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We study the excitation spectra and the dynamical structure factor of quantum Hall states in a
finite-size system through exact diagonalization. Comparison is made between the numerical results
so obtained and the analytic results obtained from a modified random-phase approximation in the
preceding companion paper. We find good agreement between the results at low energies.

I. INTRODUCTION

By using a singular gauge transformation to convert
electrons into fermions interacting through a Chern-
Simons field, much progress has been made in under-
standing the physics of two-dimensional interacting elec-
tron systems in strong magnetic fields at simple filling
fractions. i At the mean-field level, this transformation
maps certain fractional quantized Hall states into inte-
ger quantized Hall states of transformed fermions so that
some conventional many-body techniques may be used to
tackle the problem. In the preceding companion paper, i
an analytic procedure called the modified random-phase
approximation (modified RPA) has been constructed in
the spherical geometry for evaluating the response of cer-
tain quantized Hall states to external perturbations. The
purpose of this paper is to present numerical results of
excitation spectra and the dynamical structure factors at
selected filling fractions, calculated using exact diagonal-
ization and the modified RPA, so that comparison can
be made and the performance of the modified RPA can
be evaluated. Specifically, we present numerical results
from both exact diagonalization and modified RPA for
systems of N = 8 and N = 12 electrons at filling factor
v = 1/3 and v = 3/7, respectively.

As usual for numerical calculations, we work in the
limit where the electron-electron interaction is weak com-
pared to the cyclotron energy. For the exact diagonaliza-
tion method, this means that all electrons are confined to
the lowest Landau level. Within the modified RPA calcu-
lations, this means that we are working in the limit where
the bare band mass mg is infinitely small compared to
the efFective mass m', whose scale is set by the electron-
electron interaction strength. (In practice, we have car-
ried out these calculations for the value m'/ms = 50.)

Our main purpose is to compare the exact and ap-
proximate calculations of the dynamical structure factor
S(q, io) over a range of wave vectors, for the frequencies
which are on the scale of the electron-electron energy, and
therefore very much lower than the cyclotron frequency

For such frequencies, the structure factor S(q, io)

is equivalent to the projected structure factor S(q, io),
in the exact calculation where all electron operators are
projected onto the lowest Landau level. To obtain addi-
tional information, however, we wish to compare various
frequency moments of the projected structure factor with
the corresponding quantities obtained from the modified
RPA. [Specifically, we calculate contributions to the f
sum rule, the projected static structure factor S(q), and
the static wave-vector-dependent compressibility. ] For
these comparisons, we define the projected structure fac-
tor in the modified RPA by excluding the contribution
of the "Kohn mode, " which occurs at the cyclotron fre-
quency at q 0.

Our plan for this paper is as follows. In Sec. II we de-
scribe the model and brieHy discuss the method we use
in the exact diagonalization. In addition, we review a
few necessary points of the modified RPA calculation. In
Sec. III we present results for the projected dynamical
structure factor S(q, io) which describes the low energy
response of the system to an external perturbation and
gives the dispersion of the collective modes of the system.
As well as showing S(q, io), we will also calculate the dis-
persion of the collective mode in the single mode approx-
imation (SMA), the contributions of the excitations in
the lowest Landau level to the projected static structure
factor S(q), the f-sum rule, and the compressibility sum
rule. Our conclusions are summarized in Sec. IV.

II. MODEL AND METHOD

We will use the spherical geometry throughout this
paper, so our system is given by a magnetic monopole of
total Hux N4, quanta at the center of the sphere with N
electrons confined to the sphere's surface, interacting via
a Coulomb potential. If the system were infinitely large
(i.e., a planar system), the filling &action would be given
by the ratio of the number of electrons to the number of
fiux quanta (v = ~ ). However, in a finite-sized system,
this relation is changed to

Ny = [v] N —X(v),
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where X(v) is known as the "shift"" of the state, and
depends also on the topology of the system. In this work,
we will be interested in filling fractions of the form vp ——

For these states, in our spherical geometry, the2p+1
shift is given by

X(v„) = 2+ p.

In the spherical geometry, by rotational invariance, the
eigenstates of the system can be classified by the con-
served quantum numbers (L, M), where L is the quantum
number for the total angular momentum of an eigenstate
and M is its z component. In order to compare results
on a finite sphere with those for an infinite planar sys-
tem, we identify the wave vector q on the plane with
the quantity L/R, where R is the radius of the sphere.
This identification is exact in the limit R m oo, but it
is to some degree arbitrary for any finite system. [For
example, the identification q i gL(L + 1)/R would be
equally valid. ]

In keeping with the convention of the preceding com-
panion paper, we choose units of length such that the
radius of the sphere is unity. The efFective "size" of the
sphere is then defined by the magnetic length lo ——S
where S = Ny/2 is half the total number of flux quanta
through the surface of the sphere. It is also convenient to
choose the unit of energy to be e2/elo, which is the only
energy scale in the problem when all of the electrons are
confined to the lowest Landau level.

tion V(Ai, A2) =
~~ ~ ~, namely,

Vm~ m~ m1 m2 = dOyd02Y~ mi Oy Y~ mi 02

1
, Ys', (A2) Ys', , (Oi)

where the vectors 0 are restricted to the surface of the
sphere. The relevant matrix elements are calculated more
explicitly in Ref. 5.

Now let us say a few words about the density operator
in the spherical geometry. By definition,

p(A) = ) b(A —A;),

where A, is the position of the ith electron. Since p(O)
creates a neutral excitation when it acts on a state, it is
useful to expand it in normal spherical harmonics, i.e.,
we define its Fourier components by

pi (A) = ) Y( (O),

where Yi are the usual spherical harmonics (which
are related to the monopole spherical harmonics by
Y~~ = Y& ). It is easy to verify that p~ has the ex-
pected properties:

[Ls~ plm] ™plrn)

A. Exact diagonaliration [L~, p~ ] = gl(l+1) —m(m+1) pt

Since exact diagonalization in the spherical geometry is
a well-established method, we will only describe it very
briefly; more information can be found in Refs. 4 and
5. The extraction of the projected dynamical structure
factor S(q, u) from such diagonalizations, however, is a
method new to this work.

As mentioned in the preceding companion paper, i the
single particle energy eigenstates are the monopole spher-
ical harmonicss Ys (A), where l = S, S + 1, . . . , and
m = —l, . . . , L. The corresponding eigenenergies are given

by

E( = [l(l + 1) —S ]Re„2S

where ur, = hS/ms is the cyclotron frequency, with mg
the band mass of the electron. The lowest Landau level
has a basis of the 2S+1 states with l = S. With the single
particle states given, ignoring the constant kinetic energy,
the Hamiltonian of the many electron system, projected
to the lowest Landau level, is written in second quantized
notation as

(4)

where C& or C~ creates or annihilates an electron in

the single particle eigenstate Y& (A), and V
is the matrix element of the spherical Coulomb interac-

and if L I4) = 0, then

L'pi-I@') = l(l+1)pi IC') and L.pi-I@') = m«-I@').

(9)

In second quantized notation, we can write the density
operator as

p(A) = &'(O)&(O) (10)

where gt(O) and g(O) are the operators that create and
annihilate, respectively, an electron at the point O. As

usual, the eigenstate operators (Ctt ) can be easily re-
t

lated to the position space operators [Qt(O)] via

Ci~ = dOYi 0 t 0

l, m

Thus we can write the density operator as

p(A) = ) ) [Y.. .(A)]'Y.. .(A)Ct C(,
l1,m1 l2, m2

which can easily be inverted using the orthogonality
property of the monopole spherical harmonics to yield
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We can then take the angular momentum components to
yield

s(t ~) = ).I(@'-Ipi-I@o)I'~(~+"—~-). (21)

Pl
— ~&xi, & P &

= ) ) p{l,m, l„mi, t2, m2)C, C&, ~, , (14)
l1,m1 lg, mg

where

p(l, m, l~, m„lq, m2) =/dBYi, (B)[Yi, , (O))*

xYis, (A),

which is evaluated explicitly in Appendix D of Ref. l. It
is then easy to project this operator to the lowest Landau
level (li ——l2 ——S) to get

pi = ) p(t m m')Cst, + Cs, (16)

where

p(t, m, m') = (—1) +'+ + (2S+ 1)S l 23+ I

S S
(—(m+ m') m' m)

(s sx
( —S S 0

An important property of pl at I = 1 is that

px, o oc L„p~ ~ oc L+, and p~ ~ oc L

where the bars over the angular momentum operators
indicate that they have been projected to the first Landau
level also. This can be shown by writing the angular
momentum operators in terms of eigenstate creation and
annihilation operators, projecting to the first Landau
level, and comparing to the definition of the projected
density operator. For example, we can write

L, = ) mCst Csm, (19)

S(~ ~) = ) .I(@ IPi I@0)l ~(~+ ~o ~ ) (2o)

which is independent of m by rotational invariance. By
comparison, the full dynamical structure factor on a

which is easily shown to be proportional to pz 0 once we

have evaluated the 3-j coefficient in Eq. (17). Using these
properties [Eqs. (18)] of pi we see that for I@0) in the
first Landau level, L IOo) = 0 implies pi I@o) = 0; i.e.,
the projected density operator cannot generate excited
states at I = 1 from a uniform state.

Now we have come to the central quantity of our calcu-
lation. By definition, the projected dynamical structure
factor is given by

In the limit where the band mass is taken to zero, while
the frequency cu and the electron-electron interaction are
held fixed, the only energy states with finite e —eo are
states in which all electrons are restricted to the lowest

Landau level. Thus if the frequency u is fixed on the
scale of the electron-electron interaction, the quantities
S(t, u) and S(t, ur) become identical, as mentioned ear-
lier. However, at energies on the scale of the cyclotron
frequency, transitions between Landau levels will always
be important, and the projected calculation will be inac-
curate. In particular, the projected structure factor will

never display a Kohn mode and will never satisfy the
f-sum rule.

We should also mention that for the exact diagonaliza-
tion it is possible to take advantage of the rotational sym-

metry of the spherical system to reduce the dimension of
the relevant many-body Hilbert space. Specifically, we

explicitly block diagonalize the Hamiltonian by comput-
ing its matrix elements between many-body states with
the same total angular momentum L and L, . To con-
struct an eigenstate of the total angular momentum op-
erator L,2 with eigenvalue t(l + 1), we may in principle
start from a randomly generated many-body state with
the required L, and use the operator Q&, &&

[L2 —t'(t'+ 1)]
to project out the unwanted components with L other
than l(t + 1). However, on a finite precision computer,
a naive application of this method is highly unstable,
i.e., the error introduced by the machine round-off grows
exponentially. Fortunately, there are ways to stabilize
the algorithm so that eigenstates of L2 with up to ma-
chine precision can be obtained. Details will be published
elsewhere.

B. Modified RPA

—1S(L.~3 = ImlK (L.cu)l. (22)

As mentioned in the preceding companion paper,
there are in principle two free parameters in the mod-
ified RPA. They are the ratio of the effective mass to
the band mass m" /ms, and a constant C = ( ".

&, )/( '& ),
which is the ratio of the effective quasiparticle cyclotron
energy to the Coulomb energy (which should be of order
one). The estimate C = 0.3 has been made by Halperin,
Lee, and Read by examining results &om exact diago-
nalizations of small systems. We will use this value of C
for all of our calculations in this paper.

In order to project our results to the lowest Lan-
dau level, we should take the band mass to zero, or
m /m& ~ oo. In practice, this is calculationally dif-

ficult, and we have actually used m'/m = 50, which
is quite suKcient to separate the Kohn mode &om the
low energy excitations. We then use the prescription de-
scribed in the preceding companion paper to calculate
the density-density response function Koo(L, u) which is
related to the dynamical structure factor via
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As noted in Ref. 1, the modified RPA is constructed to
satisfy the f-sum rule, which one derives from the exact
structure factor on the sphere. Within the units em-
ployed in this paper, this becomes

L(L + 1) Nm' C
Cku ~S L, (u )8x mb S

where the factor & (with S = z~ here) is simply a con-
version of energy scales as described above. Note that
this quantity diverges in the limit ms/m m 0. The
main contribution to this sum rule, however, is from the
Kohn mode at (or above) the cyclotron frequency. All
other modes described by the modified RPA are low en-
ergy excitations (on the energy scale set by the Coulomb
interaction). Moreover, as discussed above, in the ex-
act diagonalizations, the projection to the lowest Landau
level restricts our results to only those modes on the en-
ergy scale of the Coulomb interaction. Thus, in order to
"project" S(L,~) calculated in the modified RPA to the
first Landau level, we simply discard the high frequency
Kohn mode and call the result the projected dynamical
structure factor S(L, u). We then define a projected con-
tribution to the f-sum rule by

f(L) = der u)S(L, ~)

The value of f (L) remains finite for mb/m* i 0 for both
the exact calculation and the modified RPA, so it is rea-
sonable to try to compare the two.

In a similar manner, we define the projected static
structure factor S(L), and the contribution A(L) to the
compressibility sum rule by

S(L) der S(L, (u),

A(L) = d.S(')
0 (d

(26)

In addition we shall report results for the average fre-
quency entering in the SMA, which is simply defined
by

fo d(u (uS(L, (u) f (L)

fo du)S(L, (u) S(I) (27)

The complete static structure factor S(L) is defined us-

ing S(L,~) on the right-hand side of Eq. (25) instead of
S(L, cu). The contribution to S(L) froin the Kohn mode,
or &om inter-Landau-level transitions does not diverge
in the limit ms/m' ~ 0, but it is a large finite contri-
bution; therefore, to make sensible comparisons between
the modified RPA and the exact calculations for the low-

est Landau level, we use the projected structure factor in
both cases.

By contrast, in the limit ms/m' ~ 0, the contribution
to A(L) &om the Kohn mode or from inter-Landau-level
transitions is vanishingly small. Therefore it would not
matter whether we use S(t, u) or S(L, ur) on the right-
hand side of Eq. (26).

III. NUMERICAL RESULTS

In this section we present and compare numerical re-
sults obtained from exact diagonalizations and from the
modified RPA, for two filling factors in the principal se-
quence vp =

2 +i The first set of data, shown in Figs. 1—2p+1 '

5, is obtained for a system of eight electrons at a filling
factor v = 1/3 [as required by Eqs. (1) and (2), N~ = 21
here]. In the composite fermion picture, at the mean-
field level, the ground state of the system corresponds to
a completely filled lowest effective Landau level for the
composite fermions. The second set of data, shown in
Figs. 6—10, is obtained for a system of 12 electrons at
a filling factor v = 3/7 (Ny = 23), where the ground
state of the system corresponds to the lowest three filled
effective Landau levels of the composite fermions.

As discussed in Refs. 1, 2, and 3, in a planar system, we
expect the modified RPA to be more accurate in the large
p limit (i.e., v approaching 1/2) where the motion of the
composite fermions is semiclassical. In the present calcu-
lations, however, we do not necessarily expect the mod-
ified RPA to be more accurate for the v = 3/7 (p = 3)
state than for the v = 1/3 (p = 1) state due to the prob-
lem of enhanced finite-size eff'ects for the v = 3/7 state.
Although the v = 3/7 system contains more electrons
(N = 12) than the v = 1/3 system (N = 8), it should
be considered the "smaller" system in that the composite
fermion magnetic length is much larger in the v = 3/7
system, and the number of electrons per Landau level is
also smaller. Thus any finite-size effects will be accentu-
ated in the v = 3/7 set of data, and we suspect that the
modified RPA will be less accurate in this case.

In Fig. 1, we show the projected spectral weights of
S(L,~) for a system of eight electrons at a filling factor
v = 1/3 (Ny = 21), calculated through exact diagonal-
ization (upper graph) and using the modified RPA (lower
graph). The weight of each b function contribution to
S(L,u) at each (L, ur) is proportional to the area of the
corresponding shaded rectangle. Here and in the rest of
this work, the energy scale is given in units of ez/(elsz).
As we discussed above, although there may be excita-
tions at L = 1, these states all have zero weight in the
projected dynamical structure factor.

We see immediately from Fig. 1 that the projected dy-
namical structure factor calculated in the modified RPA
agrees very well with the exact diagonalization at low en-
ergies. In particular, the distribution of spectral weights
among the states in the lowest collective mode is very
similar in the upper and lower graphs. The small dis-
crepancy in overall energy scales might be due to an in-
accuracy in our guess of the energy scale conversion factor
C described above.

We note that the lowest collective mode dominates the
spectral weight for angular momenta up to L = L, t „=
4 in the exact diagonalization, particularly near the roton
minimum L, t „. In the modified RPA the lowest mode
dominates only at smaller angular momenta. At higher
angular momenta (L ) L, t „),the exact diagonalization
shows a fairly significant amount of spectral weight at en-
ergies E 2E, t „.It is believed that the corresponding
states can roughly be represented as composite objects
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of two rotons. i We should not expect that such states
would be properly modeled in the modified RPA since
the RPA only represents single quasiparticle-quasihole
excitations. However, as long as we consider suKciently
low energy (not too much larger than E 2E, i „), the
modified RPA seems to agree very well with the exact
diagonaliz ation.

At higher energies, in the continuum of the exact diag-
onalization spectra, we empirically observe that the spec-
tral weights decay exponentially S(L, ~d) e /r for a
given L, where I' 0.03e /elo. In this high energy re-
gion, where the modified RPA differs significantly &om
the exact results, we see that the modified RPA yields
a discreet spectrum of high energy modes with a large
amount of spectral weight. The discreteness of the mod-
ified RPA is an obvious artifact arising &om the neglect
of processes where a higher energy mode can decay into
several low energy modes with the same total energy and
wave vector. The fact that the modified RPA seriously
overestimates the total weight at high energies is a more
significant limitation of the approximation.

In Fig. 2 we show unweighted excitation spectra for
the same system of N = 8 electrons at v = 1/3. The up-
per graph is the complete energy spectrum in the range
0 ( o~ ( 0.45, 0 & L ( 11, from exact diagonaliza-
tion regardless of whether or not the state contributes
to S(q, id). The lower graph is again the result of the

modified RPA. Note that the dispersion relations and
the overall energy scale of the lowest collective mode are
very similar in the two cases. The black circles in the
two graphs are the spectra of the SMA computed with
Eq. (27), for the exact calculations and modified RPA,
respectively. We observe that in the exact diagonaliza-
tion results, the SMA works well for angular momenta
up to the roton minimum L, t „while in the modified
RPA, the SMA fails at all but the lowest angular mo-
mentum. This failure of the SMA is due to the erroneous
predictions of the modified RPA at high energy. In the
modified RPA, as we increase the angular momentum,
the main contribution to the spectral weight comes from
a frequency that increases approximately proportionally
to L(L + 1). This can be explained roughly by consider-
ing the modified RPA as a perturbation of a free electron
system where it is well known that the excitations are
confined to a band whose upper and lower energy bound-
aries both vary as q2. When a magnetic field is added
to such a &ee electron system, a Kohn mode appears,
and some of the low energy excitations can be changed,
but we expect that most of the high q excitations re-
main roughly in the same band. As discussed above, the
single particle nature of the modified RPA allows these
high energy modes to be given too much spectral weight.
Thus we see how the the single mode approximation in
the modified RPA is dominated by the poorly modeled
higher frequencies in the modified RPA, thus giving very
inaccurate results.

In Fig. 3, we show the projected static structure fac-
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FIG. 1. The weights of the projected dynamical structure

factor S(L,u) for N = 8 electrons at filling fraction v = 1/3
(Ny = 21). The upper graph is obtained from exact diag-
onalization, and the lower graph is obtained from modified
RPA. The magnitude of each b function contribution to the
projected dynamical structure factor S(L, u) is proportional
to the area of the corresponding shaded rectangle.
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FIG. 2. The excitation spectra for N = 8 electrons at filling
fraction v = 1/3. The upper graph is obtained from finite-size
exact diagonalization, and the lower graph is obtained from
modified RPA. The black circles are spectra calculated in the
single mode approximation [see Eil. (27)].
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FIG. 3. The projected static structure factor S(L) [see
Eq. (25)] for N = 8 electrons at filling fraction v = 1/3. The
circles are obtained from finite-size exact diagonalization, and
the triangles are obtained from the modified RPA. The inset
shows the modified RPA data on an expanded scale to show
the behavior at large I. The solid and dotted lines are guides
for the eye.

FIG. 4. The contribution to the f-sum rule f(L) [see
Eq. (24)] for N = 8 electrons at filling fraction v = 1/3. The
circles are obtained from finite-size exact diagonalization, and
the triangles are obtained from the modified RPA. The inset
shows the modified RPA data on an expanded scale to show

the behavior at large I. The solid and dotted lines are guides
for the eye.

tor S(L) [see Eq. (25)] for the same system of K = 8
electrons at v = 1/3. The circles (solid line) are from
the exact diagonalization whereas the triangles (dotted
line) are the result of the modified RPA. The inset shows
the same modified RPA data on a reduced scale to more
clearly show the behavior at higher angular momenta. Of
course the projected static structure factor is only defined
at integer values of L, and the lines (dotted and solid)
are just guides for the eye. In the exact diagonalization
(circles), we find that S(L) peaks around the roton min-

imum and decreases rapidly at higher angular momenta.
We have studied its behavior and found empirically that
it roughly obeys a Gaussian S(L) e ~t~+il, where ci

is a constant. This reHects a similar empirically observed
Gaussian decay of the matrix elements of the density op-
erator at large angular momentum. The projected static
structure factor in the modified RPA (triangles) is very
similar to the exact result (circles) at small values of the
angular momentum where the modified RPA does not
predict extraneous high energy modes with large amounts
of weight. At higher values of I the erroneous high en-

ergy modes cause a severe overestimation of the projected
static structure factor.

In Figs. 4 and 5, we show the contribution to the f-sum
rule and compressibility sum rule as defined in Eqs. (24)
and (26) for the same system of % = 8 electrons at filling
fraction v = 1/3. As above, the circles are from the exact
diagonalization whereas the triangles are the result of the
modified RPA, and the lines are guides for the eye. Once
again the insets show the same modified RPA data on
a reduced scale. In Fig. 4, we see that the contribution
to the f-sum rule suffers from the same erroneous high
energy modes. The compressibility sum rule (Fig. 5) is
somewhat better estimated by the modified RPA because
the contributions of the erroneous high energy modes are
suppressed by a factor of w in this sum rule [see Eq. (26)].

This is somewhat encouraging, since the compressibility
sum is the most relevant of these quantities for describing
the low energy behavior of the quantized Hall state.

In Fig. 6, we show the projected dynamical structure
factor S(L, w) for a system of X = 12 electrons at a
filling factor v = 3/7 (Ny = 23). Again, the spectral
weights of S(L, ur) at each (L, u) are proportional to the
area of the corresponding shaded rectangles. We observe

4 i
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1.5 .

4 4 4

20 25

S 10 12

FIG. 5. The contribution to the compressibility sum rule

A(L) [see Eq. (26)] for N = 8 electrons at filling fraction
v = 1/3. The circles are obtained from finite-size exact diag-
onalization, and the triangles are obtained from the modified
RPA. The inset shows the modified RPA data on an expanded
scale to show the behavior at large I.. The solid and dotted
lines are guides for the eye.
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again that the behaviors of S(L,u) from exact diago-
nalization (upper graph) and calculated in the modified
RPA (lower graph) are semiquantitatively similar. How-

ever, once again, the modified RPA results clearly over-
estimate the spectral weights at high energies.

In Fig. 7, we show the corresponding complete exci-
tation spectra of the system of N = 12 electrons at a
filling factor v = 3/7. An interesting feature to note
is that there are wiggles in the dispersion of the low-

est collective mode in both the exact calculation and the
modified RPA. Note particularly how the lowest ener-

gies at I = 3 and 5 lie above the lowest energies at
L = 2, 4, and 6. This behavior was observed previously
in the exact calculation for this system size and filling
factor by d'Ambrumenil and Morf. These authors posed
the question of whether the even-odd alternation might
be a spurious effect due to the finite size of the system.
Based on the modified RPA analysis, however, we be-
lieve that the maxima and minima in the spectrum are
genuine effects reflecting the maxima and minima that
were previously found in the dispersion relation for the
lowest excitation branch in the planar system using this
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FIG. 7. The excitation spectra for N = 12 electrons at
filling fraction v = 3/7. The upper graph is obtained from
finite-size exact diagonalization, and the lower graph is ob-
tained from modified RPA. The black circles are spectra cal-
culated in the single mode approximation [see Eq. (27)].
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approximation. More generally, for filling fractions of
the form v = p/(2p + 1), at large values of p, it was
predicted in Ref. 3 that there should be a series of max-
ima and minima in the dispersion of the lowest excita-
tion branch occurring, respectively, at wave vectors of the
form q = vr(n —4)/R; and q = m(n + 4i)/R,*, where n is
a positive integer, and R, is the "effective cyclotron ra-
dius" for the composite fermions. This quantity is given
by the relation

0.40 R," = hkF/(eAB) = 2p/kF, (28)

0.30-

8 0.20-

where AB is the deviation of the magnetic field kom the
field at v = 1/2, and the Fermi wave vector k~ is related
to the electron density n, by k~ = (4mn, ) ~ Thus, at.
filling fraction v = p/(2p+ 1), we have

0.10-
R.* = —(2p)'i'(2p+ 1)'i'.1

0
(29)

0.00
0 10

FIG. 6. The projected dynamical structure factor S(L,u)
for N = 12 electrons at filling fraction v = 3/7 (N~ ——23).
The upper graph is obtained from exact diagonalization, .and
the lower graph is obtained from modified RPA. The magni-
tude of each b function contribution to the projected dynam-
ical structure factor S(L, w) is proportional to the area of the
corresponding shaded rectangle.

If we now apply this formula to our system of particles
on a sphere, with to = (1V~/2) ~, we find R; = 2 at v =
3/7, with N = 12. Thus one might expect maxima and
minima to alternate with a period of AL = 7r/R; = 1.6.
Since the observed alternation with a period of AL = 2 is
not far &om this expectation, we believe it is appropriate
to identify the oscillations as the expression in our finite-
size system of the oscillations predicted for the plane.
In any case, the fact that this detail of the spectrum
predicted &om the modified RPA for the finite system
is in good agreement with the exact calculations gives
support to the belief that the oscillations predicted for
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FIG. 8. The projected static structure factor S(L) [see
Eq. (25)] for N = 12 electrons at filling fraction v = 3/?. The
circles are obtained from finite-size exact diagonalization, and
the triangles are obtained from the modified RPA. The inset
shows the modified RPA data on an expanded scale to show
the behavior at large L. The solid and dotted lines are guides
for the eye.

FIG. 10. The contribution to the compressibility sum rule
A(L) [see Eq. (26)] for N = 12 electrons at filling fraction
v = 3/?. The circles are obtained from finite-size exact diag-
onalization, and the triangles are obtained from the modified
RPA. The inset shows the modified RPA data on an expanded
scale to show the behavior at large L. The solid and dotted
lines are guides for the eye.

the infinite system should also be present in an exact
calculation.

The black circles in Fig. 7 show the single mode ap-
proximation [Eq. (27)] for v = 3/7. As we discussed
in the case of v = 1/3, the single mode approximation
clearly shows that the modified RPA predicts too much
spectral weight at high energies.

In Figs. 8, 9, and 10, we show the projected static
structure factor [Eq. (25)], the contribution to the f-sum
rule [Eq. (24)], and the contribution to the compressibil-
ity sum rule [Eq. (26)] for the same system of N = 12

electrons at filling fraction v = 3/7. As above, the cir-
cles are always from the exact diagonalization and the
triangles are from the modified RPA. Once again the in-
sets show the modified RPA data on a reduced scale to
show the behavior at higher angular momenta. Again,
we see that the erroneous high energy modes in the mod-
ified RPA dominate the f-sum and the static structure
factor at all but the lowest angular momenta. On the
other hand, the compressibility sum (Fig. 10) is some-
what better represented in the modified RPA due to the
suppression of these high energy modes.

0.12 2.0 IV. CONCLUSIONS
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FIG. 9. The contribution to the f-sum rule f(L) [see
Eq. (24)] for N = 12 electrons at filling fraction v = 3/?. The
circles are obtained from finite-size exact diagonalization, and
the triangles are obtained from the modified RPA. The inset
shows the modified RPA data on an expanded scale to show
the behavior at large L. The solid and dotted lines are guides
for the eye.

We have studied the excitation spectra and the dynam-
ical structure factor in quantum Hall states belonging to
the principal sequence v = p/(2p+ 1) through exact di-
agonalization and projected modified RPA. In particular,
we have presented results from finite-size exact diagonal-
ization and from projected modified RPA on a system of
X = 8 electrons at v = 1/3 and a system of X = 12 elec-
trons at v = 3/7. We find that the modified RPA works
reasonably well at low energies, i.e., for energies & 0.2,
in units of e /elo. [By comparison, the effective Fermi
energy E~ = k&z/(2m") is approximately C/2 = 0.15, in
these units. ]

By combining our results with previous analyses, we
can arrive at some reasonable conjectures for the excita-
tion spectrum in a planar system, which should hold in
particular for relatively large values of the parameter p.

(1) The present work supports the conjecture that the
modified RPA gives a qualitatively correct description of
the dispersion curve for the lowest branch of the excita-
tion spectrum (quasiexciton mode) at v = p/(2p + 1).
The series of maxima and minima predicted by the mod-
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ified RPA in the planar limit have analogs in the finite
system which are also observed in the exact calculations.

(2) The general distribution of the spectral weight

S(q, a) for frequencies above the lowest excitation
branch, up to energies of the order of ur 0.2e /(elq), for
wave vectors in the range 0 & q & 2kF is likely to be rep-
resented in a qualitatively correct fashion by the modified
RPA. Of course certain details must clearly be wrong, as
has been previously discussed. Higher branches of the
energy spectrum, which are undamped in the modified
RPA, should actually be broadened into a continuum by
decay into multiple excitations of lower lying modes.

(3) The modified RPA predicts that for large values of
p, and wave vectors in the range kp/p « q « ky, the
dominant contributions to the static compressibility sum
rule should arise from frequencies u oc q . We believe
this prediction to be correct, but our finite-size systems
are too small to give any direct confirmation.

(4) The modified RPA predicts that there should be

sizable contributions to S(q, u), for u + 0.2e2/(eto), for
large wave vectors in the range where

~ q
—2m'ur

~

& 2kzq.
We believe these predictions to be spurious, however, as
exact finite-size system calculations show little weight in
S(q, ur) at high frequencies for any value of q. Of course
the complete dynamical structure factor S(q, ~) will con-
tain additional contributions at very high &equencies
arising &om transitions between Landau levels.

(5) The above conjectures are of course predicated on
the assumption that no instability or phase transition oc-
curs at very large values of p, which would then invalidate
our analysis. Finite-size system calculations cannot rule
out the possibility of such an instability at large p.
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