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Exciton energies and eigenfunctions in asymmetric double quantum wells are calculated as func-
tions of an applied electric field. From these data, absorption spectra are calculated and the local-
ization behavior of the excitonic states is investigated. The coherent dynamics in asymmetric double
quantum wells, which is strongly influenced by excitonic effects, is analyzed by a numerical solution
of the multisubband semiconductor Bloch equations. Under resonance conditions the oscillating
dipole moment leads to a coherent terahertz emission. In general, the spectrum of this radiation
has contributions due to both, the free-carrier and exciton energies, the details being determined
by the excitation and dephasing conditions. The calculated absorption spectra and the frequency
of the terahertz radiation are in good agreement with recent experiments.

I. INTRODUCTION

As the time scales accessible by experiments continue
to shrink, coherent aspects in the dynamics of photoex-
cited semiconductors have become of growing interest
during the past few years. Many results have been
achieved by performing four-wave-mixing experiments,
where a third-order nonlinearity of the excited semicon-
ductor is used to generate a signal in a background-free
direction. Various phenomena include photon echo,'™®
quantum beats,® 8 the dynamics of wave packets,® tun-
neling dynamics,'® and many-body effects,>1712 both in
bulk semiconductors and heterostructures.

While in a bulk semiconductor, the dynamics is
governed mainly by material parameters, heterostruc-
tures offer the additional possibility of tuning proper-
ties by band-gap engineering. Of particular interest are
multiple-quantum-well structures: Due to the possibility
to control the localization behavior of the carrier states
by an externally applied electric field, they allow for in-
teresting phenomena like anticrossing effects related to
resonances,*1% charge transfer between the wells,4:16:17
and coherent oscillations.!®

In an experiment measuring third-order nonlinearities,
the frequency of the emitted signal is typically of the
same order of magnitude as the excitation frequency.
In contrast, second-order nonlinearities, being related to
sum or difference frequencies, occur in strongly different
frequency ranges. In a homogeneous semiconductor such
second-order optical nonlinearities often are small or even
vanish for symmetry reasons. They can strongly be en-
hanced by spatial inhomogeneities!® and may then lead
to the emission of electromagnetic radiation with a fre-
quency much lower than the excitation frequency. Such
an emission in the terahertz range has recently been ob-
served and analyzed theoretically in various geometries,
where the inhomogeneity is due to a surface,?® a sin-
gle quantum well,21723 a double quantum well,22726 or
a superlattice.?327 Surprisingly, the measured frequency
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of the radiation, in particular, in the case of the double
quantum well, did not coincide with the difference be-
tween the two lowest exciton states, as would be expected
in a three-level model.24 However, by using the full multi-
subband semiconductor Bloch equations, we have found
the absorption spectrum, i.e., the energies and oscilla-
tor strengths of the excitons, as well as the frequency of
the terahertz radiation to be in good agreement with the
experiment.2® In that work, however, we did not give any
explanation of the various frequency components enter-
ing the signal.

The aim of this paper is to present a detailed discus-
sion of the role played by excitons and free carriers for
the spectral properties of the terahertz radiation emit-
ted from an asymmetric double quantum well. We will
show that, in general, both, exciton and free-carrier ener-
gies, contribute to the spectrum, the shape being strongly
influenced by details of the dephasing processes.?? The
calculations are based on the semiconductor Bloch equa-
tions for a multisubband system,?®3%3! which are ana-
lyzed both in a free-carrier and an exciton representation.

The paper is organized as follows: In Sec. II, we intro-
duce the model describing the semiconductor interacting
with a coherent light field. Carrier-carrier interaction,
which is responsible for the excitonic effects, is included
in the Hamiltonian. We derive the equations of motion
describing the coherent dynamics in a quantum-well het-
erostructure, i.e., the multisubband semiconductor Bloch
equations. Section III addresses different aspects. We
first investigate static properties of the system as the
basis for understanding the dynamics. In Sec. IIT A, we
calculate exciton eigenstates and eigenvectors of an asym-
metric double-quantum-well heterostructure as functions
of an applied electric field. We discuss the resonance
(anticrossing) effects induced by the field and the local-
ization behavior of the excitons which is different from
that of free carriers. In Sec. III B, we present the ab-
sorption spectra as functions of the applied field. Sec-
tion IIIC is devoted to charge oscillations due to the
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generation of a superposition of states. In Sec. IIID, we
derive the equations describing the terahertz radiation of
a heterostructure and present numerical results. We dis-
cuss in detail the various frequency components entering
the signal and the role played by dephasing processes.
Finally, in Sec. IV, we draw some conclusions.

II. THEORETICAL MODEL

In this section, we derive the equations of motion
describing the coherent dynamics in a quantum-well
heterostructure.3%:3! The treatment is a multisubband
generalization of the bulk case.3273¢ To describe the semi-
conductor heterostructure, we use the effective mass ap-
proximation within the envelope-function approximation
and consider two isotropic parabolic bands, the conduc-
tion band and the heavy hole valence band. We thus
neglect any effects related to light holes, valence band
mixing, and nonparabolicity. These effects, so far, have
been extensively studied only for the static case.3738 Ef-
fects of valence band mixing on the dynamics have been
reported in Ref. 31.

In a quantum-well heterostructure the motion of car-
riers in one direction (the growth or z direction) is quan-
tized, while in the other two dimensions the motion is
free. The carrier states are then characterized by a
discrete subband index ¢ or j and a continuous two-
dimensional wave vector k. Here, as in the following, an
index 7 refers to an electron subband and j to a hole sub-
band. In the envelope-function approximation the wave
functions for the conduction band (¥, (R)) and the va-

lence band (wjvk(R)) states are given by

Yik(R) = —=e™Toi(2) ug (R) (1a)

ic(R) = —=e*7¢;(2) ug (R) (1b)

5-5-

where R = (z,y, z) is a three-dimensional position vec-
tor, r = (z,y) is the corresponding two-dimensional in-
plane vector perpendicular to the growth direction, k is
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where n; refers to both electron and hole subbands and
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the two-dimensional in-plane wave vector, u0 (R) are
the lattice-periodic Bloch functions at the band extrema,
A is a normalization area, and ¢; and ¢; are the envelope
functions along the growth direction.

The single-particle Hamiltonian in an electron-hole pic-
ture, including the coupling to a classical light field. is
given by

Ho=3 > cixclucint DD Sudidsn
7 k 7 k
+3°5 (Mgt B (t)elydl
1,7 k

hx — <
+M;}' - El )(t)dj,—kci,k} - (2)
Here, c;k,d;k (¢; x> d;j) denote creation (annihilation)
operators of electrons and holes and €, and 6?,k the cor-

responding energies of electron and hole states. The ex-
ternal light field is given in terms of the positive (nega-
tive) frequency part of the electric field E(*) (E(7)) with

E) = e Eo(t)e ™rt,  EC) = E®* (3)
the central angular frequency wp, the polarization unit
vector er, a pulse shape given by Fy(t), and the cou-
pling is treated in rotating-wave approximation. For
the numerical applications, we will use a Gaussian pulse
Eo(t) = Er exp[—(t/7)?]. In the envelope-function ap-
proximation, where the lattice-periodic part of the wave
function is assumed to be independent of the material,
the interband dipole matrix element is directly related
to the bulk case. Neglecting the wave vector dependence
of the bulk dipole matrix element My, the quantum-well
matrix element is given by

”k-Mo/¢> ) ;(2) dz . (4)

To describe excitonic effects which completely deter-
mine the optical properties of a semiconductor in a region
close to the gap, we have to include carrier-carrier inter-
action. The corresponding Hamiltonian is given by30:3°

1
.
Kty Do D Viesinn (@ d), g, o a0 dsx

Ji.J2,33,Ja k k' ,q

(5)

€5 is the static dielectric constant. We have neglected
the interband exchange interaction, as is usually done
in the case where the exciton binding energy is small
compared to the band gap.?® All intersubband exchange
terms, however, are taken into account.

The basic variables to describe the dynamics are the
single-particle density matrices.?® They are given by the
interband density matrices
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Pjix = (dj _kCix) and pj. = (Cl,kd},—k)» (7)
which describe the interband polarization, and the intra-
band density matrices of electrons and holes,

=(d! xdipi)- (8)

The diagonal components of the latter variables are
the distribution functions, while the off-diagonal com-
ponents, the intraband polarizations, describe the coher-
ence between different subbands.

With respect to the Hamiltonian Hjg, these variables
satisfy a closed set of equations of motion. Carrier-carrier
interaction, however, introduces correlations leading to
an infinite hierarchy of equations for n-particle density
matrices. In this paper we concentrate on an excita-
tion close to the band gap and to the case of low den-
sities. We take into account only the first-order terms
in carrier-carrier interaction, i.e., we limit ourselves to
the Hartree-Fock approximation.30:32:3440 In this case,
electron-electron and hole-hole interaction lead to self-
energy matrices,

thﬂz, == Z Z ‘/11131214 (k k’) iaig, k! (9a.)

1314 k'

hQ;llJz, = ZZV?N«:JUB k k’) Jaja k! (9b)

jsja k'

e

N | h
i1i2,k — <Ci1,kci2,k> and fj1j2vk

which renormalize the free-carrier energies resulting in
the renormalized energy matrices,

gielizyk = 61?1 k‘sillz + mflzz,k y (103.)
h
8j1j2,k €1, k6.71]2 + hQJIJZ k * (10Db)

The effect of electron-hole interaction can be expressed
in terms of an internal field matrix,

11.71, Z Z Vu]z]ﬂz k kl)phzz k' (11)
i2,j2 k'

which renormalizes the external field resulting in the ef-
fective field matrix,

uil]l Me 1151,k E(+)(t) + Ailjlvk . (12)

Using the Heisenberg equation of motion, we can derive
the equations of motion for the various single-particle
density matrices. They are given by

d
dt 11’!2,‘( Zh Z 1,214 k his - 8131.1 k612l4)f1314,k
1314
1
+= D Usyjy iPhiin e = Uiy &ePisizie)
J1
(13a)
d h h
dt .71]2»—1( ﬁ Z ( 1214,—1‘55153 - gjsil,—k6j2j4)f.‘isj4,—k
J3ja
1
ta D Uiy o acPhuis ke = Uiy iePinin i)
i1
(13b)
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d
Epjlilyk = 'Lﬁ Z Jijz, —kaili"’ + gfliZyk(sjljz )pjziz k

1'2.72
e
Uiy 1 (8516205152 — vz Flaiy e

~8iria Fiaga, 1) - (13c)
These are the multisubband semiconductor Bloch equa-
tions without damping terms. Similar equations have
been derived in Ref. 31, where a valence band mixing
has been included but the off-diagonal parts between dif-
ferent subbands have been neglected.

As already mentioned, here we want to limit ourselves
to the case of a sufficiently low excitation. When ex-
panded in powers of the electric field strength, the inter-
band variables have only contributions with odd orders
while in the intraband terms only even orders appear.
For the purpose of this paper, it is sufficient to take into
account only contributions up to second order. Then we
can neglect all nonlinearities in the equations of motion
related to self-energies as well as the phase-space filling
terms in Eq. (13c). We furthermore neglect a screening
of the Coulomb potential and obtain the following sim-
plified set of equations:

% iriz ke =Z-lﬁ (efg,k—ffl,k) fiiink
4’% Z (Uisis k Phiiy Uik Piria ) 5
n
(14a)
fuz k™ lh(;z—k €1k )fal:m
*_lﬁ Z (uilj,,kpglil,k uzm,kpjzil,k) )
) (14b)
ditpjlil,k = % (€ €6, k) Pivia e+ Uiy ke
(14c)

In this approximation, Eq. (14c) is independent of
Egs. (14a) and (14a). It describes unbound and bound
electron-hole pairs, i.e., excitons. The solution of this
equation then enters as source terms for Eqgs. (14a) and
(14a), which describe the generation of carrier popula-
tions in the subbands as well as a coherence in the elec-
tron and hole system, respectively.

III. RESULTS

The calculations have been performed for an
Al,Ga;_,As asymmetric double quantum well structure
as shown in Fig. 1. Note that the energies of the vari-
ous states in Fig. 1 are shifted arbitrarily to separate the
plots of the wave functions. The well widths are 15 nm
and 10 nm, the barrier width is 2.5 nm, and the Al frac-
tion x of the barrier regions is 0.2. The parameters are
taken in agreement with the experiments in Ref. 24. Us-
ing such a small barrier width, we are in the so-called
“strong-coupling limit.”'” The interesting point in the
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FIG. 1. Envelope wave functions of the asymmetric double
quantum well for four values of the applied electric field. The
well widths are 15 nm and 10 nm, the barrier width is 2.5 nm.

case of coupled quantum wells is the fact that the local-
ization of the carriers can be controlled by an external
electric field applied in the growth direction.

The pair energies of free electron-hole pairs at the
subband edges, i.e., the energies connecting the three
hole subband edges with the two electron subband edges
(ef‘o—ke?’o), are shown as lines in Fig. 2 as functions of the
applied electric field. The solid and the dashed lines refer
to the transition from the first hole subband to the first
and second electron subband. The anticrossing behavior
at a field of 7 kV/cm is clearly visible. The dotted and
dash-dotted lines refer to transitions from the second and
the remaining two lines to transitions from the third hole

1.57
1564 , T~ e s

1.5

Energy (eV)

1.54

1.63}

1.52

0 3 6 9 12 15
Applied field (kV/cm)

FIG. 2. Transition energies between the electron and hole
subband edges (lines) and corresponding 1s exciton energies
(symbols) calculated for two electron and three hole subbands
(see Fig. 1).

subband into the two electron subbands, respectively.

Up to now Coulomb effects have not been taken into
account. In the next section, we will include electron-
hole interaction in the calculation of pair states, i.e., we
calculate the excitonic eigenstates.!415:41

A. Exciton states

Since the interband polarization agrees with the
electron-hole pair wave function in the (%, 7, k) space, with
the ansatz*?

Pjrirk = Zﬁﬁl,k exp(—iwnt), (15)
we obtain the eigenvalue equation
~(n) h ~
M"pglixyk = (ejh_k + 61?1 ,k)p;?i)l k
~(n)
- Z Z VilijliZ (k - k,)pjzig,kl : (16)

i2,j2 k'

The eigenvalue E,, = hw,, is the exciton energy of state n
and the corresponding eigenvector ﬁﬁ?i), x is the exciton
wave function in the (¢, j, k) space. The real space exciton
wave function is then obtained by a unitary transforma-
tion using the electron and hole wave functions according

to

n 1 ~(n) ik-r
) (zerzniT) = = 3 DBk ™ i (2e) 85, (2h) -

1,51 k
(17)

where z. (21) denote the electron (hole) z coordinate and
r the electron-hole relative coordinate in the zy plane.

Equation (16) has been solved numerically for the case
of radially symmetric (s like) excitons on a discretized
mesh in k space for the asymmetric double-quantum-well
structure shown in Fig. 1. Two electron and three hole
subbands and 200 equidistant k& values have been taken
into account. The accuracy has been checked by per-
forming the same numerical solution for the three- and
two-dimensional limits, where the exciton energies are
known analytically.

The symbols in Fig. 2 refer to the 1s-like exciton states
corresponding to the transitions between the various sub-
bands. It should be noted that for higher states the classi-
fication is not unique since these states are resonant with
band-to-band transitions and, therefore, have no pure 1s
behavior. We have plotted those states which exhibit
the strongest 1s-like contribution in the wave function.
In general, the field dependence of the exciton energies
exhibits a similar behavior as the free-carrier energies;
however, the resonance fields are shifted.'*1%24 Let us
concentrate on the transitions from the first hole sub-
band to the electron subbands (solid and dashed lines,
solid and open squares). In the exciton case the reso-
nance is shifted to a field of 10.5 kV/cm. The reason can
be understood by looking at the binding energies in the
low- and high-field limits. At low fields the open square
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shows a larger binding energy than the solid square. This
is due to the fact that in the former case electron and
hole are localized in the same well (spatially direct exci-
ton), while in the latter case they are localized in different
wells (spatially indirect exciton) and thus have a reduced
Coulomb interaction. On the other hand, at high fields
the situation is reversed. This transition leads to the ob-
served shift of the resonance.!*1%:24 Similar shifts can be
seen for the transitions including higher hole subbands.
These shifts of the resonance field are associated with
a change in the localization behavior when going from
noninteracting pair states to exciton states. The local-
ization of an exciton state can be analyzed by plotting
the pair density p("™) of the nth exciton state in the space
of the electron and hole z coordinate. It is obtained from
the real space exciton wave function ®(™(z.,zx;r) by
projection onto the (z., z;) plane according to

p(")(ze,zh)zf |8 (2, zn; ) |2d?r
A

= Z‘ Zﬁg?i)l,kd’il (2e)¢;, (2n) . (18)
k

11,41
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In Fig. 3 we report the projected pair density for the
lowest exciton state at four values of the applied elec-
tric field. At zero field only one component of the wave
function, in the present case pi;, is essentially nonzero;
the exciton corresponds to one electron and one hole
subband. Both electron and hole are localized in the
wide well. At a field of 7 kV/cm the free electron states
are in resonance and, therefore, they are delocalized (see
Fig. 1). The exciton, however, is still almost completely
localized in the wide well. At the exciton resonance field
of 10.5 kV /cm, the electron contribution in the exciton
state is completely delocalized. This is in contrast to
the free-carrier states, which are out of resonance at this
electric field. Finally, at a field of 15 kV/cm the electron
is localized in the narrow well and the hole is localized in
the wide well. We have a spatially indirect exciton. As
in the case of zero field, only p;; is essentially nonzero.

B. Absorption spectra

The classification of exciton states related to higher
subbands as obtained from a numerical diagonalization

(b) E =7 kV/icm

0 (arb. units)

2 Nw sz

e h

(d) E =15 kV/cm

| p (arb. units)

FIG. 3. Electron-hole pair-density [see Eq. (18)] along the growth direction for the lowest exciton state for four values of the

applied electric field.
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is usually not unique due to a coupling among different
subbands and a mixing between discrete and continuum
contributions. The excitonic states are eigenstates of the
isolated system and, therefore, cannot be measured di-
rectly. To compare the results with an experiment, the
coupling to the environment has to be taken into account.
From the coupling to a classical light field the absorption
spectrum can be calculated.*?37 In contrast to the clas-
sification of the excitonic states in Sec. III A, the absorp-
tion spectrum as an observable quantity is unique.

To calculate the absorption spectrum, we expand the
interband polarization in the exciton basis according to

_ ~(n)
= Bt aBn (19)

n

Pjrir k

with expansion coefficients B,,. The corresponding exci-
ton dipole matrix element is given by

M= 3 Ml (20)

1,51 k

The absorption spectrum is then given by a sum of ab-
sorption peaks at the exciton energies, the strength of
each peak being proportional to the square of the dipole
matrix element. The broadening of the peaks can be ei-
ther due to dephasing leading to a Lorentzian shape or,
if measured with a laser pulse shorter than the dephas-
ing time, due to the energetic width of the pulse, leading
to a line shape according to the laser pulse. Here, we
consider this second case by assuming a Gaussian pulse
with a duration 71, and central angular frequency wy, and
obtain for the absorbed intensity I(wy) of the pulse,

2
7L

I(wL) = hz

(M, - eL)zEf exp [—-%T[% (wn — wL)ZJ .

n

(21)

In Fig. 4, we have plotted the absorption spectrum
I{wy,) of a 1 ps Gaussian pulse as a function of the photon
energy hwy and the applied electric field E. Without the
applied field, we observe two strong peaks correspond-
ing to the p;; and the psy exciton which are both direct
excitons. In between these two peaks is a weak peak
corresponding to the indirect py; exciton which can be
excited due to the nonvanishing contribution of the low-
est electron state in the narrow well (see Fig. 1). At the
highest field of 15 kV/cm we observe two strong peaks,
now related to the direct p;2 and the ps; excitons, and
two weak peaks due to the indirect p;; and psy exci-
ton. When going from low to high fields, the anticross-
ing behavior associated with the change in the oscillator
strength from one component to the other is clearly vis-
ible for both pairs of transitions, those belonging to the
wide well hole state at lower energies and those belonging
to the narrow well hole state at higher energies.

In our model, only s-like excitons are considered.
Therefore, in our spectra there are no transitions due
to valence band mixing of excitons which have p symme-
try in the plane of the interfaces. Such transitions may
gain significant oscillator strength. A detailed discussion
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FIG. 4.- Absorption spectra for a 1 ps pulse as function of
the photon energy and the applied electric field.

of these effects can be found in Ref. 37.

The coherent dynamics in the following sections will
be investigated in the case of the wide well resonance.
Therefore, we will discuss in some more detail the ab-
sorption spectrum for the applied field of 10.5 kV/cm
as plotted in Fig. 5. We observe two peaks of approx-
imately the same strength at 1.530 eV and 1.534 eV,
corresponding to the delocalized excitons, and a strong
peak at 1.546 eV corresponding to the direct exciton in
the narrow well. In the upper part of Fig. 5, we have in-
dicated the positions of the excitons as obtained from the
diagonalization, the length of the bars being proportional
to the exciton dipole matrix elements. We see that the
second peak has contributions from several exciton states
which explains the larger width of this peak compared to
the lowest peak. The corresponding exciton wave func-
tions reveal that these states have a 1s-like contribution
from the second subband and an n-s-like contribution
(n =2,3,...,) from the first subband, i.e., we observe a

1.0 I
08} |
0.6
0.4
0.2

0'?.52"' 1.53 1.54 1.55 1.56

Photon energy (eV)

Absorption (arb. units)

FIG. 5. Absorption spectrum for a 1 ps pulse as function of
the photon energy at an applied electric field of 10.5 kV /cm.
In the upper part the positions of the exciton states are indi-
cated, the length of the bars being proportional to the exciton
dipole matrix element.
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mixing of the exciton ground state of the second subband
with excited states from the first subband.
Experimentally the absorption spectrum can been ob-
tained by measuring the photocurrent after excitation by
a laser pulse with varying photon energy.?* Such a situ-
ation can be modeled directly by solving the semicon-
ductor Bloch equations for a laser pulse with fixed pulse
duration and intensity but with varying photon energy
and calculate the carrier density generated by this pulse
as a function of the photon energy. The photocurrent
will then be proportional to final density of carriers. Re-
sults obtained by this method have been given in Ref. 28.
In the case of a sufficiently low laser intensity, we find a
good agreement with the absorption spectrum calculated
from the exciton states by using the matrix diagonaliza-
tion. This demonstrates that for physically observable
quantities both methods are numerically equivalent.
The calculated spectrum is in good agreement with the
measured photocurrent spectrum (Fig. 2 in Ref. 24), ex
cept for the additional light hole peaks in the measured
spectrum which, of course, are not present in the present
calculations. In particular, the position and the relative
strengths of the three main peaks are very well repro-
duced by the numerical simulation, thus confirming the
reliability of the model and of the numerical solution.
Therefore, it seems possible to neglect nonparabolicity
and the effects of valence band mixing on the heavy holes.

C. Charge oscillations

When the spectral width of a laser pulse overlaps with
two or more excitonic states which share a common elec-
tron or hole state, and both of them have a nonzero dipole
matrix element, a linear combination of these excitons is
generated. If the localization behavior of the states is
different, the dynamics of such a wave packet is asso-
ciated with a time-dependent charge density. Neglect-
ing intraband contributions, which oscillate in the fre-
quency range determined by the gap, the charge density

p(z,t) = —e[n®(z,t) — nP(z,t)] is given by
(1) =3 > 6L ()u () fhnkl),  (22)
21,22 k
(2:8) = D ) 65, (2)5 (2) Fr sy ic(D) - (22b)
iz k

For the investigation of the dynamics, we include a
phenomenological dephasing in the semiconductor Bloch
equations characterized by a dephasing time T5" for the
interband polarization, a dephasing time Tfe for the elec-
tron intraband polarization, and a time T2"* for the hole
interband polarization. The distribution functlons ik
and f]"1 j».x Temain undamped. They decay only due to
spontaneous emission processes which occur on a much
longer time scale than considered here. The redistribu-
tion of carriers inside and between the subbands due to
scattering processes is neglected in the present model.
The assumption of a relaxation time approximation
with constant, k-independent dephasing times is of
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course a very crude approximation. One would expect
that the dephasing times for continuum states will be
considerably smaller than those for the lowest bound
excitons.?? However, this model allows us to concentrate
on the role played by the various time constants.

Figure 6 shows the electron and hole densities for the
case of an excitation with a 150 fs pulse at a photon en-
ergy of 1.54 eV and an applied electric field of 10.5 kV/cm
as functions of time and the coordinate z in growth direc-
tion. A value of 3 ps has been taken for all three dephas-
ing times. The spectral shape of the pulse is indicated
by the dashed line in Fig. 5. We find a complex behavior
due to the overlap of the pulse with many exciton states.
In the case of the electron density, we observe a contribu-
tion which oscillates between the wells and a background
density which is mainly localized in the narrow well. For
the holes, we find a background in both wells and a su-
perimposed oscillation inside the wide well. Let us now
try to understand this behavior.

From Fig. 5, we see that there is large overlap with
the strong peak at 1.546 eV. As explained above, this
peak corresponds to a spatially direct exciton localized
in the narrow well and is responsible for the hole density
and the main part of the electron density in the narrow
well. The oscillation in the electron density is related to
the excitation of the two excitons with the hole localized
in the wide well and the electrons delocalized over both
wells. The oscillation in the hole density shows that there
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FIG. 6. (a) Electron density n°(z,t) and (b) hole density
n"(z,t) as functions of the z coordinate and time for the case
of an applied field of 10.5 kV/cm and an excitation with a
150 fs pulse at a photon energy of 1.54 V.
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is also a remarkable contribution from the excited hole
state in the wide well which, as already discussed, showed
up as a small peak in the absorption spectrum. The
oscillation frequency of the holes is larger because the
energy difference between the first and second hole state
is larger than that one between the electron states. In
the next section, we will discuss in detail the frequencies
appearing in the dynamics.

D. Terahertz emission

According to classical electrodynamics, time-
dependent charge densities as shown in Fig. 6 lead to the
emission of an electromagnetic radiation. The far-field
behavior is dominated by dipole radiation, the electric
field strength being proportional to the second temporal
derivative of the dipole moment. Such an emission due
to oscillations in the terahertz range has recently been
observed in various systems.?1:23:24,27

In the system studied here, the total dipole moment P
can be split into two parts, an interband part Pi™*** and
an intraband part Pi®™ where

inter __ eh * -
P - Z : § :(M‘ilhpjlihk

M‘?lhjtphihk) ’ (23)

ilvjl k
intra __ ee e hh h
pire = NN M flaat L O MR e
i1,32 k Ji1.J2 k

(24)

with P = Pinter  Pintra 354 the intraband dipole matrix
elements,

[

Mg, = —ee, / 61 (2) 2, (2) dz |

M} =ee, /¢;l(z)z¢j2(z)dz , (25)

where e, denotes a unit vector in z direction. The inter-
band part oscillates in the frequency range determined
by the gap energy and, therefore, leads to an emission in
the visible spectral range. This effect is the basis for four-
wave-mixing spectroscopy which, being a third-order ef-
fect in the light field, is present also in a homogeneous
bulk semiconductor and will not be considered in this
paper.

Here we are interested in the intraband part. It can
be separated again into two parts, a part which is diag-
onal in the subband indices, and an off-diagonal part. A
characteristic time for the change of the diagonal part,
i.e., of the distribution functions, is given by the pulse
shape of the laser. If electron and hole states are local-
ized in different regions in space, a net dipole moment
builds up which gives rise to the so-called “optical recti-
fication pulse,” as may occur in the case of excitation in
the region of a built-in field close to a surface.?? In addi-
tion, if the energetic width of a laser pulse is larger than
the difference between two subbands, a coherent super-
position of states belonging to both subbands is gener-
ated, as has been discussed in the previous section. The
charge oscillation corresponds to the creation of intra-
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band polarizations and, thus, to an off-diagonal part in
the intraband dipole moment which oscillates in the fre-
quency range determined by the energy splitting of the
subbands and leads to the emission of a coherent tera-
hertz radiation.2!,24,23

In Fig. 7(a), the intraband dipole moment is plotted as
a function of time for the case of the charge oscillations
shown in Fig. 5. We see the build up of a dipole mo-
ment due to the different localizations of electrons and
holes. At short times, this build up is accompanied by
oscillations which decay with the dephasing times taken
as 3 ps. The oscillatory part of the dipole moment is
mainly governed by the oscillations of the electrons, su-
perimposed we see the structure related to the oscilla-
tions of the holes. Figure 7(b) shows the second time
derivative of the dipole moment which is proportional to
the emitted signal. Here, the holes are responsible for
the dominant structure due to their frequency, which is
about a factor of 2 larger than that of the electrons.

Figure 8(a) shows the spectral intensity of the emitted
signal, i.e., the absolute square of the Fourier transformed
signal. The two peaks corresponding to the oscillations of
electrons between the wells and of holes inside the wide
well are clearly visible. It is interesting to notice that
the calculated oscillation frequency of the lower peak of
1.57 THz corresponding to an energy of 6.5 meV is in
very good agreement with the experiment.?* This con-
firms that our model includes the most important fea-
tures of the experiment. The oscillation frequency is re-
markably larger than the splitting of the two lowest peaks
in the absorption spectrum (3.5 meV) as would be the
expected emission frequency due to a superposition of
exciton states in a three-level model.

We will not try to compare quantitatively the calcu-
lated shape of the spectra with the experiment. This
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FIG. 7. (a) Dipole moment and (b) emitted signal of the
asymmetric double-quantum-well system as functions of time
for the case of excitation with a 150 fs pulse at 1.54 eV and
an applied electric field E = 10.5 kV/cm.
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FIG. 8. (a) Spectral intensity of the emitted signal in
Fig. 7 and (b) spectral intensities of the separate contribu-
tions driven directly by the field (solid line) and driven by
exciton-exciton interaction (dashed line).

would require us to take into account the response func-
tion of the antenna, which usually increases the rectifica-
tion part at low frequencies and strongly reduces the high
frequency peak. Furthermore, different dephasing times
for exciton ground states, excited states, and continuum
states should be taken into account.?® Qur main objective
is to investigate the various contributions entering the
emitted signal and to analyze the role of the dephasing
rates in determining the relevant contributions. There-
fore, we limit ourselves to the simple dephasing model
with only three time constants.

To obtain a better understanding of the emission pro-
cess and of the frequencies involved, we transform the
interband polarization into the exciton representation ac-
cording to Eq. (19). In the case of parabolic bands, as
considered here, the splitting between different subbands
is independent of the in-plane wave vector k. Under this
condition, we can write down equations of motion di-
rectly for the intraband dipole moments,

D] e
utz § : i112J 4112,k )

h _ hh
PJIJ2 - § :Mm:fh.m
k

(26a)

(26b)

Starting from Egs. (14) and (16), we obtain the equations
of motion

d e . 1 Pe
apiliz = <_zw§1i2 - F(l - (Sixiz)) i1z

+Z[ e(n)E(+) (t) B +

+ 3 [0 BB + B BB

B () B ]

(27a)
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Here we have included the three dephasing times describ-
ing the decay of the intraband and interband polariza-
tions. All thrée equations have the structure of driven,
damped harmonic oscillators. Equation (27c) describes
the dynamics of the exciton state n. The exciton am-
plitude B, is created by the laser pulse and, after the
pulse has finished, it oscillates with its eigenfrequency
wy and decays with the interband dephasing time. Equa-
tions (27a) and (27b) have source terms of two different
types: First, there are terms involving the direct cou-
pling of the external light field E(t) to the excitons. As
in the interband case, these terms vanish after the pulse
and lead to a damped oscillation of the intraband polar-
izations with a frequency corresponding to the subband
splitting of noninteracting carriers and a decay time given
by the intraband dephasing times. The second type of
driving terms is due to exciton-exciton interaction and is
described by products B}, B,:. These source terms have
characteristic frequencies (E, — E,)/k and are present
also after the pulse. Therefore, if the pulse excites several
exciton states due to a sufficiently large bandwidth, the
intraband polarizations are driven with the frequency of
the quantum beats between these states. These driving
terms decay with the time 2Tg". If this decay time is
sufficiently large compared to the intraband dephasing
time, the driving term will determine the oscillation fre-
quency of the intraband polarizations and we will expect
a radiation with the beat frequency of the excitons. If, on
the other hand, the interband decay time is shorter than
the intraband times, the intraband polarizations will ex-
hibit mainly a damped oscillation with the frequency of
the subband splitting. If neither of these limiting cases
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is reached, in general, exciton as well as free-carrier fre-
quencies will contribute to the dynamics and, therefore,
to the spectrum of the terahertz radiation. The spec-
tral shape will then strongly depend on the details of the
excitation conditions.

Since Egs. (27a), (27b) are linear in the intraband po-
larizations, we can separate the emitted signal in two
parts. This is shown in Fig. 8(b). The solid line refers to
the contribution induced by source terms involving the
light field [terms with coefficients « in Egs. (27)]. We
see two peaks at the free-carrier energy differences be-
tween the electron subbands and between the first and
the second hole subband. There are no frequencies in-
volving the third hole subband because the intersubband
dipole matrix elements with this subband are negligi-
ble due to the nearly complete localization of the hole
states in either the wide or the narrow well (see Fig. 1).
The dashed line refers to the contributions due to the
exciton-exciton driving terms [terms with coefficients 3
in Egs. (27)]. It turns out that also this part is dominated
by the free-carrier frequencies. The reason is that the
exciton-exciton driving term decays with T§" /2 = 1.5 ps,
which is faster than the intraband dephasing. However,
in the dashed line, we notice a slight contribution below
the resonance peak which is related to excitonic beating
energies.

This interpretation of the various frequencies entering
the spectrum of THz emission can be checked by chang-
ing the dephasing times. For this purpose, we will now
compare the case of equal times with the cases where one
of the times, the interband or the intraband dephasing
time, is much shorter than the other. In order to con-
centrate on the most interesting part of the spectrum in
the region of the exciton resonance, we study the case of
an excitation between the two resonant exciton peaks at
a photon energy of 1.534 eV. This reduces the contribu-
tion due to oscillations in the hole system. Figure 9 shows
the spectra of the emitted radiation (left column) and the
corresponding decomposition (right column) with respect
to the different driving terms for three combinations of
interband and intraband dephasing times. Figures 9(a)
and 9(b) are obtained with the same values as above,
Tsh = Tge = TH* = 3 ps. Compared to the previous
case, now the low frequency part of the spectrum is in-
creased. However, the spectrum is still dominated by the
energy splitting of the free electron states. This effect
is further increased by reducing the interband dephasing
time to a value of T§" = 0.6 ps and keeping fixed the
intraband times. Now both driving terms act effectively
as a short impact for the intraband oscillators, which
then oscillate with their characteristic frequencies. The
contribution below the 6.5 meV resonance related to the
exciton beating, which was visible in Fig. 9(a), has now
vanished. If, on the other hand, we reduce the intraband
dephasing times to T§® = TH* = 0.5 ps and increase
the interband dephasing time to T§" = 8 ps, the exciton
driving term decays much slower than the free-carrier os-
cillations. The line in Fig. 9(e) is now concentrated at the
exciton splitting energy of 3.5 meV. The superimposed
slight structure is related to the fact that, as has been
discussed above, the exciton related to the second elec-
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FIG. 9. (a),(c),(e) spectral intensity of the emitted signal
and (b),(d),(f) separate contributions as in Fig. 8 for the case
of excitation with a 150 fs pulse at 1.534 eV and an applied
electric field E = 10.5 kV/cm for different combinations of
interband and intraband dephasing times.

tron subband mixes with excited states of the exciton
from the first subband leading to several contributions
with similar oscillator strength (see Fig. 5).

IV. CONCLUSION

We have presented an analysis of eigenstates, coher-
ent dynamics, and terahertz-emission in an asymmetric
double quantum well. The theory has been based on the
semiconductor Bloch equations in the low-density case,
which have been solved numerically. We have calculated
exciton energies and eigenfunctions in asymmetric dou-
ble quantum wells as functions of an applied electric field.
For varying electric field, the localization behavior of the
excitonic states changes, leading to a transition from spa-
tially direct to spatially indirect excitons, the resonance
field, however, is shifted with respect to the resonance
field for free-carrier states. From these data, we have
calculated absorption spectra which are in good agree-
ment with experiments.

We then have investigated the coherent dynamics in-
duced by a laser pulse. For the case of carrier generation
in a superposition of states, we have calculated the coher-
ent emission of a terahertz radiation. The dynamics has
been analyzed both in a free-carrier and an exciton rep-
resentation. The latter one has allowed us to individuate
two different contributions leading to oscillations either
with the free-carrier subband splitting or with exciton
beating frequencies. The spectral shape of the emitted
signal depends on details of the dephasing mechanisms, in
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particular, on the ratio between interband and intraband
dephasing times. The calculations, therefore, explain the
difference between the splitting of excitonic absorption
lines and the frequency of terahertz emission as observed
experimentally.
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