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We perform a detailed numerical study of energy-level and wave-function statistics of a deformable
quantum billiard focusing on properties relevant to semiconductor quantum dots. We consider the
family of Robnik billiards generated by simple conformal maps of the unit disk; the shape of this
family of billiards may be varied continuously at fixed area by tuning the parameters of the map.
The classical dynamics of these billiards is well understood and this allows us to study the quantum
properties of subfamilies, which span the transition from integrability to chaos, as well as families at
approximately a constant degree of chaoticity (Kolmogorov entropy). In the regime of hard chaos
we find that the statistical properties of interest are well described by random matrix theory and
are completely insensitive to the particular shape of the dot. However, in the nearly integrable
regime nonuniversal behavior is found. Specifically, the level-width distribution is well described by
the predicted x? distribution both in the presence and absence of magnetic flux when the system is
fully chaotic; however, it departs substantially from this behavior in the mixed regime. The chaotic
behavior corroborates the previously predicted behavior of the peak-height distribution for deformed
quantum dots. We also investigate the energy-level correlation functions, which are found to agree
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well with the behavior calculated for quasi-zero-dimensional disordered systems.

I. INTRODUCTION

The relevance of concepts from the theory of “quantum
chaos” to mesoscopic physics has become increasingly
clear as nanostructure technology has achieved controlled
fabrication of systems smaller than both the elastic and
inelastic scattering length.! Quantum chaos is the gen-
erally accepted term for properties of a quantum system
associated with classical chaos (or the classical transition
to chaos). In the most recent high-mobility nanostruc-
tures transport is ballistic and the dominant scattering
mechanism is the reflection of the electrons at the bound-
aries of the structure which (depending on the nature of
the confining potential) may generate classically chaotic,
mixed, or integrable dynamics. Thus they present ex-
perimental possibilities for the application and testing
of concepts from the theory of quantum chaos in con-
densed matter physics. Disordered mesoscopic systems
also are undoubtedly chaotic classically, and recent work
has emphasized the similarity between disordered quan-
tum systems and the ballistic systems which have chaotic
boundary scattering. In particular, at low temperature
both types of systems exhibit sample-specific mesoscopic
fluctuations in various physical properties as a function of
external parameters such as magnetic field. The ballistic
systems differ from the disordered systems, however, in
two ways. First, as we will use the term, a disordered sys-
tem generates elastic scattering of electrons on a scale [
which is short compared to typical sample dimensions L.
This means that transport is diffusive on a scale smaller
than the system size and because the diffusion process is
dependent on dimensionality the statistical properties in
general depend on the spatial dimension. Chaotic ballis-
tic systems, on the other hand, have no relevant trans-
port length smaller than the system size and thus many of
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their properties are insensitive to the spatial dimension-
ality (they are said to be “quasi-zero-dimensional”). It
turns out that this difference leads to differences in the
statistical properties of disordered and chaotic systems
in certain regimes of energy and temperature.?3 Second,
there is reasonable evidence that ballistic systems may be
fabricated with geometries and potential profiles which
generate nearly integrable classical dynamics, thus it be-
comes worthwhile to consider models which describe the
transition to chaos and not just fully chaotic dynamics.
There are two main approaches to the quantum the-
ory of chaotic systems: The approach through semiclas-
sical quantum mechanics pioneered by Gutzwiller,* and
the approach based on the theory of random matrices
first applied to quantum chaos by Bohigas, Giannoni,
and Schmit.® The former approach makes a more direct
connection to the classical mechanics and has had ma-
jor successes recently in atomic physics. However, the
confining potential in the microstructures studied exper-
imentally is rarely well enough known to justify theo-
retical work relying on specific classical orbits. Instead
either a wholly statistical approach, or a combination
of semiclassical and statistical ideas has been applied to
quantum chaos in mesoscopic systems. Three measured
physical effects which have been proposed as manifes-
tations of quantum chaos in mesoscopic transport are
(1) the resistance fluctuations in GaAs quantum wires
coupled strongly to an electron cavity,1:¢"® (2) the weak
localization effect in the same system,®® and (3) the
fluctuations in the Coulomb blockade (CB) conductance
peaks!®!! in quantum dots weakly coupled to leads.12715
The electron cavity conductance fluctuations have been
described by a combination of statistical and semiclas-
sical theory, and most recently certain properties have
been derived from random-matrix theory.!®!” Whereas
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the Coulomb blockade peak fluctuations in quantum dots
have been described completely statistically, using only
random-matrix theory. The quantum dot conduction ex-
periments are analogous to strongly resonant scattering
in atoms or nuclei for which the properties of a sin-
gle quasibound state can be probed. In micrometer-size
semiconductor quantum dots at the typical experimental
density it is estimated that the single-particle level spac-
ing (or the excitation energy to the first excited state)
Ae ~ 0.05 meV ~ 500 mK and therefore these systems
may be studied in the regime kT < Ae, where indeed
only a single quasibound state participates in the reso-
nance.

In this paper we will concentrate on the statistical ap-
proach to quantum chaos through random-matrix the-
ory. This theory was originally developed by Wigner,
Dyson, and others to explain statistical properties of
compound nuclear resonances'®!® but later it was con-
jectured by Bohigas-Giannoni-Schmit® to describe any
quantum system whose classical analogue is fully chaotic.
There now exists substantial numerical evidence support-
ing this conjecture as well as an analytic argument due
to Berry?® which applies to a particular statistical prop-
erty (known as the Aj statistic) measuring the long-
range rigidity of the spectrum. In random-matrix the-
ory (RMT) complex systems are represented by ensem-
bles of Hamiltonians with statistically independent ma-
trix elements. These ensembles can be shown to have
maximum statistical entropy (subject to a small num-
ber of constraints).?! There exist three different symme-
try classes of such ensembles characterized by the num-
ber 8 = 1,2,4 of independent components of the ma-
trix elements in the Hamiltonian, H: In zero magnetic
field without spin-dependent scattering H is real, 8 =1,
and the corresponding ensemble (invariant under orthog-
onal transformations) is denoted the Gaussian orthogonal
ensemble (GOE). In nonzero magnetic field H is com-
plex, 8 = 2, and the ensemble (invariant under unitary
transformations) is denoted the Gaussian unitary ensem-
ble (GUE). Finally for strong spin-orbit scattering H is
quarternion real, 3 = 4, and the ensemble (invariant un-
der symplectic transformations) is denoted the Gaussian
symplectic ensemble (GSE). In this paper we shall ne-
glect spin effects (since spin-orbit scattering is negligible
in the ballistic microstructures) and hence only consider
applications of the GOE or GUE.

One well-known property of these statistical ensem-
bles is the appearance of strong level repulsion due to
the lack of any conserved quantum numbers (other than
the energy). This makes the probability density of level
spacings s tend to zero as s — 0, unlike the Poisson distri-
bution of uncorrelated random variables (which has been
shown to describe typical integrable systems??). Using
RMT it is possible to calculate the distribution Ps(s) in
the spectrum normalized such that the local average level
spacing is one. For RMT of two-dimensional matrices the
level spacing distributions are

Pi(s)= %s exp(—%s®) (GOE), (1)

Py(s) = 3232 exp (—2s?) (GUE). (2)
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Note that this distribution tends to zero as s® as s — 0.
Although not exact for N x N random matrices, these
formulas (known as the Wigner surmise) are excellent ap-
proximations to the exact results and are conventionally
used for comparison to statistical data. The appearance
of the RMT spacing distributions at the classical transi-
tion to hard chaos has been verified in many numerical
studies (although an analytic derivation has still not been
found). Hence in this work we will only use the spacing
distribution as a diagnostic for the applicability of RMT.
The theory of these random-matrix ensembles has
tended to focus on spectral statistics and not on statis-
tical properties of the eigenstates; however, in the appli-
cation to quantum dot resonances treated below we shall
find that it is the eigenstate statistics which are most eas-
ily measured. Very recently a great deal of progress has
been made in the study of ensembles in which the ran-
dom matrix varies as a function of an external parameter
such as magnetic flux. Various correlation functions of
the spectra have been calculated and shown to be uni-
versal upon rescaling.?324 These correlation functions are
not easily measured in current experiments on quantum
dots, but may be accessible with some effort.?® Since such
correlation functions are only calculated analytically for
random ensembles it is again worthwhile to test their
applicability to a given chaotic dynamical system. We
perform detailed comparisons of this type below.
Although the applicability of random-matrix theory to
quantum systems which are classically chaotic is now rea-
sonably well established, most dynamical systems are nei-
ther fully chaotic nor fully integrable, but instead have
a mixed classical phase space described topologically by
the Kolmogorov-Arnold-Moser (KAM) theorem?® and re-
lated results. The expectation is that RMT will give valid
and universal results for fully chaotic Hamiltonians and
will break down in some manner as regions of stability
appear in the phase space. It is of interest then to look
at a model for an ensemble of quantum dots which can
span the range from integrability to hard chaos, and can
also test universality in the chaotic limit. A model of
this type was introduced by Robnik?728 and generalized
by Berry and Robnik.?° In this model the quantum dot
is represented by a deformed circular well with infinite
walls; the deformation is described by a quadratic or cu-
bic conformal transformation. This model has a number
of attractive features for our purposes. (1) The classi-
cal mechanics is well understood and has been studied
in detail.2”3% It has been shown that as the parameters
of the conformal transformation are varied the well can
undergo a standard KAM transition to chaos. In ad-
dition we show that if the parameters are varied in a
different manner a sequence of different chaotic billiards
are generated with roughly equivalent degrees of classical
chaos. Thus one can use this set for statistical averaging.
(2) Robnik showed that a very efficient numerical algo-
rithm exists for obtaining a large number of eigenstates
and eigenvalues for this model. (3) Berry and Robnik
showed that an Aharonov-Bohm flux may be simply in-
troduced into the well to break time-reversal symmetry
(without changing the classical dynamics) and that this
would only introduce minor changes in the numerical al-
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gorithm for solution of the Schrodinger equation. Thus
the model is suitable for testing the universality of statis-
tical properties in the chaotic regime and their possible
breakdown in the mixed regime for both the orthogonal
and unitary ensembles. Preliminary results of this inves-
tigation of significantly less breadth have been published
elsewhere.14

The paper is organized as follows. In Sec. II back-
ground material is reviewed. In Sec. III the classical dy-
namics and quantum mechanics of two sequences of de-
formed billiards are discussed. The degree of chaos as a
function of deformation in the classical case is confronted
with the eigenlevel statistics of the quantum case with
Neumann and general boundary conditions. In Sec. IV
using the shape as the external perturbation the energy-
level correlation functions are calculated for the normal-
ized spectra and comparisons are made with conjectures
for their form stated in the literature. In Sec. V we
turn to the problem of fluctuating Coulomb blockade
conductance peak heights in quantum dots. A model
of a Coulomb blockade device is made based on the de-
formable billiard, and the peak-height distributions are
calculated and compared to those obtained from random-
matrix theory. In Sec. VI some experimental implications
are discussed and a new experiment is suggested aimed
at testing our results. Finally in Sec. VII we present a
concluding discussion.

II. BACKGROUND MATERIAL

A mathematically simple way of defining a continu-
ously deformable family of billiards was introduced by
Robnik?? and Berry and Robnik.?® It is based on a con-
formal mapping of the unit disk. We study the simply
connected domain D with a possibly irregular shaped
boundary 0D in the uv plane. The open interior of the
domain is denoted D\0D. The deformed billiard is de-
fined by the infinitely hard wall potential V (u,v) satis-
fying V(u,v) = 0 for (u,v) € D\dD and V(u,v) = oo
for (u,v) € D. The shape of D is defined by a conformal
mapping w of the unit disk C in the zy plane to D in the
uv plane. Using complex coordinates z = = + iy = re®
and w = u + iv we study the cubic mapping introduced
by Berry and Robnik,?°

z + bz? + ced 23
VI+2b2 432’

where b, ¢, and § are real parameters chosen such that
|w'(z)| > 0 for z € C. Two particular sequences of de-
formed billiards using this map are introduced in Sec. III
and are used throughout this paper. The cubic form of
w(z) is the simplest conformal map resulting in a billiard
with no spatial symmetries. The even simpler quadratic
map (¢ = 0) generates a family of billiards with reflection
symmetry. Robnik and Berry pointed out that such spa-
tial symmetries can prevent a magnetic flux from generat-
ing the orthogonal to unitary transition3! hence we main-
tain the more general form although the simple quadratic
case is sufficient for many of our calculations. The de-

w(z) = z€eC (3)
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formed billiard is given by

8D
D\OD

{w(2) : |2| =1},
{w(z): |2 <1} . (4)

The normalization in Eq. (3) ensures that the area of D
remains 7 for any value of the parameters.

The classical dynamics of a point mass moving freely in
the deformed billiard for the quadratic case (¢ = 0) was
thoroughly studied by Robnik.2” More recently3® Hayli et
al. have extended his results. Thus in contrast to many
previous works on ballistic microstructures, in which a
discretized version of the Schrodinger equation has been
studied,!223:24 ip this case one has a detailed knowledge
of the classical dynamics of the relevant quantum sys-
tem. Robnik showed how as a function of b, starting
from b = 0, the system evolves according to the KAM
theorem?3? into a mixed phase space exhibiting soft chaos
and eventually to fully developed chaos. The main tool
for determining the degree of chaos has been to con-
struct the Poincaré surfaces of section for the bounce
map and to calculate the Kolmogorov entropy. The last
large islands of stability in the Poincaré section disap-
pear around b = 0.25 (the value at which the billiard
ceases to be convex) and Robnik originally conjectured
that the transition to hard chaos occurs at this value.?”
However, recent work has shown that very small islands
of stability spawned by the bifurcation of the final sta-
ble two cycle persist up to b = 0.28. The precise value
of b at which hard chaos sets in is not known; however,
it has recently been proven3? that the quadratic billiard
at b = 0.50 is fully chaotic, making this only the third
billiard (along with the stadium and Sinai billiards) for
which hard chaos has been demonstrated analytically. In
practice the islands of stability have negligible weight for
b > 0.25 and the statistical properties of both the clas-
sical and quantum mechanics are consistent with fully
developed chaos.

The quantum mechanics using Dirichlet boundary con-
ditions (DBC) of a single particle moving in the interior
of the deformed billiard given by Eq. (4) was studied
by Robnik?® and Berry and Robnik.2° The billiard is
threaded by an Aharonov-Bohm flux tube of strength
a® through the origin of the uv plane. Here ®; is the
flux quantum h/e and « is a dimensionless real number.
Choosing the gauge

A(u,v) = %‘Do (%,—%,0) , f= %ln [lz(w)|?]
(5)

the Schrédinger equation in the polar coordinates (r,6)
of the zy plane is

2a o?
Vf,g\Il(r, 0) — 769\11(7', 6) — r—2\Il('r, 0)
+ e|w’ (re’®)|2¥(r,0) = 0, (6)

where now the energy ¢ is given in units of A2/2mR?
and lengths in units of R, R being the radius of the cir-
cle C. The spectrum of the Hamiltonian is periodic in
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o with period 1. Except for the two values a = 0,1/2,
for which a real nondiagonal representation of the Hamil-
tonian can be found, the Hamiltonian is a full complex
Hermitian operator. Hence GUE statistics is expected
for all a except for values close to 0 and 1/2 at which
GOE statistics is anticipated. Below whenever we wish
to focus on the GUE case we choose the value a = 1/4 to
stay as far away as possible from the GOE values. Thus
using the fact that the deformed billiard is obtained by a
conformal map of the unit disk we may replace the origi-
nal problem on the irregular domain D by an equivalent
problem on the unit disk moving under a rather simple
“potential” proportional to |w’(re®)|2.

III. TWO SEQUENCES
OF THE DEFORMED BILLIARD

The central issue in this paper is to study transport
properties of deformed quantum dots. To this end we
study two deformation sequences of our model, one which
spans the transition from integrability through soft chaos
to hard chaos [sequence (a) of Fig. 1] and one which re-
mains chaotic [sequence (b) of Fig. 1]. Furthermore, since
we are studying not completely isolated but nearly iso-
lated systems where the electrons can escape, we have to
abandon the DBC’s of Eq. (6) which have been used in
previous treatments of deformed billiards and which are
relevant only for closed systems.

A. The classical dynamics of the deformed billiard

As mentioned above, Robnik?? studied the deforma-
tion sequence shown in Fig. 1(a). We use this sequence
when we want to study the transition from integrability
to chaos. However, we also want to study a sequence
which is “uniformly” chaotic. We therefore introduce se-
quence (b) of Fig. 1 where the shape parameters b and
c are kept fixed (both at the value 0.2) while § varies
between 0 and 7. Qualitative information on the degree
of chaos is obtained by studying the Poincaré surfaces of
section. We find that these are completely structureless

4

06F. 4 (b) b=02 ¢=0.2
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3 1 (a) c=0 6=0

< OO0 00
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00 05 1.0

FIG. 1. The Kolmogorov entropy h plotted versus the nor-
malized deformation parameter X for the two sequences (a)
and (b) as a function of shape parameters. Sequence (a) was
studied by Robnik (Ref. 27). Sequence (b) is studied in this
paper.

HENRIK BRUUS AND A. DOUGLAS STONE 50

with no traces of stable islands. This is the first indi-
cation of hard chaos. Quantitative information on the
degree of chaos is obtained by calculating the Lyapunov
exponent and the phase space average of this exponent,
the Kolmogorov entropy h.27-3* We have calculated h fol-
lowing Benettin and Strelcyn.3? In Fig. 1 h is shown for
the two mentioned deformation sequences (a) and (b}.
Note how h grows monotonically for the sequence (a).
while it is fairly constant and significantly bigger for the
sequence (b). Thus the Kolmogorov entropy calculations
indicate that the deformation sequence Fig. 1(b) is “more
chaotic” than the quadratic billiard even at b = 0.50
where it is known to be fully chaotic. Of course the Kol-
mogorov entropy is essentially an average property of the
phase space and does not allow us to exclude some very
small regions of stability in the sequence, Fig. 1(b).

B. Quantum mechanics
with Neumann boundary conditions (NBC)

To be able to study not completely isolated but nearly
isolated systems where the electrons can escape we have
to abandon the DBC’s which are relevant only for closed
systems. As we will discuss later, a partially open system
will require not just boundary conditions but also match-
ing conditions for solutions inside and outside. Such
matching conditions can be expressed in terms of any
basis set for the region D which does not cause the wave
function of Eq. (6) to vanish identically (as do DBC’s).
The mathematically simplest alternative choice is Neu-
mann boundary conditions (NBC'’s) for which the normal
derivative vanishes everywhere on the boundary:

n-V¥(w) =0, we€ oD (7

where n is the outward pointing normal of the boundary
at the point w.

Although not treated in previous work NBC’s maintain
the simplicity of DBC’s in that they are preserved by the
conformal map, i.e., if ¥(w) obeys Eq. (7) so will ¥(w(z))
for z € 9C, and the method of solving the NBC case is
analogous to the DBC.2%:2° There exists a simple basis
for the unit disk satisfying NBC’s which is given by

Yi/ VT

V2 =G = alPd e (75)

X Jjt; —af (7)€t (8)

(r,0]¢;) =

The index j orders the basis set in ascending order ac-
cording to the eigenvalues '"yJ? for a circle with NBC'’s, 7;
being a root of the derivative J;, of the Bessel function

Jo,. The solution |¢,) of the Schrédinger equation with

J

NBC'’s in the deformed billiard is written as
|"Z’p> = Np Z f—|4~5;>y (9)

where Np is a normalization constant. The particular
form of the expansion coefficients is chosen so that the
transformed Schrodinger equation (6) becomes a Hermi-
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tian eigenvalue problem. The coefficients ¢(®?) and the
eigenvalues ¢, are found from Eq. (6) by insertion of
the superposition Eq. (9) followed by multiplication with
(r,0]¢;) and integration over r and 6. After rearrange-
ment the eigenvalue problem has the following form:

J
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~ 1.
Mijc§p) = gp‘c-s-p). (10)

The explicit form of the Hermitian matrix M is obtained
from the Jacobian |w’(z)|? appearing in Eq. (6):

M,'j = [')7,;_26,']‘ + 6¢i,[j_2606_i5i§;) + 61'.,1]._1 (4bi1(31) + IZbce—i‘sfi(f)) + 6li,lj+0 (szfz(:) + 18C2I~1'(;))

+61,,1;4, (4bI~i(j1) + 12bce+"‘sI~i(J".3)) + 8

where the integrals fl(;’ ) are given by

F(h) _ fol dr rh+1‘]"-' ('?ir)Juj (%57)

ij — ~ - ~
VAE = Vi3 - Vi (3:)dy; (75)

with v; = |l; — a|. For given values of the parameters
b, c, and & we construct the truncated M matrix for the
1000 lowest eigenstates |¢;). The 300 highest eigenvec-
tors of M corresponding to the 300 lowest eigenstates
of our original Hamiltonian are accurate enough for our
analysis. Typically the eigenvalues &, are more accurate
than 0.001 times the average level spacing, and among
the 300 levels only a few of the highest ones, where the
presence of the matrix truncation is felt most strongly,
have an accuracy as low as around 0.01 times the average
level spacing.

Once the energy spectrum is obtained for the lowest
300 eigenstates various level statistics can be calculated
and compared with the predictions of RMT. For a few
specific shapes (parameter values) and DBC’s this has
been done previously by Berry and Robnik?® and later
by Goldberg et al.,3® finding excellent agreement with,
e.g., the spacing distribution predicted by RMT in the
chaotic regime. Since we will use a range of shapes as
well as boundary conditions not covered by these studies
we confirm the expectation that these results extend to
the wider class of chaotic billiards studied below.

Following standard procedures?® we analyze the level
statistics of the “unfolded” spectrum using the Weyl
formula for NBC (Ref. 36) to approximate the num-
ber of eigenlevels N(£) below the energy &, N(&) =
e+ ﬁ\/g + &, L being the perimeter of the billiard.

After unfolding the calculated energy spectra a his-
togram for the distribution of the level spacings can be
constructed, and the hypothesis that the histograms are
following the GOE distribution of Eq. (1) or the GUE
distribution of Eq. (2) can now be tested statistically.
The quantitative measure we use is the one-sided x? test,
which estimates the probability for finding a x? value big-
ger than the actual observed one. Although the change
from the previously well studied DBC’s to our choice of
NBC'’s leads to relatively minor changes in the method
of solution, the relation between the quantum mechanics
and the classical mechanics studied in Sec. III A becomes
less clear since it is natural to associate the hard walls in
the classical problem with DBC’s in the quantum prob-
lem. Thus it is of some interest to see if the relation
between classical chaos and RMT is independent of this

, (12)

6cet I /(1 + 267 + 3c?),

irlj+2

(11)

change in the boundary conditions of the quantum prob-
lem. The histograms of the level spacing distributions
for the NBC and the DBC case are calculated for the
same AB flux, a = 1/4, and the same shape deformation
sequence, 78 different values of § along sequence (b) in
Fig. 1. The x? tests for the GOE and GUE level statis-
tics yield the result that the level spacing distributions
are well described by GUE statistics, except near the spe-
cial values of a = 0,1/2 as expected from Ref. 31. The
results indicate that the correspondence between classi-
cal chaos and RMT behavior for the spacing distribution
is independent of the boundary conditions.

C. Quantum mechanics
with general boundary conditions (GBC)

As noted in our Introduction, one proposed application
of RMT to quantum dots relates to the peak amplitude
fluctuations in resonant tunneling through the dot. In
such a case electrons may enter and leave the dot in cer-
tain directions through leads separated from the dot by
tunnel barriers. Thus the problem of interest has the ge-
ometry illustrated in Fig. 2. The Schrédinger equation
now has solutions at all energies although resonances will
still occur at an energy spacing comparable to that of
the closed system. For such a geometry the physically
relevant boundary conditions are Dirichlet on the por-
tion of the billiard unconnected to the leads (we denote
this part of the boundary 8D;) combined with matching

lead

tunnel barrier

tunnel barrier

FIG. 2. A deformed billiard with two leads attached. The
leads can either be completely open or they can connect to
the billiard through a tunnel barrier. The natural bound-
ary conditions in this case are GBC’s. The wavy lines inside
the billiard are the nodal structure of an eigenstate as briefly
discussed in Sec. V.
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conditions at the leads. In general one may expand the
wave function inside the dot in any basis which allows
the matching procedure at the leads (i.e., such that the
sum over basis functions is uniformly convergent). Un-
fortunately Dirichlet boundary conditions at the leads do
not satisfy this condition, thus one is forced to use a basis
which satisfies mixed boundary conditions on 8D; DBC’s
on 0D; and general inhomogenous boundary conditions
on the complement 9D,.

g(w)n-V¥(w) + ¥(w) = 0, wedD
g(w) = 0, weadD (13)
g(w) # 0, wedD, .

We refer to these as general boundary conditions (GBC).
Unlike DBC’s and NBC’s, GBC’s are changed by the con-
formal mapping; in fact the function g(w) will transform
to g(w(z))/|w'(z)|. However, a more fundamental prob-
lem is that no simple basis set exists on the unit disk
which satisfies GBC’s, so no straightforward extension
of the DBC and NBC approach is possible. Of course
the problem we are encountering occurs in other con-
texts (e.g., electromagnetic waveguides) and with signif-
icantly more effort we are able to use existing techniques
to get an approximate solution. We employ a two-step
procedure. First we find the eigenstates of the deformed
billiard obeying DBC’s, and then we use the method de-
veloped by Feshbach3” to perturb the DBC’s at 8D, with
the GBC’s of Eq. (13). The strength of the perturbation
is given by the function g(w). If g(w) were zero every-
where along D we recover DBC'’s, and if g(w) were infinite
everywhere along D we get NBC’s. The method we use
below only applies in the case of zero magnetic field.

Our point of departure is the eigenstates |¢,) obeying
DBC’s. We have

VZ"/’p(“’) + ep¥p(w) =0,

where S here and in the following denotes a point on the
boundary 8D. Our aim is to find a solution X in D
satisfying GBC'’s:

Pp(S) =0 (14)

V23X, (w) + ExXx(w) =0,
(15)
g(9) n-VX,(S) + X,(S) = 0.

We begin with the Green’s function G (w|wp) which sat-
isfies DBC’s:

V3G (w|wo) + ExGa(w|wy) = —8(w — wp),
(16)
G,\(w|5) =0.

Equations (15) and (16) together with the use of Green’s
theorem yield

X)‘(’w)

- j{ dS n-VoGy (w]|S) Xx(S)
8D

+f dS n-VoG(w|S) g(S) n-VX,5(S). (17)
8D

Taking the gradient V,, of Eq. (17) and expanding VX,
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in terms of Vi,

s
VX, = Z LWy, (18)

&
P 4

one obtains after some analysis®” the following eigenvalue

problem involving the expansion coeflicients d,(,)‘) and the
eigenvalues Fy:

1 1
S| Lo 2L
€p €p€q

q

dS n- V% (S)
8D

1

x g(S) n- Vi (S)| — E—Aap,q}dg” =0. (19)

Since we are expanding the wave function X, obeying
GBC'’s in a basis set {1/,,} obeying DBC’s some discussion
of convergence properties is necessary. The expansion in
Eq. (18) converges only pointwise, and the convergence
is slowest near the non-DBC part 8D, of the boundary.
There one might expect the occurrence of “overshooting”
(the Gibbs phenomena) of the summed series. However,
the convergence is good in a least-squares sense, mean-
ing that quantities involving integration over the whole
domain D converge well if the period of the smallest oscil-
lation in the series is much smaller than the extension of
the region where g(S) is nonzero. For semiclassical con-
cepts to be relevant we require that the leads be many
wavelengths across, but we also wish them to be small
compared to the radius of the dot. We chose to use leads
with a width of about 7/6 corresponding to about five
times the smallest azimuthal wavelength when the ba-
sis are truncated between 700 and 1000. The energies
E), which are essentially the average of V2X, over D,
are an example of a quantity with a good least-squares
convergence. This convergence improves the smaller the
strength for g(S). The DBC’s wave functions 1, appear-
ing in Eq. (18) are only known as a sum over the DBC
Bessel solutions [analogous to the NBC case, Eq. (9)].
It is thus convenient to map the line integral in Eq. (19)
back to the unit disk where it becomes a sum of integrals
along the perimeter of the unit disk with 1, and ¥, re-
placed by Bessel functions. This mapping introduces an
additional factor in the integrand |w’(z)|~!. A neat sim-
plification can then be achieved by choosing the function
9(S) as

9(S) = g(®)

_ ) 0.1|w'(e®)], 6 €[0.5,1.0] U [4.5,5.0]
=10, 6¢[0.5,1.0U[4.5,5.0].
(20)
This choice cancels the factor |w'(z)|~! mentioned

above and allows simple analytical evaluation of the line
integrals. This greatly improves the numerical tractabil-
ity of the calculation. The strength of the perturbation
g(S) is chosen so that the perturbation is strong enough
to shift the individual levels of the order one mean level
spacing and such that it is weak enough to avoid sub-
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stantial mixing of the DBC eigenstates, invalidating the
truncation we make at the second step of the procedure.
In the following we show the result of calculating the en-
ergy spectrum in the GBC case based on the 700 lowest
eigenstates of the DBC case.

Once we have obtained the spectrum unfolding it re-
quires a knowledge of the relevant Weyl formula since the
subleading corrections depend on the choice of boundary
conditions. Unfortunately there does not exist an analyt-
ical expression for GBC’s. However, the general theory3®
implies the form N(g) = ¢/4 + By/e + C. The constants
B and C relating to the boundary and the curvature of
the billiard can then be estimated by numerical fitting
for each spectrum in question. We tested this procedure
on the DBC and NBC spectra and obtained the known
coefficients with only a few percent error. An alternative
method to determine B and C is given by Berry.38

As for the NBC case we have performed x? tests of
the numerical spacing distribution calculated with GBC’s
compared to the Wigner surmise for the GOE and GUE
for a range of spectra in the deformation sequence shown
in Fig. 1(b) for zero AB flux. We find that GOE statis-
tics is well supported by the data. Taken together the
results of Secs. IIT A, IIIB, and IIIC strongly support
the conjecture that the correspondence between RMT
spectral statistics and classical chaos holds independent
of the boundary conditions on the quantum problem.

IV. PARAMETRIC ENERGY-LEVEL
CORRELATIONS

Recently a great deal of theoretical work on disordered
systems and RMT has examined the statistical correla-
tion of energy levels when the Hamiltonian varies as a
function of some parameter such as flux.?324:3% The an-
alytic results obtained apply to disordered systems or to
RMT ensembles not generated from a microscopic Hamil-
tonian. Some nice numerical confirmation of the results
has been obtained for ordered but irregular systems by
Szafer and Altshuler?® but not for models in which the
classical mechanics was known. For example, no numer-
ical or analytic results are available for such correlations
in the mixed regime. In this section we examine such
correlations using the deformation parameters b and ¢
as the control variables. We use the closed billiard with
the simple DBC’s mentioned in Sec. II, and the deforma-
tion sequences (a) and (b) shown in Fig. 1. In sequence
(a) only b is changed while in sequence (b) only § varies,
hence b and é will be the control variables relevant to each
sequence, which we will denote generically as X. For a
given sequence of parameter values the unfolded energy
spectrum is calculated. The resulting dimensionless en-
ergy levels are denoted £;(X). The prediction is that
for fully chaotic systems certain correlation functions of
the €;(X) are universal upon rescaling of X. Following
Ref. 24 we define the generalized conductance C(0) and
the rescaled parameter z as

c(0) = <<656"§()) > z= JCOX,  (21)
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where () is a statistical average over a suitable range of
energy and/or X. The normalized energy-level correla-
tion function c(z) defined as

o2) = <a€i(§; x) 655:(::) > 22)

is predicted to be a universal function which differs for
GOE and GUE.

The correlation function is calculated for the deforma-
tion sequence shown in Fig. 1(b) with the parameter §
restricted to the interval [0.18,2.98] to avoid the sym-
metry points at 0 and w. The billiard is threaded by
one-quarter of a flux quantum and DBC’s are employed.
The resulting normalized spectrum for the 50 levels be-
tween level number 225 and 274 is shown in Fig. 3. Since
the spectrum changes both as a function of energy and
as a function of § the spectrum has been divided into
5x8 boxes each containing 25 energy levels at 14 differ-
ent values of §. Within each box the spectrum is fairly
homogeneous, and the averaging of Egs. (21) and (22) is
performed within each box. For each box 14 values of
the pair {z,c(z)} can thus be calculated—the value of
{0,¢(0)}, however, is trivially {0,1}. The resulting 560
points {z,c(z)} are then arranged in ascending order af-
ter their first component, they are grouped in 56 groups
of ten, and the average value of each group is calculated.
The final points are displayed in Fig. 4(a). The same
procedure is repeated for the case with zero AB flux and
the resulting points are shown in the same figure.

Figure 4(a) shows an excellent agreement between the
predicted curves calculated in Refs. 23 and 24 for both
the GOE and GUE cases. Thus our results support the
conjecture that these correlations are universal and oc-
cur when the quantum system is classically chaotic. We
can go further, however, and test whether these correla-
tions actually coincide with classical chaos by looking at
¢(z) in the mixed regime. Our results shown in Fig. 4(b)
provide support for this stronger statement. c¢(x) in the
mixed regime deviates strongly from its behavior for hard
chaos. In particular, a large dip appears in the correla-
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FIG. 3. Part of the normalized energy spectrum (levels

225-274) of the deformation sequence, Fig. 1(b), with an AB
flux of one-quarter of a flux quantum and with DBC'’s.
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FIG. 4. In (a) is shown the numerical calculated en-

ergy-level correlation function c(z) for the fully chaotic defor-
mation sequence, Fig. 1(b), both with (x) and without (o) an
AB flux. The full (dotted) curve is the universal correlation
function calculated with (without) an AB flux for disordered
systems in Ref. 24. In (b) ¢(z) is shown with zero AB flux
in both the soft chaos regime (A) of the first half of the de-
formation sequence, Fig. 1(a), and the hard chaos regime (o)
repeated from (a). Note the strong dip for small values of z
in the case of soft chaos.

tion function which can be traced to the average distance
to the first level anticrossing. Unlike the chaotic regime
where anticrossings have large gaps, very small gap an-
ticrossings occur in the mixed regime leading to a large
parametric derivative of the energy levels. In fact it is
known?® that at such an anticrossing in the mixed regime
two wave functions “exchange identities” with the higher-
energy wave function having a spatial density close to the
lower-energy wave function which has just been repelled.
Thus we find that the spectral correlations are nonuni-
versal and inconsistent with RMT in the mixed regime.

V. STATISTICS OF COULOMB BLOCKADE
CONDUCTION PEAKS

As noted above, fluctuations in the spectrum of quan-
tum dots are not yet easily accessible experimentally.
The most striking fluctuation effects evident in the exper-
imental datal®114 are fluctuations in the peak height of
Coulomb blockade resonances. These fluctuations reflect
properties of the quasibound states (level-width fluctu-
ations) and not of the spectrum. This contrasts with
nuclear scattering resonances in which both spectral and
level-width fluctuations are equally accessible. The rea-
son for this difference!?:14 is that the quantum dot reso-
nances correspond to the ground state energy of the sys-
tem with N, N + 1, N + 2,... electrons and thus include
the charging energy e?/C associated with the addition of
a particle. Since this charging energy is approximately
constant and is typically an order of magnitude larger
than the single-particle excitation energy, Ae (or more
precisely the energy to the first excited state for fixed
N) the observed resonances are equally spaced to a good
approximation. In addition typically kT > T' (the mean

HENRIK BRUUS AND A. DOUGLAS STONE 50

level width at zero temperature) so the resonances are
thermally broadend to a width ~ kT and only their am-
plitude reflects the level-width fluctuations. The ampli-
tude fluctuations become maximal when k7T < Ae and
only the ground state contributes to the resonance. In re-
cent experiments'®1* Ae ~ 0.5 K so that this single-level
regime is accessible. The crossover between multiple-level
and single-level tunneling leads to unusual and fluctu-
ating temperature dependences for the resonances until
kT < Ae, as was first understood by Meir et al3® In
earlier work!?2™1* we have developed a detailed theory of
the amplitude fluctuations in the single-level regime as-
suming that RMT describes the quasibound eigenstate
fluctuations. Numerical tests of the theory agreed well
for the GOE case but not as well for the GUE case,? and
were performed for a weakly disordered model which was
assumed to generate chaotic classical dynamics. Subse-
quently the distribution of amplitudes was derived ana-
lytically for the case of short-range disordered quantum
dots with one channel per lead and broken time-reversal
symmetry.!® In the appropriate limit the results agreed
with those of RMT to be described below; however, the
assumption of short-range disorder (i.e., mean free path
much less than the size of the dot) is quite unrealistic for
the experimental systems of current interest. Here we
treat the opposite limit of zero bulk disorder and chaotic
(or mixed) scattering from the boundary; we are able to
extend and improve the previous numerical tests by using
the conformal billiard model.

As before we model the quantum dot as a deformed
billiard accessible by tunneling from leads as shown in
Fig. 2. We neglect electron-electron interactions for the
following reasons. First they will add a charging en-
ergy which is irrelevant to the level-width fluctuations.
Second, although the quasibound levels in the presence
of electron-electron interactions will surely differ from
those in its absence, we do not expect this difference to
change their statistical properties (at least in the chaotic
case). This concept underlies the universality of RMT
and is supported by experimental and theoretical work
in nuclear scattering. For example, complicated shell-
model calculations including the residual nuclear interac-
tion lead to spectra which exhibit RMT statistics.!® The
fact that RMT statistics arise in disordered or chaotic
noninteracting quantum Hamiltonians by no means im-
plies that they occur only when interactions are negligi-
ble.

As in nuclear physics*® one may relate the scattering
resonances to the eigenstates X (u,v) of the dot in iso-
lation using R matrix theory.!? 14 In the standard ap-
proach to elastic scattering from nuclei (for which spher-
ical symmetry may be assumed) a linear relationship is
derived in each angular momentum channel between the
scattering wave function and its derivative at the inter-
face between the nucleus and free space. The coefficient
of proportionality is denoted by R(E). If M different de-
cay channels exist this linear relationship defines a matrix
of coefficients known as the R matrix for the nuclear re-
action. In our case we do not have spherical symmetry
so an angular momentum expansion is inappropriate, but
we have a simplification due to the fact that only M prop-
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agating modes exist at the Fermi energy in each of the
two leads. Moreover, in general the tunneling rate (bar-
rier penetration factor) will be largest for tunneling into
the lowest propagating mode, so we can in first approx-
imation neglect all but this mode in each lead.** With
this approximation and taking the simplest case of Neu-
mann boundary conditions for the X a derivation very
similar to that used in the nuclear case yields!3 a 2 x 2
R matrix of the form

25405 (23)

Rm"(E) = - E— EA,

A=1

where now the index m (= r,[) simply denotes the left or
right leads, and the quantities 4}* and E) are determined
by the solutions of the Schrédinger equation, Eq. (15).

+W/2
=P, / B Y (1) X2 (€ 7m)s (29)

where P, is the barrier penetration factor, &, denotes
the direction parallel to lead m and 7 that perpendicu-
lar, Y () is the transverse wave function in the leads
(which have width W), and &3, is the position of the inner
edge of tunnel barrier m. In deriving this expression we
assumed that the tunnel barrier is approximately uniform
in the transverse direction. If we were trying to derive
information about specific resonances of this system from
the R matrix then we would need to use a more general
R matrix than Eq. (23) derived for the GBC'’s relevant
to our problem. However, we are only interested in sta-
tistical properties of the R matrix and our results above
indicate strongly that the statistical properties are inde-
pendent of the boundary conditions imposed to a good
approximation (as long as they allow non-vanishing wave
functions at the tunnel barriers). Therefore we use the
more convenient NBC for the calculations below.

An exact nonlinear relationship exists between the S
matrix and the R matrix;!® however, a particularly use-
ful feature of this formulation is that as E approaches a
particular E), the term in Eq. (23) containing the cor-
responding X, will dominate (as long as coupling to the
leads is weak) and all other terms may be neglected. In
this approximation the relationship between the S and
R matrices simplifies to yield the Breit-Wigner formula
for the resonance line shape under very general condi-
tions. Moreover, the level width which appears in this
expression is simply

r ﬁ k r ﬁ2k ry~lr
IY = — 1P = =P (25)
where we have defined the reduced width 4,. This re-

duced width will fluctuate from level to level (and for
different lead positions for a given level) due to the com-
plicated spatial structure of the chaotic eigenfunctions
X» (see Fig. 2). For example, if there happens to be
a nodal line near the position of a given lead then the
width associated with that level and that lead will fluctu-
ate down. (Note that in the absence of spatial symmetry
another lead attached a few wavelengths away will give
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a completely uncorrelated width for the same level.)

In order to relate the level widths to the experimentally
observed peak amplitudes we use the expression for the
peak height gmax derived by Beenakker? for the single-
level regime (assuming kT >> T'),

e2/h I"I"' _ e2 T

— 26
ankT (T, +T%)  dwh kT (26)

Jmax =

where I') = I‘f\ + I'] is the total decay width for level A
and I'}, T’} are the partial decay widths into the right and
left leads. The factor a) in Eq. (26) is a dimensionless
measure of the area under the T = 0 ) resonance, hence
the observed amplitude fluctuations reflect the fluctua-
tions in these areas. In this discussion we will only treat
the case of equal barriers on each side of the dot and
hence Py(E) will be the same on the left and right. This
means that the average decay widths to the left and right
are equal, I'* = I'" = T'/2 and we can express a, as

rirs
L +1I%)

BEEE g
= AR + 5P

The statistics of the peak amplitude fluctuations then
follow from those of the reduced partial widths |7 |? using
Egs. (26) and (27).

If we assume that the resonance wave functions X, are
described by the GOE when time-reversal symmetry is
present (B = 0) and by the GUE when time-reversal
symmetry is broken (sufficiently high magnetic field),
then the distribution of partial widths I'y should be a

2 distribution with the degrees of freedom v = 1 and
v = 2, respectively.l? This distribution should be univer-
sal in the chaotic regime, i.e., two different shapes both
of which generate chaotic classical dynamics should have
the same distribution of level widths (even though the in-
dividual levels are quite different). However, if the system
approaches integrability then nonuniversal distributions
differing from x? should arise. Precisely this behavior
is confirmed by our numerical calculations of the par-
tial width distribution for the conformal billiard model
as seen in Fig. 5, where the fully chaotic GOE models
(c) and (d) fit a x2_, distribution, the fully chaotic GUE
models (e) and (f) fit a x2_, distribution, while neither
the regular model (a) nor the soft-chaotic model (b) fits
a x2 distribution. A more extensive demonstration of
the universality in the chaotic regime is seen in Fig. 6,
where we plot for each value of the shape parameter §
in the deformation sequence of Fig. 1(b) the value of v
yielding the best x2 fit of a x? distribution to the nu-
merically calculated histograms both without and with
an AB flux. It is seen that in all cases the value of v
fluctuates around the expected line v = 1 (zero AB flux)
and v = 2 (nonzero AB flux).

Having confirmed that random-matrix theory works
well in the chaotic regime, one can derive'? from Eq. (27)
the probability density P, () where v = 2 for the orthog-
onal case and v = 4 for the unitary case. One finds

Pa(a) = V2/ma ™2™, (28)
Py(a) = 4a[Ko(22) + K1 (2a)] e~ 27, (29)
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FIG. 5. The distribution of the partial decay width I'y
for six different deformed quantum billiards. Shown are his-
tograms representing our numerical results, x2 distributions
(full curves) serving as a guide for the eye [v = 1.0 in (a)—(d)
and 2.0 in (e) and (f)], and as insets the particular shapes of
the dot. In (a), (b), and (c) we used the simple quadratic map
with ¢ = 0 and with b = 0.00, 0.14, and 0.39, respectively. In
(d), (e), and (f) we used the cubic map with b = ¢ = 0.2 and
0 =m/3,2n/3, and /3 . In (a) the model is integrable, in (b)
it is nearly integrable, and in (c)—(f) it is fully chaotic. There
is no AB flux in (a)~(d) and one-quarter of a flux quantum
in (e) and (f).

where K, are the modified Bessel functions of the sec-
ond kind. P, and P, are plotted in Fig. 7 where they
are compared to numerical data obtained by evaluating
a in Eq. (27) for the 300 lowest wave functions of the
conformal model for NBC’s in both the GOE and the
GUE case. The time-reversal symmetry breaking needed
to study the GUE case is achieved by adding an AB
flux of one-quarter of a flux quantum. In contrast to
the results in Ref. 12 we find excellent agreement be-
tween random-matrix theory and numerical calculation
in both the GOE and the GUE case. Note the sub-
stantial suppression of small peak amplitudes caused by
breaking time-reversal symmetry. This reduces substan-
tially the variance of «, from Egs. (28) and (29) one finds
Aa2/Aa? = 32/45 ~ 0.71.

The effect of a time-reversal (TR) symmetry breaking
magnetic field on the distribution and its moments pro-
vides perhaps the simplest experimental test of our the-
ory. However, if the suppression of the amplitude fluc-
tuations due to time-reversal symmetry breaking is to
be cleanly observable then the magnetic field necessary
to induce the GOE-GUE transition must be small com-
pared to that needed for Landau level formation. Landau
level formation strongly suppresses the fluctuations;*3
the classical analogue of this effect is the suppression of
chaos by the formation of stable skipping orbits.4* We es-
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tribution of the partial decay widths I'y for the entire defor-
mation sequence in Fig. 1(b) with zero AB flux (¢) and with
an AB flux of 1/4®, (x).

timate the magnetic field scale for TR symmetry break-
ing by adapting an argument first put forward (to our
knowledge) by Berry and Robnik.2® TR symmetry is bro-
ken first not by the dynamic effect of the field but by its
effect on the phase of the wave functions (essentially the
Aharonov-Bohm effect). Therefore in estimating the TR
symmetry breaking scale we may neglect the dynamic
effect of the field entirely. Gutzwiller’s trace formula*
implies that structure in the spectrum on the scale of
the level spacing Ae arises from periodic orbits of period
T =~ h/Ae. A magnetic field will change the action (in
units of #) of such orbits by BAr/(h/e), where Ar is
the area enclosed by the periodic orbit of period T in the
chaotic case. The time-reversed orbit will of course en-
close area — At and their relative phases will be shifted
by order unity when BAr = (h/e), breaking TR symme-
try. Thus the critical field B, for TR symmetry breaking
is given by B, ~ (h/e)/Ar and one need only estimate
A7. Berry and Robnik?® treated the case of an AB flux
as above and then evaluated the mean-squared winding
number for such orbits in the chaotic limit. Their results
can be extrapolated to a uniform field simply by assum-
ing a typical (positive or negative) area of order A (the
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FIG. 7. Predicted distribution of peak amplitudes a in the
presence (a) and in the absence (b) of time-reversal symme-
try, compared to the numerically generated amplitude distri-
bution obtained with the shape parameters b = ¢ = 0.2 and
6 =m/3.



area of the dot) is enclosed with each circuit. With this
modest assumption the TR symmetry breaking flux

®. = B.A ~ [AeVA/hws]Y?(h/e). (30)

Although in the experiments the dot is not isolated as
assumed in this argument, the condition ' <« Ac en-
sures that electrons remain in the dot long enough for
the argument to still apply. The ratio of this field to the
field at which the cyclotron radius becomes of the order
of the radius of the dot scales as N~3/4 where N is the
number of electrons; so in dots containing a few hundred
electrons TR symmetry breaking occurs at a field one
to two orders of magnitude smaller than that needed for
edge-state formation. In the experimental systems of in-
terest this corresponds to a field of the order of a few
times 10 mT. Thus the statistical effect of time-reversal
symmetry breaking predicted by our theory should be
observable experimentally.

VI. OPTIMAL EXPERIMENTAL SETUP

To obtain the most direct experimental verification of
the theoretical results presented here and in earlier work
it is desirable to fabricate a quantum dot with a variable
shape. In current experimental systems only a few tens
of CB peaks are measured in a given dot and these are
superimposed on a significant background which com-
plicates the comparison of the height of widely separated
peaks. Thus obtaining reasonable statistics (e.g., roughly
100 peak amplitudes) is very difficult. It is possible to
use the magnetic field itself as an external control param-
eter causing peak amplitude fluctuations,' but this only
allows one to collect statistics for the GUE case. There-
fore we suggest an optimal heterostructure for tests of
RMT statistics would consist of a dot formed by multi-
ple teethlike gates (see Fig. 8). By changing the voltages
slightly on the inner gates of this structure it should be
possible to realize a whole range of shapes without affect-
ing the region near the quantum point contacts defining
the tunnel barriers to the surrounding two-dimensional

(a) (b)

55555% §§§é§%
.

FIG. 8. A top view of a gated heterostructure. The gate is
split into 12 teeth. The two pairs at the ends form quantum
point contacts leading to the surrounding two-dimensional
electron gas. The remaining eight teeth define the shape of
the quantum dot. In situation (a) all the interior gates have
the same voltage. In (b) one gate has a slightly higher voltage
and another slightly lower, thereby deforming the dot while
maintaining its area. The regions close to the quantum point
contacts are essentially unaffected by this action.

50 QUANTUM CHAOS IN A DEFORMABLE BILLIARD: ...

18 285

electron gas. It would then be possible to follow a given
peak as a function of shape and collect statistics without
the complication of background variation, both in the
presence and absence of a magnetic field. Since the mag-
netic field would not be the control parameter it would
also be possible to map out the GOE to GUE transi-
tion. This concept is illustrated by the calculations for
the deformed billiard shown in Fig. 9 where we plot the
peak amplitude a for two given levels as a function of
the shape parameter 6. A particularly simple quantity
to extract from such experiments is the correlation func-
tion for the peak amplitude as the shape is varied. Al-
though we are not able to make quantitative estimates
at this point, our results suggest that for dots contain-
ing a few hundred electrons (as in current experiments
on micrometer-size devices) quite small voltages would
be needed to rearrange the wave functions of the high-
est levels and hence decorrelate the peak amplitudes. In
the single-level regime (kKT < Ace) the theory predicts
that the voltage scale should be independent of temper-
ature; a prediction which could be experimentally tested
and (if confirmed) would provide support for the basic
model. Very recently Chan, Clark, and Marcus*® have
reported the first set of experiments on quantum dot de-
vices where a single finger gate is used as the control
parameter to vary shape. At present these devices have
only been studied in the regime where they are strongly
coupled to the leads, as opposed to the tunneling regime
we have treated here.

VII. DISCUSSION AND CONCLUSION

In this paper we have studied the statistical properties
of deformable billiards in the mixed and fully chaotic
limits, with applications suggested to quantum dot sys-
tems. We have presented numerical results based on the
continuous family of conformal quantum billiards intro-
duced by Robnik for which efficient numerical solution
of the Schrodinger equation is possible and for which a
rather complete characterization of the classical mechan-
ics exists, including the existence of a KAM transition.

This model system has provided us with a unifying

L

.0
0

FIG. 9. The variation in the peak amplitude a for two
particular levels as a function of shape deformation é.



18 286

framework within which we discussed several aspects of
quantum chaos in billiards. Our calculations demon-
strate the universal behavior of the system once chaos
is sufficiently strong (hard chaos) in which case random-
matrix theory describes the quantum statistical proper-
ties independent of the details of the billiard geometry or
the boundary conditions on the quantum problem. The
calculations also demonstrate that in the mixed regime
(soft chaos) the behavior is not universal and the random-
matrix ensembles do not describe the system. We have
also verified the theoretical results obtained in the liter-
ature for the parametric energy-level correlations of iso-
lated quantum dots and the statistics of Coulomb block-
ade conductance peaks based on the assumption that
RMT or the supersymmetric o model applies to chaotic
billiards, thereby adding credibility to these assumptions.
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Finally, we have proposed an experimental setup which
is particularly well suited for tests of the theoretical pre-
dictions in this work.
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