat-
tice period and to the screening length allows us to use
the condition of electroneutrality and to replace differ-
ence equations with differential ones. The total current
j is the sum of the currents in the 6rst miniband jz and
in the second miniband j2

j jl+ j2
( (,)

dn(') )ji = pi
~

ii"eF —T
dx )

—
y ~

( )
dx )

d

(26a)

(26b)

(26c)

dx

(~) + (2)

en~'~

T2yd

(26d)

(26e)

In the general case the electric 6eld can be found &om
Eqs. (26b)—(26d),

= —+ ——= 1 — 1
Foo j p2 j

where F is the electric field far from the domain. Af-
ter eliminating the current j2 and the concentration n& ~

&om Eqs. (26c), (26e), and (27) one can get the differen-
tial equation for the 6eM in region III

d F F d F F
(28)

The redistributing of electrons between. two minibands
and the field pro6le are characterized by two lengths: a
diffusion length L~ and a drift length Lg„where

p2721T
e

where p, q and p2 are the mobilities in the Grst and the sec-
ond miniband, respectively. Here we assume the Boltz-
mann distribution in both minibands and neglect the field
dependence of the mobilities. The Grst assumption is rea-
sonable because one can expect a significant heating of
electrons injected in region III. The second assumption
is natural due to the following circumstance. The 6eld
dependence of the mobility is appreciable when the 6eld
is close enough to the instability threshold field F~g. Usu-
ally the 6eld in the high-Geld domain F~ is significantly
larger than Fii, . Equation (19) shows that in this case
j is significantly smaller than jo and therefore F can-
not be close to Fqh. In the part of region III where the
current moves mostly in the second miniband, the 6eld
is even smaller.

The conditions of the electroneutrality and the conti-
nuity equations are

Ldr = @272&Foo .

The former length is the distance that electrons diffuse
in the second miniband before the relaxation to the Grst
miniband. The latter length is the distance that elec-
trons run in the second miniband under the electric Geld
before the relaxatiou. Equation (28) will be solved near
the boundary for an arbitrary relation between these two
lengths. Far from the boundary we calculate the distri-
bution of the electric Geld separately in two limit cases,
when one of these two lengths is much larger than the
other.

At x = 0 there is no current in the Grst miniband and
Eq. (27) gives the boundary condition for Eq. (28),

px

Foo ~ 0 p2

t L~21 ' Ai'((x —x,)/L. )
i L;, r A((*-*)/L.) ' (32)

where Ai'{() denotes the derivative of the Airy function
with respect to its argument and I p

——(2L&/Ls, ) ~

The other parameter xo can be found by substitution
of Eq. (32) into the boundary condition Eq. (31). This
gives, for ( = xp/Lp, —

q = —Ai'((') /Ai((), (33)

where q = (pi/p2)(Ls, /4Lri) ~

The solution Eq. (32) shows that the electric field in-
creases away &om the boundary. Far from the boundary
where F F, the solution Eq. (32) is not valid any-
more. In the case of a short drift length I.d, &(L~ one can
neglect the first term on the right-hand side of Eq. (28)
because it contains a small parameter Lq, /Lrp, which can
be shown by the replacement of x/L~ with a dimension-
less variable. In this case the solution to Eq. {28) is

pi j2 pi= 1 — 1 ——exp( —/Lx)r, i(34)j p2 j P2

where the point x = 0 corresponds to the boundary be-
tween regions II and III. The characteristic length of the
electron relaxation from the second miniband to the first
one is in this case the diffusion length L~.

In the opposite case when Lg, »L~, Eq. (28) can
be simplified in the region where (Lrp/Ld, ) ~ (&F/F
namely, the term on the left-hand side of Eq. (28) can be
neglected. The solution to the resulting equation is

F/F —ln(1 —F/F ) = (x —xp)/Lg, . (35)

Here xp is the same number as in Eq. (32). This
can be proved by matching the asymptotics of both

One can see that near the boundary, F/F is small if
pq && p,2. That can be expected because the second
miniband is usually wider than the first miniband. Thus
we can neglect F/F with respect to the right-hand side
of Eq. (28). This simplification allows us to solve this
equation in terms of the Airy functions. The result is
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solutions Eqs. (32) and (35) in the region where
(Ir /I ~,)'~'«F/F «1.

The very important property of Eqs. (26) is that the
number of electrons in the second miniband explicitly
depends on the interminiband relaxation time. One can
get from Eq. (32) together with Eqs. (26e) and (27)

~"l*=o=2 V' —VL!(V) ~. (36)

1.0 I
f
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I
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The parameter q, which defines the number of electrons
in the second miniband near the boundary with region
II, is proportional to +zan . When q is small ( —1 and
n~2l(0) 2qn. When q is large the asymptotic of the
Airy function gives q ( i/4+ pi~2 and n2 n. The
concentration n&2& as a function of q is plotted in Fig. 4.

The obtained field distribution is not valid at the dis-
tance about the screening length &om the high-field do-
main because the electroneutrality condition Eq. (26d)
cannot be used there. Thus in the well at the boundary
between regions II and III (see Fig. 1), where the field
changes significantly, the concentration of electrons has
to be found from the Poisson equation. The field change
near the next well v = ~y+ 1 is much smaller and we can
consider it and the rest of region III as electroneutral.
Therefore the solution to Eqs. (26) is valid up to the well

number v = ~i + 1 and ni, I+i ——ni2l~ o. The Beld in
the barrier between well numbers ting and ~y + 1 can be
easily computed from Eqs. (4a) and (8b) with v = ~i.
In the case when the relaxation length of the electrons
from the second miniband to the first one is much larger
than one superlattice period we can neglect the current
between first levels and also put in Eq. (4a) jii ——0 and
222 2

VII. DISCUSSION

NFt, hd = F~Niid+ (N —Nit)F d (37)

and

(38)

This equation shows that in very long superlattices the
length of the high-field domain is proportional to the
length of the superlattice. This fact is a direct conse-
quence of the upstream difFusion current near the bound-
ary of the high-field domain. Without the diH'usion the
minimal length of the high-field domain is one superlat-
tice period and Fih —F oc 1/N. Due to the difFusion
current, F is limited from above by a value independent
of the superlattice length. From Eqs. (9a), (18), and (19)
we have

In this section we give a qualitative description of the
current-voltage characteristic of the entire superlattice.
Under a small external bias the superlattice exhibits
Ohm's law. At a higher bias the current reaches a max-
imum value. The uniform potential distribution in the
superlattice is unstable at this point of the I-V charac-
teristic. The theory of instability was developed by the
present authors. ' The instability eventually leads to
the formation of the high-field domain and a sharp cur-
rent drop. In Sec. II we argued that due to the charge ac-
cumulation at the high-field domain boundary, its length
can be more than one superlattice period. Now we esti-
mate this length.

The threshold value of the bias just before the insta-
bility point is NFqgd, where N is the number of the su-
perlattice periods. Right after the instability point this
bias is a sum of the voltage drop across the high-field
region FIr Niid and the low-field region (N —Nri)F d.
Here we neglect the Beld inhomogeneity near the domain
boundaries. So we have

0.7
FR+SF,h —F~ & F~ . (39)
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FIG. 4. The concentration of the electrons in the sec-
ond. miniband in region III of the superlattice close to the
boundary with region II is plotted versus the parameter

(e 3& F2 /+2~)l/3

For Fqh)F one can easy see that Nii decreases mono-
tonically with increasing F . Then Eqs. (38) and (39)
give the following condition for Ngy'.

F~ + 3Fih —QF~ + 3F,h
Nrr & N

3(FH + Fti, )
(40)

Actually the field in regions I, II, and III is inhomoge-
neous. As a result there is a correction to the right-hand
side of Eq. (40). Usually this correction can be neglected
because it does not contain the factor N.

With a further increase of the bias the current nearly
periodically increases and drops down. After Esaki and
Chang, each oscillation is associated with the extension
of the high-field domain by one period and the n»aber of
oscillations N „is expected to be equal to N —1. Equa-
tion (40) shows that N „can be less than N —1 and
that is really the case in some experiments. For instance,
Kawamura et al. observed a current-voltage character-
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istic with N „=35 in a superlattice that had N = 39
barriers. The difFerence between N and % „can be in-
terpreted as the formation of a high-field domain with
the minimal length Nyg ——4. The value of the threshold
6eld Fqgd in this experiment can be obtained by divid-
ing the threshold voltage 0.5 V by the number of the
superlattice barriers. The voltage drop across a barrier
in the high-field domain FHd equals the period of the
oscillations 0.14 V. The substitution of these values into
Eq. (40) gives Ng& & 3.1, which is in agreement with the
value obtained from the number of the oscillations.

In order to understand how a large domain comes
about, we performed a numerical calculation of the in-
stability development. The simulation was made for a
30-period superlattice with the intersubband energy sep-
aration 100 meV and the electron concentration corre-
sponding to the Fermi energy 40 meV. We assume some
reasonable relations between transition and relaxation
times. The parameters characterizing screening in the
superlattice were Ai ——4 and A& ——8. The results of the
simulation are shown in Figs. 5 and 6. One can see that
the domain starts to grow as a large scale instability
that transforms into a narrow domain with a length of
three periods.

In the case of a low doping there are not enough elec-
trons to form the depletion layer downstream of the do-
main. As a result the domain is formed near the anode
and region III does not exist. The position of the high-
field domain in a highly doped superlattice is determined
by unintentional nonuniformity of the superlattice or by
a Buctuation that initiated the domain. For a 6eld larger
than Fqg, the oscillating current is limited &om above by
the value of j'. It is important to note that this value is
usually smaller than jo, i.e., the current value at F = F&p,
see Sec. IV. Such a feature of the I-V characteristic is
typically observed in experiment. 2'8

We will show now that the high-6eld domain expands
by joining another period &om region I even in the case
when region III does exist. For this purpose we make use
of an equation similar to Eq. (37), where we take into ac-
count the nonuniformity of the field at the accumulation
layer near the domain boundary. So instead of Eq. (37)

A

FIG. 5. The time evolution of the voltage drop distribution.
The superlattice has 20 periods. The cathode and the anode
are marked by C and A, respectively. The interlevel space
in the AH is ZOO meV, vrhereas the domain height is only 70
meV per period.

FIG. 6. The time evolution of the concentration at the sec-
ond level in each well. The superlattice has 20 periods. The
cathode and the anode are marked by C and A, respectively.
One can see the tail of the electron distribution in region III
(behind the domain).

we have

V=ed) F„

= [(Ny —1)F~ + F~—i + NiiFH] d + Vjii, (41)

where V is the applied bias, Ny and Nyy are the num-
bers of periods in regions I and II, respectively, ~ is the
number of the first barrier in the high-field domain, and
Viii is the potential drop across region III. Equation (41)
resembles Eq. (37); however, it explicitly takes into ac-
count the field inhomogeneity in regions I and III.

As the applied voltage increases, dV/dj goes to the in-

finity which eventually leads to the current discontinuity
and the extension of the high-Geld domain by one pe-
riod. One can see &om Eq. (41) that dV/dj i oo when
in one of the barriers dF/dj i oo. This cannot take
place in region II, where the maximum value of the cur-
rent is larger than that in region I. The in6nite value of
dF/dj or the zero value of dj /dF is ultimately connected
with the maximum in the I-V characteristic of one bar-
rier. This maximum is reached only in the regions where
current is con6ned in the first miniband, i.e., in region
I and in a part of region III. The largest field in these
regions is in the last barrier of region I, F„, i., see the
end of Sec. IV. The field in this barrier correspond-
ing to dF/dj m oo is larger than Fqi, for the following
reason. In this barrier dj /dF = dj, g/dF + djg;s/dF.
Since the field in region I grows faster than in region II,
the concentration in the well between these regions de-
creases. Therefore the di8'usion current also decreases,
which means that

ding;e/dF

& 0 because the diffusion
current is directed against the conduction current. As a
result dj /dF = 0 not when dj,~„~/dF = 0 (i.e., F = Fqg),
but when dj, „&/dF ( 0 (i.e. , F & E,i,).

The field in region II is about E/ed and the field in
region I is smaller or about F&i, = I'/ed. Usually I' is
only a few meV. So, in experiments with a big energy
separation, ' F = 200 meV, the 6eld difFerence between
regions I and II is also large and it causes a large charge
accuxnulation at the boundary between these regions. In
these experiments eFHd = 140 meV, eF&~d = 12.5 meV,



50 THEORY OF HIGH-FIELD-DOMAIN STRUCTURES IN. . . 18 435

and so Ftq/F~ = 0.089 and Eq. (19) gives j' = 0.30jo.
That value is in good agreement with the ratio of the
maximum of the current in the oscillating region to the
peak value of the current at the instability threshold; see
Fig. 2(b) in Ref. 2.

The oscillations of the current in a superlattice with
a high-field domain caused by the expansion of this do-
main with an increase of the applied bias have a period
which can be associated with the potential drop per the
superlattice period in the high-field region F~d Ho. w-

ever, Eq. (24) shows that the potential drop per period
in the domain is less than the energy separation between
levels 8 by a significant quantity, which can reach a few
tens of meV.

Such a big difference between the period of the oscil-
lations of the current-voltage characteristic and the en-

ergy separation between the levels was detected in the
experiment of Kawamura et al. ; see Fig. 3 in the cited
work. One can see that the difference between the in-
tersubband energy space and the electric current oscilla-
tion period increases with E'. This has a simple physical
meaning: in samples with larger E', the upper limit of the
current j' is lower and therefore the resonance in region
II is weaker. Other examples on such a diHerence can be

found in Refs. 4, 6 and 28.
The main assumption made in our calculation concerns

a small deviation of the electron distribution function
&om the Fermi function with efFective temperature and
chemical potential. Necessary conditions justifying this
assumption (see Sec. III) may not be satisfied in the
high-field domain. However, the features of the current-
voltage characteristic discussed in present work do not
depend on the detailed shape of the electron distribution.

In conclusion, we have studied the field distribution
and I-V characteristic of the superlattice in the voltage
region when a high-field domain exists. The accumula-
tion of electrons at the domain boundary causes a strong
limitation of the current. Due to this limitation the min-
imal length of the high-field domain can be not one, but
a few superlattice periods. The current limitation also
results in a reduction of the period of the current os-
cillations compared to that corresponding to the energy
separation between the first and the second level in a
well. These results are in good agreement with avail-
able experimental data. The field distribution in the re-
gion downstream of the high-field domain (if it exists) is
nonuniform due to electron relaxation &om the second
miniband to the first miniband.
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