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The binding energies E&(D ) and Ez(D ) of neutral and negative donor (D and D ) centers in

quantum dots (QD s) with different dimensionality and potential shape have been obtained by a varia-

tional approach with a trial function, which consists of the exact solutions of D -like ground states in the
dots, includes the electron-correlation effect, and approaches the Chandrasekhar-type trial function at
zero barrier height. The dimensionality and potential-shape effects of QD s on Es(D ) and Es(D )

have been studied in detail. It has been found that the electron-correlation effect on E~(D ) depends on
the dimensionality and decreases with increasing confinement. The ratio 0. of EB(D ) to Ez(D ) ap-
proaches a constant value in the limit of strong confinement. It has been shown that the ratio 0 and the
electron-correlation effect are strongly dependent on the dimensionality of QD's and weakly dependent
on the potential shape. Using the value of the o obtained, calculated results of different quantum-well

structures can be checked and compared with others.

I. INTRODUCTION

There is an increasing interest in the electronic struc-
ture and properties of neutral' and negative ' donor
centers in various low-dimensional structures, such as
two-dimensional quantum wells (2DQW's), quantum-well
wires (QWW's), quantum dots (QD's), and so on. It has
been shown that many effects in 2DQW's, such as quan-
tum Hall effects, metal-insulator transitions, and electron
localizations, are intimately related to phenomena of high
magnetic fields and impurity states. Now, we can believe
that the fundamental study of the properties of donor
centers not only in 2DQW's but also in QWW's and QD's
with and without magnetic fields is important in its own
right, as reducing the dimensionality often introduces
unexpected physical phenomena.

There have been many investigations of neutral shal-
low donors D in GaAs-Ga& Al As multiple-quantum-
well structures with and without doping in strong mag-
netic fields. ' ' Recently, negative donor D centers
(i.e., a D center that binds a second electron) have been
shown to form readily in selectively doped multiple quan-
tum wells owing to electron transfer from the
Ga, Al, As barrier to neutral donors located in GaAs
well. Using far-infrared magnetotransmission and
magnetophotoconductivity measurements, Huant, Najda,
and Etienne have shown the transition from D ground
state to the excited states associated with successive Lan-
dau levels. Furthermore, D centers have been unambi-
guously identified in GaAs-Ga& Al As quantum wells

by Mueller, Larsen, Waldman, and Goodhue according
to the dependence of the observed photoconductivity
spectrum on the applied magnetic field and sample orien-
tation. Very recently, Holmes, Cheng, McCombe, and

Schaff have reported a far-infrared magnetospectropic
study of the evolution of the intensities of various impuri-
ty lines carried out by a photon-dose technique on Si-
doped GaAs-Ga& Al, As multiple-quantum-well sam-

ples. The results have clearly demonstrated that the
binding energy of the two-electron bound state, i.e., D
ground state is much smaller than that of the D state
and, hence, it should be populated after the D states, but
before the free-electron states.

Using the double planar-doping technique and
magneto-optical study, Mandray, Huant, and Etienne
have shown that for a proper choice of the doping
geometry, it is possible to control the D concentration,
and eventually to convert all neutral donors in the wells
to D centers. It is worthwhile to point out that having
a well-controlled D and electron population under equi-
librium conditions opens the possibility of studying many
interesting phenomena related to negatively charged
donors in quantum-well structures, such as many-
electron effects on D centers in 2DQW's in high magnet-
ic fields.

The effective-mass model has been applied to the D
and D centers in a magnetic field in both 2DQW's and
bulk semiconductors, and the model has been solved by a
diffusion quantum Monte Carlo method. For bulk semi-
conductors, comparison of the results with the experi-
mental data ' and other calculations' shows that elec-
tron correlation effects are very important to obtain
better results. For 2DQW's, there is a large increase in

binding energies over those of bulk semiconductors. It
represents that the binding energies of D centers in a
magnetic field are strongly dependent on confined dimen-
sionality, i.e., the dimensions and the strength of the
magnetic field. In order to know the limits of the binding
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energies of the pure two-dimensional (2D) D centers in
a magnetic field and the electron correlation efFect on
them, the ground states have been studied by use of a
variational approach. " The calculated results have
shown that the binding energies of D centers in 2D case
are larger than those in 2DQW and three-dimensional
(3D) cases, and that the electron-correlation effects are
strongly dependent on the confinement. To analyze the
dependence of the observed photoconductivity spectrum
on the applied magnetic field and sample orientation and
identify D centers in GaAs-Ga& „Al„As quantum
wells, variational calculations have been carried out for
the ground states and the singlet M =0 and 1 excited
states and, then, splitting of the D transition due to tilt-
ing the sample relative to field has been calculated.

In order to achieve a better understanding of the di-
mensional characteristics of multielectron systems with
less positive ion centers, a D center in a spherical quan-
tum dot has been studied by use of a variational ap-
proach. The well-radius and barrier-height dependence
of the binding energy of the D center is obtained. The
dimensional characteristics are clearly demonstrated not
only for the binding energy and its maximum of the D
center but also for the ratio of D and D binding energy
and the electron-correlation efFect. However, one effect
not addressed by the study mentioned is the effect that
the dimensionality and potential shape of the quantum
dot microstructure have on the binding energy, the ratio
of D to D binding energy and the electron correlation.
The effect should be considered to obtain the correct
quantum levels of a D center in a quantum dot because
there are difFerent neutral donor wave functions in
different QD's and they can cause quite difFerent
Coulomb and exchange potentials seen by the other elec-
tron. The dimensionality and potential-shape effect of
D states is related to and different from that on D
states, and, therefore, it is interesting to investigate both
of them.

This paper explores the effect on binding energies of D
and D ground states in QD's. It is done by determining
the ground states for 3D D and D centers in QD's
with a spherically rectangular potential well or a 3D iso-
tropic parabolic potential and comparing the results with
those for 2D D and D centers in QD's with a circular-
'ly rectangular potential well or a 2D isotropic parabolic
potential. For definiteness let us write down the potential
forms for QD's mentioned above. The forms of circularly

I

and spherically rectangular potential wells are given by

Vp 1f p Rp
V(p)='0 if p(R

and

f p if r+Rp
0 if r(RO, (2)

whereas the 2D and 3D isotropic parabolic potentials
have the forms

and

V(p }= ,'y'p-' (3)

V(r)= ,'y r— (4)

respectively. In the above equations Ro is the radius of a
QD, p and r are electron-QD (donor) center distances in
2D and 3D conditions, respectively. Vo is a barrier
height which can be infinite or finite. In this paper,
effective atomic units are used so that all energies are
measured in units of the efFective Rydberg Ry» and all
distances are measured in units of the effective Bohr ra-
dius a'. It is interesting to point out that the parabolic
potential introduced by a magnetic field perpendicular to
the 2D plane is equal to that shown in Eq. (3) if the di-
mensionless magnetic-field strength in effective atomic
units is equal to y, which is related to the confinement
energies. This is the reason why the forms of Eqs. (3) and
(4} are taken. Then, there are three parameters Ro, Vo
and y in both of 2D and 3D cases which could be corre-
lated with the electronic structures and properties of D
and D centers in QD's.

It is well known that for a 2D electron in QD's of Eqs.
(1) and (3) and a 3D electron in QD's of Eqs. (2) and (4),
the quantum levels and eigenfunctions can be obtained
analytically. The corresponding states of D centers in
the QD's can be solved by using difFerent series forms in
different regions of the radial equations. However, the
D states in the QD's cannot be solved exactly, approxi-
mation methods should be used. For determining the
ground states (spin singlet states} in the QD's, we use a
trial function which includes electron-correlation effect
and approaches the Chandrasekhar-type trial function at
Vo =0 and y =0 of Eqs. (1)-(4). ' It is as follows:

A(1+Cr,2}IV(A.„ri)%(Az, rz)+%(Az, r, }%(A,„r2)I
8(1+Cpiz) I %(k„pi)% (k2,p~)+%(X2,p, )%(A,„p2)I

for 3D QD's

for 2D QD's,

where C, A, &, and A,2 are variational parameters, and A
and 8 are the normalization constants. %(A, ,r;) and
0'(A,;,p,.} are the ground-state eigenfunctions of hydro-
genic donor centers with the ion charge A,; in the 3D and
2D QD's, respectively.

Our study will help show how much difference the di-
mensions and potential shape of QD's make to the bind-

ing energies, the electron-correlation, and the ratio of D
to D binding energy in different regions of Rp Vp and
y. In Sec. II, we present binding energies of D and D
ground states in different QD's and discuss the diinen-
sionality and potential-shape effects of QD's on them.
The electron-correlation efFect on the binding energy of
D center in different QD's is also studied. The ratio of
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D and D binding energy is shown as a function of y or
Vo and Ro of 2D and 3D QD's and the dimensionality
and potential-shape effects of QD's on the ratio and its
limit or maximum is discussed in Sec. III. A summary of
the results and a conclusion are presented in Sec. IV.

II. BINDING ENERGIES

According to hydrogenic-effective-mass theory with
neglecting the differences of the electronic effective
masses and the dielectric constants between quantum
dots and surrounding material, the Hamiltonian for an
electron in a QD and a neutral donor at the center of QD
1s

H(W)=

28' + V(r) for 3D QD's
r

2W + V(p) for 2D QD's,
P

(6)

and

E„~(/,D )=E„(/, W=O) —E„(/, W=l),

E„~(m,D ) =E„(m, W =0)—E„(m, W =1), (9)

for 3D and 2D QD's, respectively. It is worthwhile to
point out that for the parabolic potentials,

E„(/, W =0)=(/+2n +—,
' )y,

E„(m, W=O)=(im i+2n+1)y, n =0, 1,2, 3. . . ,
(10)

where 63 and 62 are, respectively, 3D and 2D Laplace
operators, V(r) and V(p) are 3D and 2D QD potentials
as shown in Eqs. (1)—(4), and W is, respectively, equal to
zero and one for the electron and the donor in the QD's.
The orbital (/) and magnetic (m) quantum number can be
well defined for the 3D QD's, whereas the magnetic (m)
quantum number can be well defined for the 2D QD's.
Therefore, the wave functions of an electron in the spher-
ically and circularly symmetric potentials, which are the
QD and Coulomb potentials, are written in the form

g'"(r)Y1 (8,$) for 3D QD's

'(p)e' ~ for 2D QD's, (7)

where |I/t'"(r) and g' '(p) are the radial wave functions
and Yi (8,$) is the spherical harmonic function. The ra-
dial equations can be solved exactly by using the method
as introduced by us, and then for a well-defined orbital
quantum number /, the nth electron-level E„(/, W=O)
and donor-level E„(/, W = 1) and the corresponding
eigenfunctions f'„" (r, W=O) and g'„"(r, W=1), which
degenerate with respect to m (magnetic quantum num-
ber), can be obtained for the 3D electron and donor in 3D
QD's. It is similar to the way to obtain the nth eigenen-
ergies E„(m, W=0) and E„(m, W'=1) and the corre-
sponding eigenfunctions g' ' (p, W=O) and P'„' (p, W
=1), which degenerate with respect to m and —m, for
the 2D electron and donor in 2D QD's. Compared with
the binding energy of a D center in a three-, two-, or
one-dimensional system, the binding energies of the D
ground and excited states in QD's can be defined as fol-
lows:

and for the rectangular potentials with Vp = ac Ry*,

E„(/, W=0) =(X„i/Ro)

E„(m, W =0)=( Y„ /Ro)

where X„I and Y„are the nth roots of the Ith-order
spherical and mth-order cylindrical Bessel functions, re-
spectively. Therefore, the binding energies E~(D ) of the
ground states are given by

E~(D )= ', y E—o—(/ =0, W=1),

E~(D )=y —Eo(m =0, W= 1),
for the 3D and 2D parabolic potentials, and

Es(D )= '
2

—Eo(/=0, W=1),p 9.870

p

Es(D )= ' —Eo(m =0, W=1),p 5.783

p

for the 3D and 2D rectangular potentials.
The Hamiltonian for a D in a QD is given by

(12)

(13)

H='
H(1, W)+H(2, W)+ for 3D QD's2

12

H(1, W')+H(2, W)+ for 2D QD's,2

Pi2

(14)

=2E0 Eq(D ) E(D— ), — (15)

where E(D ) is the lowest level of the Hamiltonian of
Eq. (14), i.e., the D ground-states energy in QD's, Eo
and E(D ) are, respectively, the lowest levels of an elec-
tron in the QD's without and with the Coulomb poten-
tial, and Es(D ) is the binding energy of the neutral
donor, which is equal to Eo E(D ). —

In order to study the y, Rp, and Vp dependence of the
binding energies of D and D centers in QD's and the
dimensionality and potential-shape effects of QD's on
them, numerical calculations have been performed for 2D
and 3D rectangular-potential QD's (2D and 3D RQD's)
of E.p between 0 and 1Sa ' with different Vp and 2D and
3D parabolic-potential QD's (2D and 3D PQD's) of y be-
tween 0 and 10. In Fig. 1, we have plotted the binding
energies Ez(D ) and Ez(D ) of D and D centers as a
function of Ro for 2D and 3D RQD's with Vo= ~, 80
Ry and 40 Ry*, respectively. It is readily seen that as
Ro decreases both the Ez(D ) and Ez(D ) in 2D and
3D RQD's with Vo = &n Ry* increase monotonically from
their 2D and 3D values to quasi-zero-dimensionaI ones.

where H (i, W) is the Hamiltonian of the ith electron and
the positive donor ion in the QD as shown in Eq. (6),
2/r i2 and 2/p&z are interaction terms of the two 3D and
two 2D electrons, respectively.

Compared with the binding energy of a D center in
QD's as mentioned above, the binding energy of the D
ground state in the QD's is defined as follows:

Es(D ) =E(D )+Eo E(D )—
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However, for finite VO=80 and 40 Ry', as Ro decreases
the binding energies increase continuously until their
maxima and, then, decrease fast. The positions of the
maxima of D centers are much the same as those of D
centers. It is interesting to point out that as Rp ap-
proaches zero from the positions of the maximum bind-

ing energies the values of 3D RQD's decrease to the 3D
limits (1 and 0.0518 Ry') much faster than those of 2D
RQD's to the 2D limits (4 and 0.454 Ry ), as shown in

Fig. l. It is easy to understand if we note that there are
different decreasing rates of confinement regions between
3D and 2D RQD's as Rc decreases.

Two QD's are defined to have the same "confinement"

if the ground-state energy of a free electron in one of the
QD's is equal to that in the other. In Figs. 2(a) and 2(b)

binding energies of D and D centers, respectively, are
plotted as functions of y for PQD's (solid lines) and also
for RDQ's (dashed lines) for which Vc= ~ and which

have the same confinement at given y as the PQD's at
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FIG. 1. Quantum-dot radius dependence of binding energies

E&(D ) and E&(D ) of (a) D and (b) D ground states in 2D
and 3D RQD's with Vo=~ (dashed lines), 80 (upper solid
lines), and 40 (lower solid lines) Ry, respectively. Ez(D ) and
E&(D ) of Ro=0 a* with Vo=40 and 80 Ry are 4 and 0.454
Ry for 2D RQD's and 1 and 0.0518 Ry for 3D RQD's.

FIG. 2. Binding energies Ez(D ) and Ez(D ) of (a) D and
(b) D ground states in 2D and 3D RQD's with Vo= ao Ry»

(dashed lines) and 2D and 3D PQD's (solid lines) vs y. For each
dimensionality (2D or 3D) data plotted at a given value of y
correspond to systems with the same confinement as a PQD at
that value of y and that dimensionality. At Vo= ~ the connec-
tion between y and Ro for PQD's and RQD's with the same
confinement (see the text) is y =6.580/R o in 3D and
y=5.783/Ro in 2D. The same connection is used in all of the
following figures. The solid circle and triangles represent those
of 2D and 3D RQD's with VO =80 and 40 Ry, respectively.
E&(D ) and E&(D ) of y =0 are 4 and 0.454 Ry for 2D and 1

and 0.0518 Ry for 3D.
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that y. At Vo = ~, the connection between y and Ro for
PQD's and RQD's with the same confinement is

y =6.580/R o in 3D and y =5.783/R o in 2D. The close-
ness of corresponding dashed and solid lines in Fig. 2 sug-
gests that the shape of the confining potential is less im-
portant than the confinement in determining the binding
energy of D and D centers. It is easily seen that the
differences of the binding energies between PQD's and
infinite barrier RQD's are about the same as the ones be-
tween the RQD's with Vo= ~ and 80 Ry* and smaller
than ones between the RQD's with Vo = ~ and 40 Ry* in
the y regions between 0 and 10.

As shown in Eq. (5), the correlation term of two elec-
trons is included in the Chandrasekhar-type trial func-
tion. Using the trial function with and without the polar-
ization term in the equation and making a comparison
between the two cases, the electron-correlation effect can
be roughly studied. The ratio R, defined by the binding-
energy difference due to omission of the Cr&z or Cp, 2 over
the binding energy, is plotted for PQD's and RQD's in
Fig. 3. It is readily seen that in the regime, in which y is
slightly larger than zero, the R is larger for 2D QD's than
for 3D QD's even though the R (0.342) is smaller for the
unconfined 2D case than that (0.479) for the unconfined
3D case. This is an interesting dimensionality effect of
QD's. Clearly, the R is weakly dependent on the poten-
tial shape as shown in the figure.

In Table I, the binding energies obtained by different
variational and difFusion Monte Carlo calculations are
given for 3D and 2D D ions in the absence of mag-
netic field and a 3D D ion in the magnetic field

(y =100), which has the same behavior as one in
QWW's. It is clearly shown that for the 3D case, the er-
ror of the Chandrasekhar binding energy appears to be

0.5

04-

0.3

0.2

O. I

0
0

FIG. 3. Ratio R of the binding-energy difference due to omis-
sion of the Cr» or Cp» to the binding energy vs y for 2D and
3D PQD's (upper and lower solid lines) and 2D and 3D RQD's
with Vo = ~ Ry* (upper and lower dashed lines).

No correlation
Chandrasekhar
Best variational
Diffusion Monte Carlo

3D
0.0270
0.0518
0.0555"
0.056'

2D
0.307
0.454
0.480'
0.511'

Q1D
1 ~ 14'
1.44'
1.533

comparable to the statistical fiuctuations (0.002 Ry') of
the Monte Carlo calculation, and for the 2D case, how-

ever, the error seems considerably greater. ' We believe
that the electron-correlation effect is dependent not only
on the dimensionality but also on the multiple expansion
of the electron-electron interaction and it is the reason
why the error of the Chandrasekhar binding energy is
different for 3D and 2D cases. Then, it is interesting to
know the binding energy of a 3D D ion in a strong
magnetic field, for example, y=100 obtained by the
Monte Carlo method and to compare the result with the
variational one.

III. RATIO OF D TO D BINDING ENERGY

In order to achieve a better understanding of the di-
mensional characteristics of D and D centers and the
dimensionality and potential-shape effects of QD's on
binding energies, we have calculated the ratio o of D to
D binding energy in different QD's. For the unconfined
3D and 2D cases, the 0 is respectively equal to 0.0518
and 0.114 in the present work and 0.056 and 0.128 in the
work of Louie and Pang. In Fig. 4, the ratio u has been
shown as a function of y between 0 and 10 for 3D and 2D
QD's. As y increases o increases from their 2D and 3D
values until about certain constants, respectively. The
limit value of o is about 0.3 for 3D and 2D PQD's and
0.28 for 3D and 2D RQD's while it is about 0.2 for the
corresponding QWW's. It means that the difference of
the limiting o between different QD's is much smaller
than that between QD's and QWW's and that cr is weakly
dependent on the potential-shape.

It is worthwhile to note that in the y regime between 0
and 3, the o of 3D QD's can be larger than that of 2D
QD's even though it is much smaller in the unconfined
3D case than in the unconfined 2D case and both of
Es(D ) and Ez(D ) of 3D QD's are smaller than the
corresponding ones of 2D QD's. The results are qualita-
tively consistent with those of Ref. 8 in which Pang and
Louie reported both of Es(D } and Ez(D ) for a 10 nm

GaAs/Gao 7Alo &As well in a magnetic field. The Ez(D )

is equal to 2.92 and 3.89 (Ry') and the Ez(D ) 0.77 and

1.13 (Ry*) for a dimensionless magnetic field of y = 1 and

3, respectively. Then, the ratio cr 0.264(0.77/2. 92) and
0.290(1.13/3.89) is larger than that (0.230 and 0.278) of
the 2D PQD's with the same value of y and about the
same as that (0.268 and 0.288} of the corresponding 3D

TABLE I. Binding energies of 3D and 2D D ions without
magnetic field and a 3D D ion in magnetic field y =100, i.e., a
quasi-one-dimensional D ion. The superscripts a, b, c, d, and e
refer, respectively, to Refs. 19, 24, 25, 9, and 26 where the
values are found.

Binding Energy E~(D ) (Ry*)



50 DIMENSIONALITY AND POTENTIAL-SHAPE EFFECTS ON D 1837

0.3— 0.3—

0.2- 0.2—

0. 1—

10
0

0 50 100 150 200 250

FIG. 4. Ratio a of E&(D ) to E~(DO) vs y for 2D (solid line
a) and 3D (solid line b) PQD's and 2D (dashed line c) and 3D
(dashed line d) RQD's, respectively. cr of y=0 is 0.05l8 and
0.114 for 3D and 2D cases, respectively. The solid circles
represent those of 2D QW's in Ref. 8 (see the text).

PQD's, as shown in the figure.
The ratios cr of 3D RQD's with Vo= ao, 80, 40 Ry~,

and 3D PWD's have been plotted as a function of y be-
tween 0 and 250 in Fig. 5. The limit values of the ratios
are, respectively, equal to 0.280 and 0.294 for 3D RQD's
with Vo=oo Ry' and 3D PQD's. The ratios of 3D
RQD's with V=40 and 80 Ry' increase and approach
their maxima (0.306 and 0.320) and, then, decrease and
approach 30 limit as y increase from zero.

IV. SUMMARY AND CONCLUSION

In order to study the well-radius and barrier-height
dependence of the binding energy Ez(D ) of a D ion in
2D and 3D RQD's, a numerical calculation has been per-
formed by using a Chandrasekhar-type trial function.
Comparing Es(D ) and Es(D ) of 2D and 3D RQD's
with those of 2D and 3D PQD's, we have found that the
former is larger than the latter on the same confinement
condition and that the effect of a parabolic potential on
Es(D ) and Es(D ) can be equivalent to that of a rec-
tangular potential with reasonable Rp and Vp ~ We have
calculated the ground-state energies with the trial func-

FIG. 5. Ratio o of Es(D ) to Es(D ) vs y for 3D PQD's
(upper dashed line), 3D RQD's with V0=40 (solid line a), 80
(solid line b), and ao Ry* (lower dashed line).

tion with and without the polarization term. It has been
found that the correlation efFect on Es(D ) is important
in a small y regime and that the finite value of C of Eq.
(5) not only brings in the important correlation effect, but
also modifies the behavior of the single-electron orbitals.
The variation of the ratio R with y is quite different for
2D and 3D QD's while the variation is slightly different
for different potential shapes of QD's. In addition, our
calculations are also qualitatively consistent with the re-
sults of Ref. 8 on the basis of the analysis of u.

In conclusion, the study of the binding energy, electron
correlation, and ratio tr in different QD's is important not
only for understanding the electronic structures in low di-
mensions but also for explaining the experiments about
D centers in narrow quantum wells in a magnetic field
and in other kinds of quantum-well structures. Since
quantum wells in a magnetic field form a kind of QD's
between 3D and 2D PQD's and D centers could be lo-
cated anywhere in QD's, it should be interesting to study
the positional dependence of D states in RQD's, PQD's,
and other kinds of quantum dots. Finally, it is
worthwhile to point out that the D excited states can be
quite different between different QD's. This is an in-
teresting subject to study.
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