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We investigate the in8uence of local defects on the dc transport in mesoscopic quantum wires
of finite width. Using the Anderson Hamiltonian for the description of the wires, we solve the
Schrodinger equation for scattering boundary conditions. The conductance is then calculated within
the Landauer approach. We present a detailed study of the defect-induced Buctuations in the
conductance spectra, which are of the order of e /h. These iluctuations can be related with Fano
resonances in the electron transmission spectra, which are due to the coupling between localized
defect states and the propagating states of the perfect waveguide. DifFerent kinds of defects are
investigated. The case of the double Anderson chain is treated with particular emphasis, since in
spite of its simplicity this system possesses all the characteristic features of more complex systems.
Our analytical and numerical results reveal the intimate relation between conduction spectra and
localized impurity states and provide a basis for the understanding of conductance spectroscopy
experiments in mesoscopic systems. The importance of the interaction between localized states
and propagating states is also demonstrated by our results for the local current distribution, which
becomes strongly inhomogeneous and even vortexlike for Fermi energies near the Fano resonances.

I. INTRODUCTION

During the past twenty years, the great importance of
quantum interference effects for the dc transport prop-
erties of mesoscopic samples has been well established
as well experimentally as theoretically. The basis for
our present understanding of the related phenomena has
been given by the work of Landauer ' who has related
the conductance to the scattering properties of the con-
sidered system. The specific merit of his approach is
that it reveals the essential difference between elastic
and inelastic scattering processes: The latter destroy the
phase memory and are responsible for dissipation of en-

ergy, whereas the nondissipative and phase conserving
elastic scattering processes introduce quantum interfer-
ence effects due to the coherent scattering between de-
fects. This clarification has stimulated many researchers
to look for the effects of quantum coherence in dc trans-
port, which have got a great importance with the de-
velopment of mesoscopic devices. Among the most im-
portant consequences of the interference between coher-
ently scattered waves, we mention the localization of
electron states in disordered media, ' ' weak localiza-
tion effects which are due to the constructive interference
between coherently backscattered electrons, coherent
magnetotransport, and the existence of universal
conductance Huctuations in disordered media, which in
spite of being sample specific are always of the order of
e /h. s o While the above-mentioned effects are by now
well understood in principle, much remains to be done to
explore the exciting possibilities in the field of mesoscopic
transport.

In the present work, we concentrate on the coherent
transport in multichannel quantum wires in presence of
defects. Quantum wires are apparently the simplest sys-

tems which can be discussed in the field of mesoscopic
transport and have already been discussed by many
authors. ' One may, therefore, wonder whether they
are still of actual interest. Having a closer look, one rec-
ognizes, however, that any mesoscopic device can be de-
scribed as a multichannel quantum wire which is tailored
by a special distribution of "defects, " and that there-
fore multichannel quantum wires with defects can be
considered as the most general mesoscopic physical sys-
tems. Historically, the understanding of the principles of
quantum interference phenomena has been obtained by
considering single-channel systems which are represen-
tative for one-dimensional (1D) systems, and many au-
thors have contributed to this. In this case, the
conductance oscillations in the mesoscopic regime can be
described in terms of Fabry-Perot interferences between
multiple scattered monochromatic electron waves near
the Fermi energy E~ with Fermi-wave vector ky. Dur-
ing the past decade, it has been demonstrated both ex-
perimentally and theoretically that multichannel systems
present a lot of interesting interference phenomena which
cannot be explained within a 1D description. These fea-
tures can be attributed to the presence of interchannel
coupling. It is thus worthwhile to develop a general pic-
ture which allows us to understand the specific effects of
interchannel coupling. In this spirit, we will, in the fol-
lowing, analyze the behavior of rather simple multichan-
nel systems, which will allow us to develop insight into
this fascinating world of interference phenomena in meso-
scopic systems. The present study was stimulated by the
recent work of Tekman and Bagwell, who showed that
defects in quantum wires lead to Fano resonances in the
electron transmission spectra. These resonances, which
result &om the coherent coupling between localized im-
purity states and the continuum of propagating states,
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have been discussed, also, by other authors.
Our theoretical approach, which divers in several re-

spects &om previous studies, is presented in Sec. II. The
perturbed wire is represented by an Anderson Hamilto-
nian. The Schrodinger equation for scattering bound-
ary conditions leads to an inhomogeneous system of lin-
ear equations which defines the scattering properties of
the system. The conductance of the perturbed quantum
wire as well as the local current distribution are then
calculated using the Landauer approach. In Sec. III, we
present our numerical results for a variety of systems.
For reasons of simplicity, we restrict our discussion to
2D wires with rather simple defect distributions„which
is sufBcient for our present purpose. The case of the
double Anderson chain is treated with particular atten-
tion, since all the characteristic features of more complex
systems are already present and can be discussed in a
transparent manner.

II. THEORETICAL APPROACH

A. Ceneral case

Ny,

N. -

x = ra

FIG. l. Quantum wire with defects in the Anderson model.
L and B denote the regions of the semi-infinite waveguides,
which are connected to electron reservoirs with diferent chem-
ical potentials. The region M contains the defects.

where Hp represents the perfect wire without defects, and
Hq describes the defects. The solution of the Schrodinger
equation for scattering boundary conditions is expressed
in terms of the incoming wave function ~Q;„) and the
scattered wave function ~g„tt), i.e. ,

We consider the quantum wire represented in Fig. 1.
It consists of a perturbed region M and two identical
perfect waveguides attached to both sides. At both ends
the waveguides are connected to electron reservoirs with
slightly different chemical potentials p~,gt and p,„zhq. In
order to avoid unnecessary complications, we assume that
the energetic distribution of the electrons is given by the
Fermi distribution function at zero temperature. The
waveguides are considered to be semi-infinite. This en-
sures that only electrons which are injected &om the
reservoirs in propagating modes of the waveguides can
contribute to the current, all others are reBected back
into the reservoirs. The dc conductance can then be ex-
pressed in terms of transmission probabilities of electrons
near the Fermi level, i.e., the dc transport properties
are expressed in terms of the scattering properties of the
system.

The Hamiltonian of the considered quantum wire may
be split into two parts,

From the Schrodinger equation, we obtain

(~ —E) I &--«) = (E —I)I@-)

which relates the scattered wave ~Q„tt) to the incom-
ing wave ~g; ). In the following, we describe the system
by an Anderson Hamiltonian, which is expressed in the
orthonormal Wannier basis ~n) = IIn, n„,n, ). Here, the
vectors (n, n„,n, )a run over the lattice points of a cubic
lattice, i.e., for a quantum wire along the x axis and with
lateral dimensions N„aand N a, we have

oG~ o ~ e
~ ly 0}1

~
~ ~ s

y
QGq

Ag 1) ~ ~ 0 ) Sg 1

In this basis, the matrix elements of Ho and Hq become

( n~ao~n') = V(~„'*„l,+ b„.„,~.'"„',l) +a„.,
( nlH~ln') = ~ b

H = Hp+Hg, with

(K)6„„,= (b„„+g+ b„„g)b„„„b„,„,
I„l 1 if n, n' are nearest neighbors in the (yz) plane

0 otherwise.

The first term in Eq. (4) describes the coupling between
nearest neighbors. In the following, we choose the origin
of the energy such that ~ = 0. The defects are described
by the potential parameters t„in Eq. (5). Since IIo is
separable with respect to the coordinates x and y, z, we

may write Hp ——Hp + Hp", and the eigenfunctions of

I~8) = ).
)TLp 7 Yl

r."„P„"„~nx)ny) nz)

In, v, F)

I

Hp to the energy E can be written as
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In the following, we use the normalizations
I

fL flz YLy TLz VV )

&II yAz

(n, v, Eln', v', E) = l~„l" b„„.h„„.

With the definitions

E( ) —v
I

1&
K~)

E(")y"„
„

= V ) (9)

The index v labels the N = N„N modes which corre-

spond to the eigenstates of Ho" . The factor e„describes
the behavior of the eigenmodes v along the waveguide:
For evanescent states, we have Ie„l( 1; propagating
modes may also be characterized by the corresponding
wave vector q„with e„=exp(iq„a). The ket vectors
In, v, E) give the projection of the eigenstate lv, E) on a
plane corresponding to a particular n . The Schrodinger
equation for the unperturbed waveguide becomes

r
v ~„y"„„+—y„"„+)

V I I7L y $74 z

replacing e„*by ~„"*.
We now consider a wave incoming f'rom the left side

in channel v. Denoting the region of the waveguide to
the left (right) of the perturbed region by I (B), and
the defect region by M (see Fig. 1), we obtain for the
incoming wave

N

I@'-) —= l~) = ). ):~=- In'. ~', E). (»)
nI qL v'=1

The scattered wave is projected on I., M, and R, i.e., we
write

(12)

with
N

lvP( )) = ) ) („„-~„," In'„v',E),
n' gL v'=1

N

I4-'- ') = ). ).@."..l~'. ~' E)
nI gM v'=1

N

I@("))= ) ) g„.+N, „I~I., ~', E-).
nI. qR v'=1

we obtain for the energy

E —E(+) + @(»)

The wave functions Iv, E) vanish in the region outside
the wire. We, therefore, solve Eq. (9) with the boundary
conditions ~o = ~ „,o = Ar„+z, , = ~ „,N, +z =
It is evident from the above equations that K„and I/z
are interchangeable: In the following, we assume Ir„l(
1 in Eq. (6), which corresponds to propagating states
or to evanescent states in the forward direction. States
scattered in the backward direction are then obtained by

I

In the following, we ass»me that the perturbed region ex-
tends over the layers between l and r (see Fig. 1). With
this choice the layer indices n, which define the sub-
spaces L, M, and R, are given by

n = (—oo, . . . , l —I),I
n = (r + 1, . . . , ooj.

The Schrodinger equation Eq. (3) can now be solved in
the representation of the eigenstates of the waveguide,
Eq. (6). We obtain (see Appendix A)

0

0 )C-1 ~(l+1) ~

( -x-"+'
g—2l+1 ~(l) ) X(L)

y(l)
@(l+1) 0

(14)

'
~ ~(~—1)

0
K

0

0 is the N x N null matrix. The N x N matrices X( ),
X( ), 4( *), K, and M( ) are defined by

@(~—1)
0 @()
lc ( X'"' )

I

with

0
0
o

X{L)
vv'

X(R)
vv'

y(~ )
VVK„„

~(~ )

VV

4v+N, v' ~

I

~„b„„,

(16)

We note that the block matrix in Eq. (14) depends on the
choice of the origin. The last column is independent of l
and r, reBecting the fact that the transmitted waves X(
do not depend on the position of the perturbed region.

From the wave functions, we may also calculate the
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local current distribution within the sample. This is best
done by expressing the solution of Eq. (14) for an incom-
ing wave in channel v in the Wannier representation:

l@-) = ) @„"
„„

ln, ny, n, )
22 ~ )fl p )A'Q

With the position operator x,
x=a nn n

and the Hamiltonian H [Eqs. (4) and (5)], we calculate
the velocity operator v &om

i = —(Hx —iH),

which defines the current operator j = —ev. We then
obtain, for the respective contribution of lg„-)to the local
current,

Vaej (@„-;n, ny, n, ) = Im Q„*
„

where g„(E)is the one-dimensional density of states of
channel v. Applying this relation to a perfect waveguide,
one obtains the well-known result for the conductance

2eG=N,

where N, is the number of propagating channels at the
considered Fermi energy E.

In the Landauer approach the dc conductance is ex-
pressed in terms of the transmission coeKcients which
are given by the elements of the scattering matrix 8,

Qi~ (
vg v

where vz „-and v~ are the group velocities in the in-

coming and outgoing channels v and v, which are zero
for evanescent modes. The two-terminal conductance is
then obtained by summing over the transmission prob-
abilities &om left channels v to right channels v+¹

2e2
2(-"=

q ).Is-+)v, =l . (2o)

It will, therefore, be useful for our later discussion, to
eliminate the unknowns X ) and 4(" ) (n = l, . . . , r)
in Eq. (14), which do not enter Eq. (20). This can be done
with the help of transfer matrices, which are defined by

@(~—~) 7-(~)X(R) i = O, . . . , r —I, . (21)

We show in Appendix B that the matrices 7 (*) can be
obtained &om the recursive relation

~(~) —1 & ~(i)yy(~ ~+i)T(' i)— —
) (22)

After summation over all propagating channels v and
integrating over the energy window defined by AE =
p~,g —p„zest,, we get for the local current

AEJ(n, n„,n, ) = ) g„(E)j(g„--;n,n„,n, ), (17)

[

where 1 is the N x N identity matrix, and

K ~ —1
y ~VV

&u

The transfer matrices can now be used to write the solu-
tion of Eq. (14) in the perturbed region in terms of X(
In this way, we obtain (see Appendix C)

()c —)c-') + u] x(") = )c —)c-',

with the interaction matrix Q,

(24)

) ~(n )7-(r n,)— (25)

The above inhomogeneous system Eq. (24) was obtained
for scattering boundary conditions, and the inhomogene-
ity accounts for the incoming waves [see also Eq. (3)j.
For purposes of our later discussion, we note that the
respective homogeneous equation,

I()c —~-')+u v = o,

describes the defect-induced bound states, which are
found when the direct interaction of the localized states
with the degenerate continuum states is neglected. In
order to see this, we first set the ofF-diagonal matrix ele-
ments in Eq. (26) equal to zero. This leaves us with the
equations

I()c —)c-') + u] = o. (27)

It is easy to see that these equations yield the eigen-
values of the impurity states associated with the one-
dimensional bands v in absence of interband coupling.
Including the oE-diagonal elements of the interband in-
teraction M but still neglecting the direct interaction of
the defects with the continuum states, we obtain Eq. (26),
which, thus, describes the reference system of interacting
localized defect states. With this in mind, it follows im-
mediately from Eqs. (24) and (26), that the transmission
coefEcients 8-+~ — vanish at exactly the eigenenergies of
the system of % —1 interacting defect levels, which is
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obtained from Eq. (26) after removing the vth column
and vth row of the matrix (K —K 1) + M.

The interaction matrix Eq. (25) is responsible for the
defect-induced interchannel coupling, and will, therefore,
be the central quantity for our discussion of the inBuence
of defects on the dc conductance. For the case of a single
defect layer at position n = l, we obtain from Eqs. (25)
and (22) (with r = 1)

(2S)

E 0-

2-

For a system with two defect layers at positions l and r,
we have W~+ ~ = ~ ~ . = W&" ~ = 0, and we get

Wave vector q (~/a)

9"= M/"'7 '" "+ W"7 "'
M/(~) + M/(r) ~(i)~(~—i) M/(~) (29)

FIG. 2. Band structure of the double Anderson chain for
V = —1.

We note that for a single defect plane at l = 0, the
interaction matrix M' becomes independent of the en-

ergy. Moreover, since the position of the defect layer has
no inBuence on the resulting transmission coefficients, it
follows that the energy dependence of M', which is found
putting the defect layer at position l g 0 [see Eq. (16)],
is nonessential. The situation is different for more than
one perturbing layer: Already for two defect layers the
energy dependence of M, which is introduced by Z~"

in Eq. (29), cannot be eliminated by changing the origin.
It will be shown in Sec. III, that this leads to a qualita-
tively different behavior of the transmission coefBcients
and of the dc conductance.

is defined by the transmission coefficient s31. The latter
will be denoted t„in the following, since it involves only
the left and right symmetric modes. We obtain &om
Eq. (24)

—1
tCs &s

Ks —Ks + jef'

with

+sa+as
efF = ss

+a &a + ~aa

For a single defect at position n, this simplifies to

B. Application to the double Anderson chain

As mentioned in the beginning, the double Anderson
chain is of particular interest for our study. In this case,
we have N„=2 and N, = 1. In the following, we will
suppress the z coordinate and use a two-dimensional no-
tation. The two modes of the perfect waveguide are ei-
ther symmetric or antisymmetric, and will be denoted in
the following by the indices s and a, respectively. The
solution of Eq. (9) is then

~1 ~2 41 42

0!gsl
+0

In agreement with our previous general discussion, we
see that M,g diverges at the energy of the impurity level
associated with the antisymmetric band, which is given
by the condition e —rc +M = 0, and, therefore, the
transmission coefficient t„vanishes at this energy [see
Eq. (31)]. It is interesting to note that Eq. (31) has the
same form as the transmission probability for a single
point defect in a one-dimensional Anderson chain, with
Q,p equal to en/V.

III. NUMERICAL RESULTS

It is convenient to characterize the perturbing potential
at a given position n by its symmetric part o and its
antisymmetric part a, with

ne, 1 + Cn~, 2

2V
n~, 2 n~, 1

(30)

The dispersion of the propagating modes obtained &om
Eq. (8) is 2V cos qa. The resulting band structure for the
two eigenmodes is shown in Fig. 2.

Equation (20) gives the conductance G in terms of the
transmission coefficients. For Fermi energies below the
minimu~ E of the antisymmetric band (see Fig. 2), G

In the following discussion, we use the scales V = —1
and a = 1 for energies and lengths, respectively. Figure 3
shows our numerical results for the conductance of a two-
dimensional double quantum well with rough interfaces.
This spectrum is representative and illustrates the typical
behavior for a perturbed quantum wire. For reasons of
simplicity the width of the quantum wire (N„=6) is cho-
sen rather small. The results are qualitatively the same
for larger widths as well as for 3D quantum wires, the
only difference being that the density of the oscillations
in the conductance spectrum increases with the number
of conducting channels and the graphical resolution be-
comes more difficult. The geometrical parameters, which
specify the considered double well as well as the local
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FIG. 3. Conductance for a two-dimensional double well vs

the Fermi energy. The vertical width of the quantum wire
is N„=6. The interfaces between waveguides and quan-
turn-well regions are disordered. The actual distribution of
site energies in the Anderson Hamiltonian is given in the in-
set, with o: t „=0, ~: e„=—1. The three curves cor-
respond to the perfect waveguide, the double quantum well
with averaged interface roughness, and the full perturbation
(top to bottom).

distribution of the defects at the interfaces, are specified
in the inset of Fig. 3. For comparison, we show also the
conductance of the perfect quantum wire as well as the
conductance in the "virtual crystal" approximation. The
latter is obtained by averaging over the interface rough-
ness, i.e., by replacing the actual potential values ~„.„

by

1
N„

E'
flyer Ay pf

fl II YL )

~ n'=i
n„=1, . . . , N„, (34)

which is independent of n&. As may be expected, we 6nd
that defects lead always to an increase of the resistance,
irrespective of their local distribution. This holds also for
the perturbation c„„,even though it does not break the
vertical symmetry of the wire and. , thus, does not couple
between the propagating modes of the waveguide. The
conductance of the unperturbed perfect waveguide is de-
scribed by Eq. (18). The steps correspond to changes
in the number of propagating modes at the respective
energies. The conductance spectrum of the waveguide
is, therefore, symmetric with respect to E = 0. This
symmetry as well as the steps in the conductance are de-
stroyed by the double quantum well. This is true already
for the perturbation described by Eq. (34). In this case,
each propagating mode is perturbed by the same lateral
perturbation which leads to a Fabry-Perot-like transmis-
sion spectrum. The resulting conductance at energy E is
obtained &om the superposition of the individual contri-
butions of the difFerent propagating channels v, which are
identical besides a shift in energy by E" [see Eqs. (9)
and (10)]. The asymmetry of the transmission proba-
bility with respect to E = 0 results &om the fact that
the considered perturbation is attractive on the average,
which shifts the spectrum to lower energy.

The lowest curve in Fig. 3 shows the conductance for

the double quantum well in presence of interface rough-
ness. We find that the vertical disorder leads again to a
further general increase of the resistance. At certain en-
ergies, however, the resistance may even decrease. The
most striking consequence of the vertical disorder is the
appearance of rather sharp resonance structures in the
conductance spectrum, which correspond to fluctuations
of the order of e /h. It is already clear from the previous
discussion that these additional structures are due to tht;

coupling between the modes of the waveguide and thf..
localized states introduced by the defects, i.e. , they can
be understood as Fano resonances.

In order to arrive at a better understanding of the
rather complicated conductance spectrum in Fig. 3, we
present in the following the results for difI'erent types of
defects in a double chain, which corresponds to ~V„=-- 2.
In Fig. 4, we show the transmission spectrum in the sym-
metric channel for the simplest possible case of a sin-
gle impurity. The parameters describing the defect are
oo ——1 and oo ——0.2 [see Eq. (30)]. The energy de-
pendence can be easily understood in terms of Eqs. (31)
and (33): The transmission is reduced by the symmetric
part of the perturbation o 0, the antisymmetric part f ~0

leads to a pronounced Pano resonance. In agreement with
our previous theoretical analysis, the transmission van-
ishes at precisely the energetic position of the localized
impurity level which is obtained by evaluating Eq. (27)
for the antisymmetric band. Similar results are obtained
for other parameters: The overall transmission decreases
with increasing o o, the Fano resonance broadens with in-
creasing o.o and it shifts to lower energy for increasing o&).

These findings are in agreement with those of of Tekman
and Bagwell, who used a two-mode approximation.

The importance of the coupling between localized
states and propagating waveguide modes is revealed by
the local current distribution shown in Fig. 5. At energies
far &om the resonance, the current flow is homogeneous
over the sample. Approaching the resonance, however,
we find a strongly inhomogeneous current distribution in
the defect region. The local vortexlike current, which
is found for energies close to the transmission zero at
E = —1.24, becomes even an order of magnitude larger

-2

FIG. 4. Transmission probability in the symmetric channel
for the Anderson double chain containing one impurity with
o. = 1, cx = 0.2. The broken line gives the result for o. = 0.
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FIG. 5. L
~ ~ ~

. Local current distribution f th A dor e n erson double
chain containing one im urit sapuri y (same potential parameters as

g' ar the Fano resonance (see Fi . 4)in ig. 4 at ener ies E near
a) E = —1.25; (b) E = —1.23.
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We now consider thee case of two defects separated b
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0' = 0'
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in the spectrum for a = 0. Here, q, (E) is the wave vector
in the symmetric channel at energy E, and p, (E) is the
phase of the reHection coefficient sqq ——[sqq~ exp [ip, (E)]
for the individual (identical) scatterers. For large o. val-
ues the waves change their symmetry after each reBec-
tion, and we are, therefore, left with the condition for
destructive two-channel Fabry-Perot interference,

[q, (E) + q (E)]d + p, (E) + p (E) = (2n+ 1) m, (36)

where q (E) [p (E)] is the wave vector (phase of the re-
Hection coefficient) in the antisymmetric channel at en-
ergy E. At intermediate o. values incoming waves of
either symmetry are reBected into both channels, and
the two paths interfere with each other, thus leading
to a damping of the Fabry-Perot oscillations of [t„[2.
For large o., the two-channel mechanism described by
Eq. (36) dominates. This gives rise to the additional
structures in Fig. 9, which are particularly well resolved
near the edge of the antisymmetric band. It should be
noted, that the physics underlying the Fabry-Perot os-
cillations and the Fano resonances is rather the same,
and that the above description in terms of Fabry-Perot
interferences is only chosen for reasons of tradition. In
fact, the situation could equally well be described in the
Fano picture, which relates the structures in the trans-
mission spectra to the coupling between quasibound lev-
els and the continuum of propagating states. For this,
one has simply to recognize that multiple reBections be-
tween the two defects give rise to a quasibound state,
provided that the reBection coefficients are sufficiently
large. Here again, it is easy to verify that the energies of
the quasibound states correspond to the minima (and
not to the maxima, as is often assumed) in the Fabry-
Perot transmission or conductance spectra.

The transmission spectrum for the symmetric mode in
a single quantum well with symmetry breaking defects at
the interfaces is given in Fig. 10. The slow oscillations are
due to Fabry-Perot interferences in the symmetric chan-
nel, which correspond to the scattering between both in-
terfaces. Interchannel coupling due to the disorder at the
interfaces gives rise to two typical Fano resonances posi-
tioned at the bound eigenstates of the well for the anti-
symmetric band, which can be calculated from Eq. (27).
We note that the vertical disorder at the interfaces is
rather large, which explains its strong inBuence on the
whole spectrum. The width of the resonance decreases
with the binding energy. This corresponds to the de-
creasing amplitude of the localized wave function in the
region of the interfaces. Moreover, Fig. 10 shows that
already for o. = 0, i.e., without interchannel coupling,
the transmission is almost suppressed for E ) 0. This
is a band-structure eH'ect: For sufficiently large wells one
may define a local band structure in the well which is
shifted to lower energies by the amount of the attractive
well potential. With this alignment of bands, energies
near the upper edge of band 8 correspond to evanescent
states in the well region, i.e., incoming waves in this en-
ergy range are reBected by the well. The low-energy edge
of the spectrum is not shifted, since it is defined by the
propagating states of the unperturbed quantum guide.

0
-3 -2

FIG. 10. Transmission probability in the symmetric chan-
nel for the Anderson double chain in presence of a perturbed
single quantum well. The perturbed well extends over the
distance d = 5a. The left (right) interface is described by the
potential parameters o~ = 0.66, a~ = 0.5 (o„=0.5, n = 0.5).
The potential inside the well is given by a„=1, a;„.= 0.
For comparison, the Fabry-Perot spectrum for a& ——n„=0 is
also shown (broken line).

The same band-structure eff'ect is also responsible for the
strong dependence of the Fabry-Perot oscillations on the
energy seen in Fig. 10: At intermediate energies the os-
cillations are rather weak, and they become more pro-
nounced near the edges of the transmission window. In
order to understand this behavior, one has simply to rec-
ognize that near the band edges the wave vector changes
rapidly with energy, thus leading to rather rapid changes
of the Fabry-Perot transmission probability in this range
[see Eq. (35)]. This energy dependence is also seen in
Figs. 6 and 9.

The diferent situations, which we have studied for the
simple case of a double Anderson chain, provide a tool
box for the understanding of the conductance spectra of
more complex systems. To demonstrate this, we discuss
again the representative case of Fig. 3, which shows the
calculated conductance spectrum for a double quantum
well with rough interfaces. In order to facilitate the com-
parison, we have chosen approximately the same wells as
in Fig. 10. First of all, we observe that in presence of
the well potentials the conductance spectrum becomes
asymmetric with respect to E = 0. The conductance is
strongly reduced for E & 0, and is even suppressed for
E ) 3.4. This behavior is readily explained by the shift
of the local band structure in the well region (see the
above discussion of Fig. 10). Already for the case of the
averaged perturbation e„„,we find that the conduc-
tance Buctuations are qualitatively different for E ( 0
and E ) 0: The oscillations in the lower half of the spec-
trum are much smoother than those in the upper part.
This again can be understood together with the result
presented in Fig. 10. As mentioned before, the conduc-
tance spectrum is given by the sum over the contributions
of the diferent channels, which have the typical asym-
metric form presented in Fig. 10 and which are identical
besides a shift in energy by E„"[Eq. (9)].
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The comparison of the Anal spectrum in Fig. 3 @faith

the spectrum obtained for the perturbation c„„shows
that the infIuence of the interchannel coupling, which is
introduced by the interface roughness, is most important
in the low-energy part of the spectrum. This is due to the
fact that the well potentials are attractive, and, therefore,
the bound states are located below the band minima of
the difFerent modes. The corresponding Fano resonances
can thus only be found at energies E ( 0. We emphasize
that in spite of their ressemblence with Fano resonances,
the pronounced structures in the "virtual crystal" spec-
trum for E & 0 are resulting &om the superposition of
the identical single-mode Fabry-Perot spectra which are
shifted in energy, i.e. , these structures cannot be inter-
preted in terms of Fano resonances at local defect states.
The single quantum well possesses two bound states (see
Fig. 10) with binding energies AEq = 0.8 and AE2 = 0.3.
The double well possesses, thus, four bound states which
are grouped in two doublets since the well-well interac-
tion is rather small. In agreement with our theoretical
description, the doublet resonances in Fig. 3 appear pre-
cisely at the energies of the localized states of the single
well, which are obtained by subtracting the above binding

energies from the lower band edges E„'"= E~" + 2V.
Similar to Fig. 10, the width of the resonances in the
conductance spectrum decreases with increasing binding
energy. Moreover, the doublet splitting is largest for the
less bound state. This corresponds to the fact that the
interwell interaction becomes negligible, when the inter-
acting states are strongly localized within a single well.

The resonance structure consisting of two doublets is
essentially repeated at each of the lower band edges of
the higher modes which correspond to larger E " . The
replica are, however, not perfect. The deviations can be
attributed to multimode mixing involving more than two
channels. In fact, for —4 & E & 0 the number of chan-
nels which contribute to the conductance [see Eq. (20)]
increases with the energy. The Fano resonances at higher
energy correspond, therefore, to the interaction between
a localized level and several propagating modes. We note
that multichannel interactions will be more important for
three-dimensional quantum wires, where the number of
degenerate channels is increased.

In the considered case of a double well the average
potential r„„doesnot lead to bound states at en-

ergies E & 0. The sharp resonance peaks at energies
E = 2.0, 2.8, and 3.4 in Fig. 3 can, therefore, not be at-
tributed to Fano resonances at localized single-mode de-
fect states, but they are due to the multichanne/ Fabry-
Perot interferences which were discussed together with
Fig. 9.

IV. CONCLUSIONS

tering boundary conditions. In this way, we do not only
obtain an e%cient numerical scheme, but we get also a,

theoretically appealing description of coherent transport
in presence of defects, which offers the necessary tools
for the interpretation of conductance-spectroscopy exper-
iments. In particular, we have been able to clarify the
diferent roles of defect-induced. intrachannel coupling,
which is caused by perturbations breaking the t.ansla-
tional symmetry along the wire, and of interchannci co»-
pling, which is due to disorder across the wire. Intracha~~-
nei coupling is responsible for Fabry-Perot interferel~ces
in the transmission spectra of the difI'erent channels. It
further introduces localized defect states which are asso-
ciated with the difI'erent bands of the unperturbed quan-
tum wire. In presence of interchannel coupling, these de-
fect states give rise to Fano-resonance structures in the
conductance spectra. It should be noted that the above
general description is not restricted to any special kind of
defects or defect distributions. In particular, the conduc-
tance spectra of geometrically distorted quantuns wires
show similar behavior ' and can be understood along
the same lines.

The resonances are the result of the coherent mixing
between localized defect states and propagating wave-
guide modes. The local character of the interaction has
been visualized by the local-current distributions, which
are vortexlike near the defects and at energies close to
the resonances. It is quite straightforward to speculate
that these vortexlike local currents will become partic-
ularly important in the ac regime, where they will give
rise to inductive behavior. Our results show that the ba-
sic features of the conductance spectra in Inultichannel
quantum wires can already be understood in the simple
case of the double Anderson chain. DifI'erent kinds of de-
fects have been investigated in detail for this two-channel
system. In particular, we have shown that the interac-
tion between defects, which are spatially seaparated in
the transport direction, gives rise to correlated resonance
structures in the conductance spectrum. Moreover. , for
large interchannel coupling, we have found resonances in
the transmission or conductance spectra, which can be
described as multimode Fabry-Perot interferences. Al-

ternatively, they could also be understood as Pano reso-
nances involving localized states which are built up from
more than one band.

We note that the Pano resonances correspond always
to oscillations of the order e /6, which is the order of
the universal conductance Quctuations. While this
is not, so surprising in itself, since the systems considered
in the theory of the universal conductance fIuctuations
are rather the same, we may take this as an indication
that the present approach may also be useful to elucidate
the interference processes which are responsible for the
existence of these fIuctuations.

We have presented a theoretical and numerical study
of the role of defects for the dc transport in multichannel
quantum wires. Following the approach of Landauer, we
have calculated the scattering properties of the perturbed
quantum wires which determine the electronic transport,
by direct solution of the Schrodinger equation for scat-
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Multiplication of Eq. (7) by P„andsummation over n„,n, yields

(A1)

Our aim is to write Eq. (3) in the basis of the functions In, v, E). We, therefore, calculate the matrix elements

+II y~g A iAI I

(A2)

where we have used Eq. (Al). W(" ) is defined by Eq. (16). The Hamiltonian Eq. (4) contains only couplings between
nearest neighbors. It follows that only matrix elements involving layers with n = (/ —1, . . . , r + I}contribute to
the defect-induced interaction between the states of the perfect waveguide. Prom Eq. (A2), we obtain for n F M,

(A3)

With the above matrix eleznents and Eqs. (11) and (12), we can write Eq. (3) in the basis of the functions In, v, E)
and obtain Eq. (14).

APPENDIX B:RECURSION RELATION FOR TRANSFER MATRICES

In the following, we prove Eq. (22). Its validity for i = 0 follows immediately from the definition Eq. (21) and the
last line of the Schrodinger equation Eq. (14). It holds also for i = 1, since with Eq. (23), we have Z( ) = K: which
satisfies the next to last line of the Schrodinger equation. The following lines of Eq. (14) read for 2 & i ( r —t:

y(~ —i) )(. )(-y(~—i+2) + ~(v —i+1)@(v—i+1)

which gives together with Eq. (21),

y('& —
&„(&&~('—~& y ~& —'+'&~(' —»)

(81)

(82)

We now assume that Eq. (22) is valid for 7 (' ) and 7 (' ), and prove that it is also true for the subsequent transfer
matrix 7('). Expressing M(" '+i) by Eq. (15), we obtain

i—2

7 (')— Z(9) W(r i+j+2)7'(i —2 2)——

)CW(&—i+1)7(i—1) ()C2 + 1) Z(l)W(r —i+2)7(i,—2) ) ()C2 + 1 Z(2 —1) )C2Z(i —2) W(~ —i+i)7 (i—z)

j=3
(83)

From Eq. (23) it follows that the expression in the square brackets in Eq. (83) equals Z(~) and ()C + 1) Z( ) = Z( ),
and we obtain Eq. (22).
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APPENDIX C: DIRECT CALCULATION OF THE TRANSMISSION COEFFICIENTS

From Eq. (14), we obtain for the inhomogeneous linear equations corresponding to the layers n = I —1 and I,

(CI)

g —2l+1X(L} ~(l)y(l } gy(E+&)

We note that Eq. (Cl) together with Eq. (21) relates the left- and right-hand solutions X( ) and X( ) by

1+ jc 2&X(L) = 7"(r t)X(+)

Using Eqs. (C3), (21), and (15), Eq. (C2) becomes

(C3)

In order to show the equivalence of Eqs. (C4) and (24), we have to show that

(C5)

where we have already expressed 2 by Eq. (25). Using the recursion relation Eq. (22), we obtain

jc—1 + yp(l)y(r —l) + jc—1 g(j —l))(()j(j)(7(r—j) jc g(j —l —1)~(j)7"(rj)—
j=l+z j=l+2

(C6)

From Eq. (23) we obtain [. .
j = 1. Inserting this in Eq. (C6), we obtain Eq. (C5).
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