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Binding energies and radiative lifetimes of excitons in crystallites are calculated with respect to size
and temperature by using a tight-binding configuration-interaction technique. We discuss the recent
proposal that, for porous silicon, the exchange splitting could be at the origin of the peculiar behavior of
the lifetime and luminescence intensity with temperature, as mell as the existence of an onset in selective-

ly excited luminescence. %'e show that the exchange splitting has no influence on the luminescence life-

time of spherical- or cubic-silicon crystallites because of the spin-orbit and valley-orbit couplings. In
contrast, in asymmetrical crystallites, we predict that the spin-orbit and valley-orbit couplings are
quenched so that the influence of the exchange splitting can be detected. However, we calculate ex-

change splittings smaller than the onsets observed in the spectra of the selectively excited luminescence
of porous silicon. %'e show that the Stokes shift induced by the lattice relaxation in the excitonic state is

significant and may explain at least partially this decrepancy. %e confirm that the direct radiative
recombinations are not responsible for the observed decay of the luminescence in porous silicon.

I. INTRODUCTION

Porous silicon is known to emit efficiently light in the
visible and infrared range. The infrared emission seems
to be connected with the presence of dangling bonds. '
For the visible luminescence, even if its nature is still a
source of intense debate, the confinement in silicon crys-
tallites seems to emerge as the main explanation. Al-
though porous silicon is a very heterogeneous material on
a microscopic scale, some fine structures clearly appear in
the excitation spectrum of the visible luminescence at 2 K
(Ref. 4) of some porous silicon samples. In particular, an
onset of a few meV and, at higher energy, structures asso-
ciated with phonon-assisted transitions ' are observed.
In addition, the lifetime of the visible luminescence de-
creases going from low (4 K) to higher temperatures
( —100—200 K) in parallel with an increase of the
luminescence intensity. ' ' Both efFects have been inter-
preted on the basis of a "two-level model" resulting from
the electron-hole exchange splitting, ' which although
being smaller than 0.15 meV (Ref. 9) in bulk silicon,
could reach a few meV in porous silicon because of the
strong confinement. ' '

Although the two-level model of excitons in nanocrys-
tallites is appealing, it is by nature oversimplified since
the exciton states are derived from degenerate valence
and conduction bands. The aim of this paper is thus to
perform detailed calculations for the excitons, taking into
account the manifold of electron and hole states, and
their couplings due to Coulomb, exchange, and spin-orbit
interactions. In Sec. II we describe the configuration-
interaction technique used in the calculation. Section III
is devoted to the excitonic band gap of spherical crystal-
lites. The influence of the dielectric constant of the
embedding medium is analyzed. In Sec. IV we discuss

the excitonic spectra obtained for silicon crystallites with
various shapes and conclude that the two-level model can
only be justified for very asymmetrical crystallites. We
demonstrate that the exchange splitting is indeed
enhanced by the confinement but remains smaller than
the experimental splittings. In Sec. V we show that this
discrepancy can at least be partially explained by the
exciton-lattice coupling, which becomes substantial be-
cause of the confinement.

II. CALCULATION TECHNIQUE

As the first step, we calculate the one-electron states of
the confined silicon crystallites. This is done using a
tight-binding framework with the parameters of Ref. 11.
Spin-orbit coupling is not yet included in this calculation.
The dangling bonds at the surface are saturated by hy-
drogen atoms to avoid spurious localized states in the
band gap. The Hamiltonian matrix is diagonalized using
an inverted Lanczos iteration procedure, which allows us
to treat large silicon crystallites —up to —2000 Si
atoms —with arbitrary shape. The calculated energies
are close to those of our previous calculations, which in-
cluded the overlaps between atomic orbitals. We have
not used the same method here because the treatment of
the overlaps in the problem of excitons is computational-
ly tricky and the tight-binding parameters of Ref. 11 give
a silicon band structure of reasonable quality. Optical
matrix elements are obtained as in Ref. 2, i.e., without
the assistance of phonons. This point will be discussed in
Sec. IV of the paper.

As the second step, we calculate the excitonic spec-
trum. We write the exciton wave function as a linear
combination of Slater determinants built from the one-
electron states. The total Hamiltonian matrix is then ex-
pressed in the basis of all these Slater determinants and
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diagonalized. Actually this is impossible even with the
best available computers because the dimension of the
basis is too large. It is possible to reduce considerably the
number of basis states by only taking into account the
Slater determinants corresponding to a single electron-
hole excitation. This approximation is justified by the
fact that Slater determinants corresponding to n
electron-hole excitations (n ~2) lie at higher energies
than single excitations (by n —1 times the band-gap ener-

gy in the one-electron scheme). If ~g;) and ~g" ) are, re-
spectively, conduction and valence one-electron states of
energy E,' and E", the exciton wave function ~%,„,) is
written as

(1)
l,J

where ~P,"~P;) is the Slater determinant corresponding
to the excitation of one electron from the state ~gj ) to
the state ~P;) and a; are the variational parameters.
Then we write the matrix elements of the total Hamil-
tonian K between the determinants. As shown in Appen-
dixes A and B, the Hamiltonian matrix can be obtained
following simple rules:

(i) The diagonal terms contain the one-particle excita-
tion energies E EJ, whe—re E,' and E" the one-electron
eigenvalues corresponding to ~g;) and (fj").

(ii) The diagonal and nondiagonal terms have two elec-
tron repulsion terms e /or&1, (between electrons 1 and 1')
screened by the appropriate dielectric constant e.
Equivalently, they can be expressed as e ler,„ in a two-
particle electron-hole formalism.

Finally, the matrix of the total Hamiltonian is diago-
nalized by standard methods. We also take advantage of
the strong confinement in the crystallites. The splittings
between the levels can be of the order of several tenths of
an eV, which is quite large compared to the other cou-
plings. Therefore, the expansion in Eq. (1}can be limited
to a reasonable number of Slater determinants. In prac-
tice, we have obtained that the Slater determinants built
from the 12 lowest spin states of the conduction band and
the 12 highest spin states of the valence band are
sufBcient. Once the excitonic wave functions are known,
we calculate the radiative lifetimes as in Ref. 2.

III. EXGITONIC SPECTRUM
OF SILICON CRYSTALLITES

Excitonic band gaps calculated for spherical crystal-
lites are given ixi Fig. 1. The dielectric constants in the
crystallites and in the outside medium are assumed to be
the same as in bulk silicon (@=11.7). The correction to
the one-electron band gap is between 0.1 and 0.2 eV, in
good agreement with simple effective-mass models. ' We
have verified that the shift in energy from the one-
electron band gap is, to a good approximation, given just
by the average Coulomb energy between the hole and the
electron. '

The dielectric constant of the embedding medium is
probably very difFerent from the one of crystalline silicon
[in porous silicon, it can be, for example, silicon dioxide
(e-4) or vacuum (e-1)]. This difference in dielectric
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FIG. 1. One-electron band gap (circles) and excitonic band

gap calculated for spherical-silicon crystallites with respect to
their diameter. For the excitonic band gap, two extreme cases
were examined: the outside medium has the same static dielec-
tric constant as bulk silicon (crosses) or the vacuum (triangles).

constant leads to polarization effects (so-called image
charge effects), which might become substantial. ' Polar-
ization terms are given in Ref. 13, for example [Eqs. (3.4)
and (4.9), respectively]. Note that the self-polarization
and polarization interaction terms are of opposite signs
and tend mutually to cancel. With the exciton wave
function well approximated by the product of the in-
dependent effective-mass wave functions for the electron
and the hole, a simple first-order perturbation theory
gives for an outside medium with a=1 a polarization en-

ergy shift equal to

0.9077
R

(2)

where the energy is given in eV and the radius of the
crystallite R in angstroms. We see in Fig. 1 that if the
shift is substantial, it is much smaller than the
confinement energy, which supports our simple perturba-
tion approach. The visible luminescence of porous sil-
icon is in the range of -1.4-2.2 eV. ' We see in Fig. 1

that this is compatible with crystallites of diameter be-
tween -2.2 and -4.0 nm. Finally, note that the band-
gap energy obviously depends on the boundary condi-
tions and could be substantially difFerent with other bar-
riers like silicon oxide.

IV. EXCHANGE SPLII lING
IN SILICON CRYSTALLI I'KS

In this section, we discuss the validity of the two-level
model ' (Fig. 2}. In this model, the lowest exciton level
is split into two levels as a result of the exchange interac-
tion between the electron and the hole. The triplet state
is the lowest one and the splitting is thought to be in the
range of 10 meV because of the confinement. At low
temperature (( -20 K), only the triplet state is popu-
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ex(;itonic
states

ground state

FIG. 2. Two-level model for the recombination of excitons in
porous silicon (Refs. 4 and 8). The lowest excitonic state is split
due to the exchange interaction between the electron and the
hole. The upper level has a much smaller lifetime than the
lower one. Thermal equilibrium between the two levels could
explain the temperature dependence of the radiative lifetime
(Refs. 4 and 8).

lated and the lifetime is long, in the millisecond range (it
is not infinite because the spin-orbit coupling slightly
mixes the S =0 and S =1 states ). At higher tempera-
ture, the singlet state becomes populated and the radia-
tive recombination is enhanced. The onset energy in
selectively excited photoluminescence at 2 K has also
been explained by the exchange splitting: At 2 K, the
luminescence comes from the triplet state but excitons
are predominantly photocreated in the singlet state be-
cause the oscillator is inversely proportional to the radia-
tive lifetime.

Wires with varying diameter were suggested as the
luminescent structures in porous silicon on the basis of
structural analysis. We have thus studied the excitonic
spectrum of crystallites with spherical, ellipsoidal, and
undulating ellipsoidal shapes. The ellipsoids are defined

by (Xla) +( Y/b) + (Zlb) =1 where a is larger than b.
This can be seen as a deformation of a sphere in one
direction X. For the undulating ellipsoids, we introduce
an angular fluctuation on the surface of the ellipsoid.
This is done using a combination of spherical harmonic
functions with arbitrary axes and arbitrary amplitudes.
These complex shapes should simulate properly the un-

dulating wires provided that undulations are large
enough to localize the excitons.

In Fig. 3, we plot a typical low-energy excitonic spec-
trum calculated for a spherical crystallite. It is very com-
plicated, with many levels because the electron and hole
states are derived from degenerate bands. It was shown
in previous works that there are interactions between the
conduction states of the diferent minima and that the in-
duced splittings (valley-orbit splittings) are of the order of
1 —10 mcV. ' The exciton wave functions built from
these one-electron wave functions are also mutually cou-
p1cd by the Coulomb interaction. Furthermore, wc sec
that the recombination rate of the lowest states ( ( 1 meV
in Fig. 3) is not two or three orders of magnitude smaller
than those of higher cxcitonic states so that the radiative
llfctime only slightly depends on tcIDpcraturc. This point
is verified on all the spherical crystallites even if the exci-
tonic spectrum strongly depends on the crystallitc size
because of the large variation in the ordering of the
valley-orbit split levels. The main explanation of this
comes from the spin-orbit coupling. If this one is neglect-

6
10

'l0

10

10

t

Ã I
I

I

10

10

'l0

10
-2.0 2.0 6.0 10.0 14.0 18.0 22.0

Energy (meV)

FIG. 3. Calculated excitonic structure of the spherical-
silicon crystallite of diameter 3.86 nm. The levels are indicated

by vertical bars. The zero of energy corresponds to the lowest

exciton level. The height of the bars represents the calculated
radiative recombination rate (inverse of' the radiative hfetime}.

ed, some levels have a finite lifetime and the others have
an infinite one since the total spin ('S =0 or S =1) is a
good quantum number. The spacing of the levels is be-
tween 1 and 10 meV, which corresponds to the average
valley-orbit splitting and the average exchange&ntegral.
When including the spin-orbit coupling, the singlet and
triplet states are completely mixed together because this
one is of the same amplitude as the spacing between the
levels (A, = 15 meV). " In consequence, all the levels have
on average similar lifetimes and the two-level model is
not valid. This would be the same for cubic crystallitcs
or any kind of crystallites in which the x,y, z axes are
equivalent by symmetry. This result can be of interest in
the perspective of making artificial silicon nanostructures
with well-controlled shapes. '

For the ellipsoids, the degeneracy of the highest state
in the valence band is hfted by the anisotropy. The same
is obtained for wires using effective-mass calculations. '

The highest valence state behaves like pz for a crystallite
in the direction X. If the splitting between the pz-like
state and the other states (pr-like and pz-like) is large
compared to the spin-orbit coupling (A, = 15 meV), " then
the latter is quenched and the total spin S approximately
remains a good quantum number. Because of the strong
confinement, already for a =~2b the anisotropy leads to
a large splitting ( ) 50 meV) between the px-like state and
the pz- pz-like states. However, the excitonic spectrum
remains quite complex, with several low-lying states hav-
ing strongly varying lifetimes because of the remaining
degeneracy of the conduction states.

For the undulating ellipsoids, we fix the maximum am-
plitude of the fluctuation at 25% of the average radius of
the ellipsoid. Note that the choice of another amplitude
(35%, for example) gives quite similar results. We obtain
that all the orbital dcgeneracies in the valence and con-
duction bands are lifted. The excitonic spectrum be-
comes much simpler with the lowest state having sys-
tematically a much longer lifetime than the first higher
state (see Fig. 4 for a typical example). The two-level



50 THEORY OF EXCITONIC EXCHANGE SPLI I LING AND. . . 18 261

1P+5

1P+4

~ 10+3

1P+2

10+1
E0

10

10-'

10 I . I I ~ I I I

-2.0 2.0 6.0 10.0 14.0 18 0 22 0
Energy (meV)

FIG. 4. Calculated excitonic structure of a silicon crystallite
with complex shape built from an ellipsoid with a long axis of
2.4 nm, a short axis of 1.8 nm, and 25% of surface undulations.
The levels are indicated by vertical bars. The zero of energy
corresponds to the lowest exciton level. The height of the bars
represents the calculated radiative recombination rate (inverse
of the radiative lifetime).

model is then valid to describe such anisotropic crystal-
lites.

In Fig. 5, we plot the calculated splitting 5 between the
two lowest excitonic levels for undulating ellipsoids. All
the crystallites are characterized by a =~2b and a sur-
face undulation of 25%%uo. The trends in the results do not
depend on the ratio between a and b, provided that a is
significantly larger than b. The calculation is done for
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FIG. 5. Splitting between the two lowest calculated excitonic
levels in asymmetrical silicon crystallites with respect to their
excitonic band gap. Crystallites have undulating ellipsoidal
shapes with a longer axis in the 100 direction (open circles), 110
direction (open triangles), and 111 direction (+). Crosses ( X )
correspond to the average of the splitting over all the orienta-
tions of the longer axis of the crystallite. Black squares are the
first onsets measured by selectively excited photoluminescence
and black dots are the energy splittings derived from the fit of
the temperature dependence of the luminescence lifetime of Ref.
4. The black dot at (1.8 eV, 10 meV) is from Ref. 8.

different orientations of the long axis X of the ellipsoid:
(100), (110), (111),and an average over all the directions
of space. We confirm that the confinement enhances the
exchange splitting by two orders of magnitude. ' The
(100) direction gives the smallest splitting and the (111)
direction the largest one. All other directions of space
are intermediate between these two curves. The explana-
tion of this strong dependence on the direction of the
main axis of the crystallite is detailed in Appendix B.

In Fig. 5, we compare the calculated splittings with the
onset in selectively excited photoluminescence measured
in Ref. 4. If the experimental onset corresponds to the
smallest exchange splitting among all the crystallites
luminescing at the same energy, then we should compare
the experimental data with the calculated splittings for
the (100)-oriented crystallites. We see that there is a fac-
tor 3-5 of discrepancy. The agreement is slightly better
for (111)-oriented crystallites but to our knowledge, there
is no experimental indication that crystallites are
predominantly oriented in (111) directions. The
difference with the splittings deduced from the fit of the
temperature dependence of the lifetime is still more im-
portant. We can note that there is already a large
difference between the values at -1.8 eV measured in
Refs. 4 and 8.

Before discussing the large discrepancy between theory
and experiments, let us compare our calculation with oth-
er theoretical work. Published calculations ' ' are based
on the effective-mass approximation where the exchange
splitting is written as 6=Jf iy(r, r) i d r, where y(r„r& )

is the envelope function for the exciton and J is defined as
twice the exchange integral per unit inverse volume for
the conduction-band-minimum and valence-band-
maximum states in bulk silicon. This simple approach is
sufficient to show that the exchange interaction increases
with the confinement. However, the determination ofJ is
difficult: In Ref. 4, J is indirectly obtained from the ex-
change splitting of the Ga-2 isoelectronic donor in bulk
silicon; in Refs. 8 and 10, it is derived from the experi-
mental knowledge of the higher limit for the exchange
splitting of the free exciton in bulk silicon ( & 0. 15 meV).
In addition, these experimental values are probably
influenced by the effect of the spin-orbit coupling in the
same manner as discussed above and, therefore, cannot
be easily and directly obtained from experiments.

We now discuss the origin of the discrepancy between
our calculated exchange splittings and the observed shifts
(Fig. 5). We have seen in Sec. III that the polarization
effects have a noticeable influence on the exciton binding
energy. But they have a negligible effect on the exchange
interaction since the main contributions to the exchange
integral come from terms where the electron and the hole
are very close (the major contributions are the intra-
atomic terms, see Appendix B). In that case, polarization
effects must be negligible since the dipole corresponding
to the exchange density is extremely small.

A second possible source of problems might come from
the variation of the dielectric constant in the crystallite
with the confinement. Indeed, as the band gap is opened
with increasing confinement, the dielectric constant must
decrease. We have calculated the splitting 5 between the
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two lowest excitonic levels with respect to the static
dielectric constant e's; to see its influence (Fig. 6). Note
that when es; changes, not only 5 but also the excitonic
band gap change. A good agreement with experiment
could be obtained only for es;-3 if we consider that the
onset in selectively excited photoluminescence corre-
sponds to the smallest splitting and not the average. We
believe that es;=3 is not a realistic value for the micro-
scopic dielectric constant in silicon crystallites. Recently,
Tsu and Babic' estimated the efFect of the confinement
on the dielectric constant. They predict a dielectric con-
stant of —11 for crystallites emitting around 1.5 eV ( -4
nm) and -6 for crystallites emitting around 2.5 eV ( -2
nm). The splitting b, remains in that case quite far from
the experimental data. We conclude that, even if the
variation of the dielectric constant is not negligible, the
onset of the selectively excited photoluminescence cannot
be explained by the exchange splitting alone although we
have confirmed that its effect may be present in porous
slllcon.

In Fig. 7, we plot the calculated lifetimes associated
with the two lower levels of the undulating ellipsoids.
The scattering of the data is important as explained in
Ref. 2, which is consistent with the highly nonexponen-
tial decay of the luminescence' (this nonexponential
character can also come from other factors). The
difference of two or three orders of magnitude between
the lifetimes of the upper and lower levels is in good
agreement with experiments. However, our calculated
lifetimes are between one and three orders of magnitude
larger than the experimental ones, confirming our previ-
ous studies. The difference is particularly important for
smaller band gaps. Of course, nonradiative recombina-
tions may be important, even if they seem to appear
mainly at high temperature ( ) 100 K). Radiative
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FIG. 7. The calculated lifetimes of the upper (circles) and
lower (crosses) excitonic levels with respect to the excitonic en-

ergy for the crystallites with complex shapes.

recombination also occurs with the assistance of phonons
like in bulk silicon as shown recently by Hybertsen' in
agreement with experiments. " In that case, the in6uence
of the exchange splitting remains because it does not de-
pend on the mechanism of the radiative recombination.

In Ref. 19, substantial difFerences in the low-
temperature decays of the luminescence were reported
between the porous silicon samples and those of Ref. 4.
(This was also reported for dispersed Si nanocrystal-
lites. '

) In symmetrical crystallites, we predict that the
effect of the exchange splitting vanishes because of the
mixing induced by the spin-orbit coupling. It would be
interesting to look at the differences in morphology be-
tween these samples as suggested in Ref. 19. In the same
spirit, anisotropic elastic strains that are present in
porous silicon samples can also lift the degeneracies
playing the same role as the anisotropy of the
confinement.
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FIG. 6. Splitting between the two lowest excitonic levels with
respect to the excitonic band gap calculated for different values
of the dielectric constant e&; (lines). The splitting is the average
value over all the crystalline orientations. Black squares are the
first onsets measured by selectively excited photoluminescence
and black dots are the energy splittings derived from the fit to
the temperature dependence of the luminescence lifetime of Ref.
4. The black dot at (1.8 eV, 10 meV) is from Ref. 8.

V. LATTICE RELAXATION
IN THE EXCITONIC STATE

In the following, we show that the lattice relaxation in
the excitonic state must be substantial. To understand its
inhuence on the selectively excited photoluminescence,
let us suppose that the electronic system couples to one-
lattice displacement coordinate 6 and the equilibrium in
the ground state corresponds to Q=O. The situation is
summarized in the configuration coordinate diagram of
Fig. 8, which represents the total energy of a particular
crystallite with respect to 6. Since the selectively excited
photoluminescence is measured at low temperature (2
K), only the lowest vibronic state is populated in the
ground state. Under laser excitation, the maxiinum of
absorption occurs for the vertical transition (arrows (i) in
Fig. 8). Then the system relaxes very quickly to its lowest
vibronic state, which is centered at 6=60. Finally, the
radiative recombination appears with a maximum proba-
bility at the vertical transition (ii) in Fig. 8. In this
simplified view, if the luminescence energy is equal to EI,
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Etot
TABLE I. Deformation potentials (a =dE/dh) for various

porous silicon materials (a = —BdE/dP, where dE/dP is the
pressure coeScient of the luminescence or optical absorption
and B is the bulk modulus).

~FC
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p+aat 7

Ref.

24
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26
24
27

FIG. 8. Con5guration coordinate diagram representing the
variation of the total energy versus the lattice-displacement
coordinate 6. The lowest curve corresponds to the system in its
ground state, the upper curve to the excitonic state.

the excitation energy is E,b, =EI+2d„c, where d„c is the
Franck-Condon shift equal to the energy gain due to lat-
tice relaxation after capture. Therefore, the onset in the
selectively excited photoluminescence —the Stokes
shift —would be equal to 2d~c. Of course, the situation
is actually more complex, with transitions —in excitation
or luminescence —to the different vibronic states of the
final states. In the case of a strong lattice coupling, this
leads to a Gaussian broadening of the lines centered at
the vertical transitions. ' However, d„c remains the
good order of magnitude of the Stokes shift.

The lattice relaxation occurs in the excitonic state be-
cause an electron has been transferred from a bondinglike
(valence) to an antibondinglike (conduction) state, which
tends to weaken the bonds. The local amplitude of the
distortion is directly connected to the electron-hole densi-
ty. The confinement increases this density and, therefore,
the Stokes shift is enhanced by the confinement. The
variation of the exciton band gap energy with respect to
the lattice deformations is described by the deformation
potentials. In bulk silicon, by hydrostatic deformations,
the deformation potential a = V(BE/BV) is equal to 1.4
eV for the absolute minimum of the conduction band, to
—10 eV for I z, to —0.5 eV for I &5, and to —5 eV for L,
minima of the conduction band ' with respect to the:
top of the valence band (a =a, —a„). In crystallites
where the strong confinement mixes conduction states of
the different minima, the deformation potential a must be
actually an average of the above values and could vary
rapidly with the confinement, with even a change in sign
with the confinement. Experimentally, there have been
some attempts to measure the pressure dependence of the
luminescence or absorption spectra of porous silicon.
The measurement is delicate in particular because of the
large broadening of the luminescence peak and the

scattering of the results is large as shown in Table I,
which collects some values found in the literature.

We have used a simple model based on standard elasti-
city theory to show that d„c could be substantial in nano-
structures. Details are given in Appendix C. The atomic
displacements are obtained by minimization of the total
energy. The exciton energy depends on the local elastic
deformations through the deformation potentials, which
are treated as parameters following the previous discus-
sion on their measurement in porous silicon. The
Franck-Condon shift d„c is calculated as the difference in
energy between the stable configurations of the ground
and excited (excitonic) states of the crystallite. Results
for d„c are plotted in Fig. 9 for different realistic values
of the deformation potentials of the conduction bands =„
and:-z, which enter in the calculation (see Appendix C).
We see that the results are sensitive to these values. To
get more accurate results, it would be necessary, for ex-
ample, to make a very careful pseudopotential calcula-
tion on crystallites, but this is far beyond the scope of
the present paper. In addition, the exciton binding ener-

gy can also vary with the relaxation. Anyway, we see
that the Franck-Condon shift can be substantial, especial-
ly for small crystallites with large band-gap energy.
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FIG. 9. Calculated Franck-Condon shift with respect to the
calculated excitonic band-gap energy. The different curves cor-
respond to different values of the deformation potentials =q or
:"„in eV (the continuous line for the bulk silicon deformation
potentials).
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Comparing with Fig. 5, we see that the Franck-Condon
shift could explain at least partially the di8'erence be-
tween the onset observed in the selectively excited photo-
luminescence and the calculated exchange splitting.
More generally, we believe that this work shows that the
exciton-lattice coupling in nanocrystallites is important.
The coupling is with radial modes, which are mainly de-
rived from low-energy acoustic modes. Therefore, it is
probable that multiphonon replica could not be seen in
optical spectra but only a broadening.

some algebra, we obtain terms containing the one-
electron energies E,-' and E', one-particle matrix elements
of the spin-orbit coupling ( P, ~A,l.a~t(, ), and two-particle
matrix elements (g,.(1)g.(2)(e /es;r, z }~fk(1)g;(2))
where f, , g, gk, QI are one-electron wave functions of the
valence or the conduction band (including spin). The
spin-orbit constant A, is taken from Ref. I1. After devel-
opment of the one-electron wave functions P;,g, gk, gl
in the atomic-orbital basis, we obtain terms like

VI. CONCLUSION

We have calculated the excitonic spectrum of silicon
crystallites using an expansion of the exciton wave func-
tion in the basis of Slater determinants made from the
one-electron confined states. We have shown that the ex-
change interaction between the electron and the hole
does not influence the radiative lifetime of symmetrical
crystallitelike spheres. This is mainly due to the spin-
orbit coupling. In contrast, in crystallites with asym-
metric shapes or subject to anisotropic elastic strains, the
exchange splitting must be of visible influence and the
system can be reasonably interpreted by a two-level mod-
el. However, even in that case, we calculate an exchange
splitting much smaller than the onset observed in selec-
tively excited photoluminescence. This discrepancy can
be understood at least partially if the Stokes shift induced
by the lattice relaxation in the excitonic state is taken
into account. We show that this Stokes shift could be as
large as the exchange splitting.
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APPENDIX A:
DETAILS ON THE EXCITONIC CALCULATION

Here we give details on the computation of the matrix
elements of the exciton Hamiltonian. These are obtained
assuming that the one-electron states

~
g'; ) and

~
g' ) are

solutions of the Hartree-Fock equation where all the
valence states ~f" ) are filled by electrons and all the con-
duction states ~g',. ) are empty (notations are defined in

Sec. II)

e2 U ~& 2

I n

n

p2 Zke—X

where f can be the states ~g';) or ~QJ ) of energy E =E,'
or E =E~', respectively. We also fix the zero of the total
energy for the configuration corresponding to all the elec-
trons in the valence states ~P". ). This method is close to
the one developed by Knox in the case of bulk excitons.
Following this, we use the screened Hartree-Fock theory
and all the Coulomb interactions e /r are divided by the
dielectric constant es; of the electron crystallite. After

Xyk„(1)yrt.(2)d r, d r~ .

(A2)

In this equation, y;;. is an atomic orbital where the first

index i represents the atom and the second one i' the type
of the orbital (s,p„,p,p, ). To calculate the integrals of
Eq. (A2), some simplifications can be made. If p, ,' and

(or y,j and p&&. } do not belong to the same atom
(iAk or jul ), the integral is small and is fixed to zero.
This is consistent with the neglect of the overlaps be-
tween atomic orbitals in the tight-binding approximation.
In the opposite, case (i =k and j = I},two situations must
be considered. First, when the atoms i ( =k) and j ( =I)
are distinct, we have terms like fy,';(1)yJJ(2)(e /
esir12 )haik'( )Pj1'(2 }d p l d r2' If the wave functions
and y;k (or y ' and q I, ) are different, the integral
is neglected because orbitals are orthogonal. If
they are similar, the integral fy,'; (1)yjj.(2)(e /
es;r, 2)y, ;.(1)p",(2)d r, d rz is approximated by e /es;RJ,
where R;J is the interatomic distance between atoms i and

j and es; is the static dielectric constant. This is justified

by the fact that the atomic orbitals are localized on the
atoms. Second, when i =j =k = I, we have Coulomb and
exchange integrals between atomic orbitals of the same
atom. They are calculated from atomic wave functions
and with the q-dependent dielectric constant of Ref. 30.
Details are given in Appendix B.

APPENDIX 8: INTRA-ATOMIC COULOMB
AND EXCHANGE INTFRACTIONS

Here we briefly describe the evaluation of the intra-
atomic exchange and Coulomb integrals. We have three
types of Coulomb integrals U„, Up Upp where, for ex-

ample,

y
~V's f's

$$ 71 P2
ESiP )2

where qp, is the 3s atomic orbital of silicon. The main

difhculty of the calculation is the dielectric constant es; of
the silicon crystallite. es; is normally dependent on the
position of the particles 1 and 2 in Eq. (Bl) to take into
account the shape of the crystallite. However, the form
of the dielectric constant is not known. For simplicity,
we assume that es; has the same position dependence as
in bulk silicon. Using the Fourier transform of Eq. (Bl),
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we obtain

U„=16m f [p(q) ] dq,
o es (q)

where

(B2)

p(q)= — f "r~y, (r)~ sin(qr)dr .
2mq

(B3)

es;(q) is the q-dependent dielectric function taken from
Ref. 30, y, (r) is the radial part of the wave function y„
which is obtained from the atomic-structure calculations
of Ref. 29. A similar technique is applied to the case of
U, and U . Weobtain

(y (1)y (2) ~(e /es;r, 2) ~yp (1)yp (2) ), which are

small. In contrast, for a crystallite in the (111)direction,
both the valence and conduction states are built from p„-
like, p -like, and p, -like Bloch states together. Develop-
ment of the exchange integral in the atomic basis gives, in
addition to the previous case, intra-atomic Coulomb
integrals like (y (1)y (2)~(e /esr&2)~y (l)p (2)),
which are much more important than the intra-atomic
exchange integrals.

APPENDIX C: STOKES SHIFT DUE
TO THE LATTICE RELAXATION

U„=3.84 eV, U, =3.05 eV, U =2.54 eV . (B4)

These values are only about three times smaller than in
the free atom, i.e., for es;=1. This is due to the fact that
the screening is not so efBcient because of the short dis-
tance between the two electrons on the same atom. Note,
however, that Coulomb energies are the main contribu-
tions in the exchange integrals of the excitonic calcula-
tion. Finally, we have also evaluated the intra-atomic ex-
change integrals. They are, for example,

q,'(1)Ipp (2)q, (2)qp (1)

~Sj~12
d rl d r2,

(BS)
qp (I )qp (2)qp (2)q&p (1)

~si~12
d P1 d P2

All the other integrals can be deduced from these by sym-
metry. For the free atoms, they can be obtained follow-
ing the rules discussed by Slater. ' It is usually found
that intra-atomic exchange integrals are ten times smaller
than intra-atomic Coulomb integrals. ' Here the prob-
lem is much more complex because of the dielectric func-
tion in the integral. Therefore, using the same scaling
rule, we have fixed all the integrals in Eq. (B5) at 0.3 eV.
We have verified that our results do not depend on the
exact numerical value of these terms.

The calculated exchange splitting is dependent on the
direction of the asymmetric crystallite. For an ellipsoid
in the X direction, the highest valence state is mainly pz-
like. Therefore, for a (100) direction, the confined state is
mainly built from the p„Bloch states. In the conduction
band, for a (100) direction, there exist two kinds of
confinement. States arising from the (100) and ( —100)
valleys are higher in energy than states arising from (010),
(0-10), (001), and (00-1) valleys because of the anisotropy
of the effective masses in the conduction band. The same
is obtained for the confinement in wires. ' The states
arising from (010), (0-10), (001), and (00-1) valleys mainly
behave like p~ and p, . In consequence the exchange in-
tegrals are, for example, of the form
(P" (1)g' (2)~(e /esr, z)~P' (1)g" (2)) where @" and

are, respectively, the p„-like valence and pp-like con-
Py

duction states. When we develop this integral in
the atomic-orbital basis, the main contributions come
from the intra-atomic exchange integrals like

Here we give details on the simple elastic model used
to calculate the atomic relaxation induced by an exciton
in spherical-silicon nanocrystallites. Let us consider that
for a spherical crystallite of radius R one creates an
electron-hole pair. In the effective-mass approximation,
the electron-hole density is given by

n(r)= 1
2

sin(mr/R ) (Cl)

where r is the distance from the center of the crystallite.
As the deformations depend on the electron-hole density,
we can assume in first approximation that the displace-
ment u(x, y, z) of point M(x,y, z} of the crystallite is radi-
al, i.e., u=u(r)e„. As the density n (r) is a slowly vari-
able function of the position r, we can write the energy
density at r, to first order

E(r) =Eo(r)+Eg(r)n (r}, (C2)

where Eo(r) is the ground-state energy density and Es(r)
is the excitonic band-gap energy. Both are taken to de-
pend upon r if we assume that there can exist a local de-
formation induced by the existence of n(r). The defor-
mations are characterized classically by the strain param-
eters

e"=—
2

(C3)

The variation of energy density with respect to the
ground state (before electron excitation) is the sum of the
elastic energy density and of the electron-hole energy den-
sity

2 " "" " 2

+C,2(e„e +e e„„+e„„e )+E (r)n (r),
(C4)

where C», C12, and C44 are taken as the elastic constants
of the bulk silicon because the bonds between silicon
atoms are not much innuenced by the confinement. With
radial displacements u(r)e„, the strain parameters at
M(x,y, z) are given by
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2 — 2
au u+-
Br r

XfXJ
lJ r

where the x, are equal to either x, y, or z and u =u (r).
The excitonic band-gap energy Es(r) is also dependent on
the deformations. %'e have supposed that it follows the
variations of the band extrema in bulk silicon in the same
conditions of strains, i.e., Es(r)=E, (r) E,(r—). For the
conduction band, E,(r) is taken as the minimum of the
six valleys, which are no longer equivalent under the ac-
tion of the strains. Their variations with the strains are
defined by the deformation potentials =& and
Their minimum E,(r) is given by

E, +:"&(e„„+ess+ e )+min(:-„e„„,=„ebs,=„e ),
(C6)

where E, is the conduction-band minimum without
strain. For the behavior of the valence band under
strains, we use the derivation of Pikus and Bir where the
energies are obtained by the diagonalization of a 6X6
matrix. Matrix elements depend on the strain parame-
ters and on the deformation potentials a„, b„, and d„. a„
is the valence-band hydrostatic deformation potential, b,
is the valence-band shear deformation potential associat-
ed with strain along the (100}crystallographic direction,
and d, is the shear deformation potential for strain along
the (111)direction. E„(r) is taken as the maximum ener-

gy obtained after diagonalization.
It must be noted that the conduction-band minimum of

Eq. (C6) and the valence-band maximum obtained by di-
agonalization of the 6X6 matrix have not the full

spherical symmetry but the tetrahedral T& symmetry. As
a consequence, E,(r) and E„(r) do not depend only on
the distance from the origin r as assumed in the notation.
To take into account the full dependence of the energies
in the calculation leads to severe and unnecessary compu-
tational difficulties. In particular, this shows that strictly
speaking the displacements are not fully radial. Howev-
er, we believe that to assume a spherical symmetry can-
not lead to a large error, in particular because of the
spherical symmetry of the electron-hole density. For the
conduction band, we have defined E,(r) as the average of
Eq. (C6) over the directions, which can be done quite
easily —nearly analytically —in regard to the simple ex-
pression in Eq. (C6). In contrast, this is much more
difficult to do for the valence band. Therefore, E,(r) has
been defined as its value in the (100) direction, i.e., at a
point M(r, 0,0). We have verified that taking another
direction does not change significantly the final results.

The variation in total energy of the system after excita-
tion of an electron is made by integration of the energy
density of Eq. (C4} over the volume of the crystallite.
This is easily done since all the terms have now the spher-
ical symmetry. Then the total energy is minimized with
respect to the displacement u(r). In practice, u(r) is
written as a Fourier sum whose coefficients are adjusted
to get the minimum of the energy functional. The
minimization is performed using a conjugate-gradient
method.

Results are plotted in Fig. 9. The continuous line cor-
responds to the case where the deformation potentials in-
jected in the calculation are those of the bulk silicon crys-
tal. The other curves are obtained by changing substan-
tially =~ or =„(orboth) to check the sensitivity of the re-
sults on these parameters (we recall that they actually de-
pend on the confinement). Anyway, Fig. 9 shows that the
Franck-Condon shift must be substantial, in the rneV
range.
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