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Using a well-known singular gauge transformation, certain fractional quantized Hall states can be
modeled as integer quantized Hall states of transformed fermions interacting with a Chem-Simons
Geld. In previous work we have calculated the electromagnetic response function of these states at
arbitrary frequency and wave vector by using the random-phase approximation in combination with
a Landau-Fermi-liquid approach. %'e now ada, pt these calculations to a spherical geometry in order
to facilitate comparison with exact diagonalizations performed on 6nite-size systems.

I. INTRODUCTION

Calculational methods based on transforming electrons
to fermions interacting with a Chem-Simons field have
shown themselves to be very powerful for understanding
&actional quantized Hall states and related unquantized
states. In a previous paper we have developed a set
of approximations for calculating the current and den-
sity response functions within this fermion Chem-Simons
model at filling &actions corresponding to the principal
fractional quantized Hall states. In particular, we use
the random-phase approximation (RPA) to account for
fluctuations in the Chem-Simons Beld, as well as to ac-
count for the direct Coulomb interaction. The large ef-
fective mass renormalization that we expect to occur in
the Chem-Simons theory is then accounted for by using
a Landau-Fermi-liquid theory approach. This set of ap-
proximations, which we call the "modified RPA, " has a
number of desirable features. To begin with, the f-sum
rule, a result of Galilean invariance, is automatically sat-
isfied. In addition, Kohn's theorem —which says that a
mode at the bare cyclotron frequency must have all the
weight of the f-sum rule in the long wavelength limit —is
also satisfied within this approach. Finally, this approach
predicts a discrete series of quasiexciton lines, with the
lowest branch in qualitative agreement with exact diago-
nalization of finite-size systems. More quantitative com-
parison of this theory with exact numerical work could
not be made since the theory considers an infinite planar
system, whereas exact diagonalizations necessarily con-
sider only small systems. The purpose of the present
work is to formulate an analogous fermion Chem-Simons
theory on a sphere, so as to facilitate comparison with
exact diagonalization results. A quantitative comparison
between our results and the results of exact diagonaliza-
tion of small spherical systems will be made in a following
paper.

The outline of this paper is as follows. In Sec. II A we
begin by discussing the Dirac string and the Dirac quan-
tization condition for a spherical system with a magnetic
monopole in its center. We then write down the Hamil-

tonian that describes interacting electrons on the surface
of this sphere in Sec. IIB. In Sec. IIC a singular gauge
transformation is made that maps our system into a sys-
tem of "composite fermions" —fermions bound to an
even number of Chem-Simons fiux quanta. We treat the
Chem-Simons flux within mean-Beld theory in Sec. IID
and review how certain fractional quantized Hall states
can be viewed as int;cger quantized Hall states of these
composite fermions as originally proposed by Jain.

In Secs. III A and III 8 we define the current and den-
sity response function in terms of a convenient spherical
basis. We make use here of some restrictions on the form
of the response function which are derived in Appendixes
A and 8 using rotational symmetry, gauge invariance,
and current conservation. In Sec. III C we use standard
linear response theory to calculate the response function
within the mean-field approximation. This mean-field re-
sponse also serves as a starting point for the RPA calcu-
lation. (The most tedious part of the mean-field calcula-
tion, the evaluation of a correlation function, is relegated
to Appendixes C and D.) In Sec. IVA we use a self-
consistent approximation to derive the RPA equation for
the response function. (Certain angular momentum com-
ponents of the Coulomb and Chem-Simons interactions
are evaluated in Appendix E, and are used to establish
the form of the induced efFective electric and magnetic
fields in Appendix F.) In Sec. IVB we discuss the is-
sue of quasiparticle effective mass renormalization. In
general, we expect that the RPA results will either not
properly account for this mass renormalization, or will
violate the f-sum rule. To repair this problem, we follow
the results of Ref. 1 and give a modified RPA prescrip-
tion that incorporates the effects of mass renormalization
and satisfies the f-sum rule. Finally, in Sec. V we give a
very brief summary of our work.

II. THE BASIC PROBLEM

A. The magnetic monopole

We begin by considering some of the features of a
spherical system with a magnetic monopole in its center.

0163-1829/94/50(3)/1807(16)/$06. 00 50 1807 1994 The American Physical Society



1808 STEVEN H. SIMON AND BERTRAND I. HALPERIN 50

Since we want the magnetic field to be given by the curl
of a vector potential, and the divergence of a curl is zero,
a monopole must correspond to a vector potential that
has a singularity. Specifically, a one-dimensional "Dirac
string, " which is essentially an infinitely thin Bux tube
carrying magnetic fIux corresponding to the monopole's
magnetic charge into the monopole, stretches from the
monopole to spatial infinity. The singular string can
be moved, but not eliminated, by a gauge transforma-
tion. Formally, one should consider the vector potential
of the monopole in two different gauges simultaneously
such that the vector potential is well defined at each point
in space in at least one of the gauges. In this way the vec-
tor potential can be considered a well-defined connection
on a U(1) bundle rather than a singular function. Al-

though this formal mathematical construction eliminates
the singular Dirac string, it also complicates calculations.
We will thus work in a singular gauge being careful to re-
member —when necessary —that we are really working
with a more complicated mathematical object.

Another well-known property of the monopole system
is the Dirac quantization condition that tells us that the
strength of the magnetic monopole is quantized in units
of the magnetic Hux quantum Pp = 27I /e where —e is the
charge on an electron; and, here and elsewhere in this
paper, we have set h = c = 1.

We will work in a gauge where the vector potential
has no radial component. In spherical polar coordinates,
one simple gauge choice is the spherical analog of Landau
gauge where we choose the vector potential to point in the
polar direction (i.e. , in the P direction, directed around
the z axis):

A = PAy,

where

A~(8, P) = . (1 —cos 8).
S

(2)
e sin 61

This gauge places the singular Dirac string at the south
pole of the sphere (8 = x). Et is easy to check that
the magnetic field is given by B = V' x A = —,A at
all points 0 on the unit sphere except at the south pole
where the Dirac string cuts through the sphere. The
Dirac quantization condition then dictates that 2S is an
integer.

More generally, by rotating the above solution, we can
construct a gauge where the Dirac string is at an arbi-
trary point A' on the sphere. The vector potential A~
for such a gauge is given by

2S nxn'
( ) (3)

B. De6ning the system

We consider a monopole of magnetic charge 2S Aux

quanta at the center of a unit sphere with N electrons
of charge —e restricted to the surface of the sphere. The
points on the unit sphere are represented by unit vectors
A from the origin. The length scale of the system is
determined by the magnetic length/p ——(eB) ~ ~ ~ which

can be altered by changing the charge on the monopole.
The Hamiltonian for this system can be written as

0 =T+V, (4)

where the kinetic energy is given by

N

T = ) [p, +eA(n, )]',
2=1

where we will take the interaction to be a Coulombic 1/r
potential with r the chord distance, i.e. ,

where e is the dielectric constant of the medium (which
may be allowed to change as a function of the magnetic
length). The restriction of the system to a sphere is best
represented by rewriting

where

P, =nxp~ )

%=Ax A.

In terms of this "angular" vector potential, the radial
component of the magnetic field B is given by

A B=n (V'xA) = —V A.

The tangential component of the magnetic field does not
couple to our system of electrons confined to the sphere
and can therefore be ignored.

It is convenient to rewrite the kinetic and potential
energies in terms of the operator gt(n) that creates an
electron at the point A. In this second quantized nota-
tion, we have

T = dn@t(n) i%+ eA(n)i' )/), (n),
2mb

dn I A A I . A Al
2

where the colons represent normal ordering of the opera-
tors, and 7 is the canonical angular momentum operator

Q=nxp=nx —iV', (14)

and n, is the density given by

where p~ and A~ are the momentum and position of the
jth particle, A is the vector potential, and mb is the band
mass of the electron. The potential energy V is given by
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and the equation for the potential energy (13) remains
unchanged. On the other hand, in terms of the quasipar-
ticle operators, the kinetic energy is now written as

C. Chem-Simons transformation

T = dA 1Pt(0) ~P + eA(0) —a(0)
~ @(0),

2m/

(20)

where

a(0) = 0 x a(0),
a(A) = tt J dA'g(A, A'}a.(A'), (22)

0x0' 0xS
~0-0~2+ ~0-S~~ ' 16

and a is the Chem-Simons vector potential.

As described originally by Lopez and Fradkin, a sin-
gular gauge transformation can be used to convert the
electrons into composite fermions —electrons bound to
an even number P = 2m of Chem-Simons flux quanta,
where m is an integer. Such a transformation provides
a natural way of understanding many of the features of
the fractional quantized Hall effect. ' To make such a
transformation, we define a vector valued Green's func-
tion on the sphere [see Eq. (3)] for two unit vectors 0
and 0' which correspond to points on the sphere

where S is the unit vector pointing toward the south
pole, and the point 0 = 0' should be excluded from
the Green's function. The function I is the vector po-
tential associated with an infinitely thin magnetic Hux
tube carrying a single magnetic flux entering the sphere
at the south pole, and leaving the sphere at the point 0'.
Note that just as in the case of the magnetic monopole,
we cannot write a vector potential that represents a flux
quantum entering the sphere but not leaving the sphere
somewhere else. As in the case of the monopole, we have
chosen the Dirac string to leave the sphere through the
south pole. As we will see below, the Dirac string through
the south pole is an artifact of the gauge choice and can
essentially be ignored, whereas the flux quanta elsewhere
through the sphere will have important physical effects.

Defining an auxiliary (singular and multivalued) func-
tion f(0, 0') such that

g (0, 0') = V ri f(0,0'), (17)

~te

which creates an electron bound to P inward directed
Chem-Simons flux quanta at the point 0, as well as cre-
ating a Dirac string carrying the same Hux out the south
pole. Although the function f is multivalued, the expo-
nential in Eq. (18) is well defined and single valued since

n, (0') is a sum of b functions, and e '~~ is single val-
ued. As in the case of the simple magnetic monopole, the
string carrying flux quanta out of the south pole is an ar-
tifact of our gauge choice and has no physical effects as
long as the net flux through the string satisfies the Dirac
quantization condition. One should note, however, that
although the flux entering the sphere at the position of
the quasiparticle looks very similar to the Dirac string,
its position is a dynamical variable. We find that, un-
like the Dirac string, these flux quanta do in fact have
physical effects.

Since the density of electrons is equal to the density of
quasiparticles, the density operator is given by

we use the function f (which we will never actually need
to evaluate) to define the quasiparticle creation operator

a

1/ t(A) ttt(A) exp —ttt / dA'f (A, A')e.,(A'), (18)

D. Mean-Seld theory

26S = 2S —2m(N —1) (23)

Hux quanta. Within mean-field theory, the associated
magnetic field is considered to be constant and uniform.
The effective Hamiltonian for this mean-field system is
then given by

Hp —— dA Qt(0) ~P + eEA(0)
~ Q(0), (24)

2m/

where b,A is the angular vector potential associated
with the magnetic monopole charge of 26S quanta [see
Eqs. (3), (10), and (23)], and we have clearly neglected
the Coulomb interaction. This is simply the Hamilto-
nian for a system of noninteracting quasiparticles on the
unit sphere in the field of a monopole of charge 2b, S Hux
quanta. Such a problem has been solved previously
and the eigenstates for such a system are given by the
monopole spherical harmonics Y& of Wu and Yang,
where l takes on the values AS, AS + 1, AS + 2, . . . ,
and m takes on the values —l, —l+ 1, . . . , l —1, l. The
energies of these eigenstates are given by

Adi = E(l) = [l(l+1) —(ES) ]
1

2m/

and thus the degeneracies are given by

Degeneracy(l) = 2l + 1.

(25)

(26)

We begin our analysis by considering a simple mean-
field approach. The total magnetic Hux through the
sphere afFecting a quasiparticle is an integer number 2S
of quanta from the monopole charge minus P(N —1) =
2m(N —1) Chem-Simons Hux quanta bound to the other
quasiparticles. (The quasiparticle is not affected by
the Hux bound to itself. ) As discussed above, the Hux
through the Dirac string is static, and therefore should
have no physical effects. Thus the Hux through the string
is not "seen" by the quasiparticle. We conclude that a
given quasiparticle is affected by a total field correspond-
ing to a monopole charge of

,(0) = 1$t(0)1$,(0) = yt(0)y(0), (19) These l states should be thought of as analogous to
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the usual Landau levels on a plane. We expect that
when the number of electrons (and thus the number of
quasiparticles) is such that an integer number of these
quasiparticle Landau levels are filled, we will have an
integer quantized Hall state for the quasiparticles, and
hence a stable &actional quantized Hall state for the
original electron system. ' This condition occurs for
X = 26S + 1, 46S + 4, . . . . The general formula is
given by

where r is the radial vector of magnitude r and direction
(unit vector) r. Note that the vector Ts is radial, whereas

Tq and T2 are tangential to the sphere. Thus we will be
able to completely decouple the T3 direction &om our
problem.

This T basis is orthonormal and complete on the space
of vector valued functions on the surface of a sphere.
That is to say,

N =2pdS+p2, (27)
dn [T,i (A)]* [T,g„(n)] = b;, bibb (34)

where p is a positive integer. Substituting in the defini-
tion (23) of AS, we find full quasiparticle Landau levels

and hence stable quantized Hall states when

and given a vector valued function f(n), we have

f(n) = ) f;i T;i (A),

N = 2p[S —m(N —1)] + p'. (28) wh

For an infinitely large system (the S m oo limit) this
equation predicts quantized Hall states at the Jain filling
fractions

N p
2S 2mp+ 1

' (29)

2S(N, m, p) = [v(m, p)] N —(2m + p). (3O)

The deviation (2m+ p) from the infinite system filling

&action is a Bnite-size effect which has been called the
"shift" of the state. The shifts predicted by this mean-
field composite fermion model are in accordance with
those predicted by Haldane's formula for the hierarchy
of stable states on the sphere and also agree with
Jain's composite fermion results on the sphere.

which, along with their quasiparticle-quasihole conju-
gates, include all of the experimentally well-established
&actional quantized Hall states within the first Landau
level. On the finite spherical system, however, Eq. (28)
predicts that the quantized Hall states occur when

f !=f'~~)T'r )&))' &(&) (36)

Toi (A) =&i (A)e (37)

which, combined with the other three T basis vectors,
form an orthonormal and complete basis set for func-

tions on the surface of the sphere with values in four-
dimensional space. We will use the Greek indices p and
v exclusively for such four-vectors, while the Latin indices

i, j, . . . will be used for the indices of a three-vector.

B. Definition of the response function

Sometimes we will find it more convenient to work with
"four-vectors. " To this end, we define a unit vector e
which is orthogonal to all three elements of the usual
three-dimensional Cartesian basis (e,e„,e, ), where the
metric is always taken to be Euclidean. Any four-vector
can then be expressed in terms of the Cartesian basis and
the unit vector e . In order to represent four-vector val-

ued functions on the sphere, we define a 0th component
of the T basis as

III. THE RESPONSE FUNCTION

A. Spherical basis

We are concerned with finding the response of our sys-
tem to electromagnetic perturbations. The angular cur-
rent operator is defined by

In order to exploit the rotational symmetry of this sys-

tem, we will want to work in a basis that transforms in a
simple way under rotation. Specifically, we will expand
functions in angular momentum eigenstates. For scalar
functions this can be done using the usual spherical
harmonics Yj . However, for vector valued functions, we

will have to use a more complicated vector function basis.
Furthermore, since our system is restricted to the surface
of a sphere, we will want to work with a basis that nat-
urally decouples the radial degree of &eedom. We define
a vector function basis as

1 bH' (n) =, bA(n)
gt(n) 'P+ eA Q. (n) . (38)

mQ

Sometimes we will leave out the superscript A when it
is clear what the vector potential is in the system. Note
that there is no radial component of the angular current.
We would like to think of the fluctuation in the density as
the 0th element of this vector, thus forming a four-vector.
We define (with A a dummy index here)

r,"(n) = n, (n) —n, = yt(n)y. (n) —n. ,

Tslm =

T2Lm—

VYi

Ql(l y 1)
—rx VYj

, l&1
gl(l + 1)

(31)

(32)

where

Ae a4'
T3)m ——rYjm, l &0 Similarly, we would like to think of the scalar potential
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—4 as the 0th element of the (angular) vector potential
[see Eq. (10)]

(41)

(r."(n, t)) =ef dt'f dn K '4( n, ;tn', t')

xAp" (0', t'), (42)

where the indices a and P can take on the value 0 (corre-
sponding to the density and the scalar potential) or 1, 2, 3

If we now subject the system to an external time de-
pendent electromagnetic perturbation Ae the resulting
linear response in the angular current and density can be
given in terms of a response function K )s(A, t; A', t') by
the equation

r„", (.) = fdte' f dn]T„r (A)]*.r'(n), (43)

A„r (re) = f dte' f dn]T„r (n)]' A* (n), (44)

where T, I', and A are considered four-vectors in these
equations. Note that I's ——As ——0, since I' and A are
tangential vectors and T3 is radial. Similarly, we can
define

corresponding to the vector components of the current or
vector potential for some orthonormal vector basis. Note
that here A is the sum of the background vector potential
from the monopole and the perturbation A„» .

We now use our T vector function basis to expand the
quantities in this equation:

K„r,„r, , (re) = f d(t —t')e' t tf dn f'dn']T„r (n)]* Kt rrt(A, A', t —t') ]T„r (n')],

The advantage of having made this transformation is that
the spherical symmetry of the system is now re6ected in
the simplifying relationship (proven in Appendix A)

K„),„( (~) = bn h K„„(1,, (d) (47)

where the first dot product is with respect to the n index
of K and the second dot product is with respect to the
P index of K. In this equation we have explicitly used
the time translational invariance of the response function
(i.e., that K is a function of t —t' only). In terms of
these transformed quantities, the response equation (42)
is written in the simple form

(I'~ ((u)) = e ) K„(,„) ((u)Ae», ((u). (46)
v, l', m'

~ext ~A eZ &A, A ext

+,
'

n. (n)A'"t(n) . A'"t(n), (4S)

~(& + ~'"')
e bA(A)

where the dot product in the first term (the paramag-
netic term) is a four-vector dot product whereas the dot
product in the second term (the diamagnetic term) is
a three-vector dot product. One must now include the
contribution of the perturbation Hamiltonian in the full
physical current:

for m = —l, —I, +1, . . . , l —1, /. In Appendix B we
use gauge invariance and current conservation to derive
further restrictions on the form of the response function
K„„(l,u)).

C. Bare mean-field response

As a starting point, we will need to calculate the "bare"
electromagnetic response function K„„for the mean-field
system defined by the Hamiltonian Hp given in Eq. (24).
This is simply the problem of finding the response func-
tion for a system of N noninteracting quasiparticles of
charge —e on a unit sphere around a monopole of charge
2b, S which creates a vector potential AA such that an
integer number of quasiparticle Landau levels are filled.
If we add an external perturbing (angular) vector poten-
tial A, the perturbation Hamiltonian is given by

(49)

Using standard linear response theory, we now have

t
(r'"(n, t))„,„.„=(r "(n, t))„—t dt'fdn'

x r."A, t, H,' ' 50

In the unperturbed state, there is no current, so the first
term on the right hand side of this equation vanishes.
Furthermore, since we are working to linear order, the
commutator of the diamagnetic term of the perturbation
Hamiltonian is neglected. Thus we rewrite this equation
as

(
r~"+~-'(n, t)) = '"

]t —4..]w:*'(n, t)
mQ

t
—ie dt' dA' I A, t, F A', t' . A', t'



1812 STEVEN H. SIMON AND BERTRAND I. HALPERIN 50

where we have used Eq. (49) to obtain the first term on the right hand side. Thus the response function is written as
the sum of diamagnetic and paramagnetic parts as

K'~(n, t; n', t') = 'b(n —n')b(t —t') [1 —hz, ]b &+ D'~(n, t; n', t'),
mb

(53)

where the superscript 0 indicates that it is a mean-Beld quantity, any diamagnetic current in the radial direction is

projected out, and the paramagnetic piece is just the retarded current correlation function given by

D.'~(n, t;n', t') = —io(t t')—( rn"(n, t), rg"(n', t') )

In terms of angular momentum and frequency components, we have

CA@
lm;vltmt (~) = D lm vltmt ( ) + dtv n' mm'[ dtO]

mb
(55)

where

lt t t( )e= .f d(t —t') f dA f dA'e' t '
[ tTet(A)]' tt( d)(A, A', t —t') [T„e (A')], (56)

where the Brst dot product is with respect to o, and the
second dot product is with respect to P, and all the vec-

tors are four-vectors. Once again, we expect that the
spherical symmetry (see Appendix A) will allow us to
write the retarded correlation function as

b'"(n, t) = (--„=-') 27rp (I'()(n, t)) n
= ( „- )2~/ [(n.(n, t)) —n, ] n,

e' (n, t) = (
—=') 27ry (r(n, t))

(62)

(63)

D„,m v, m (Otd) t= .hnthmmtD„v(lt(u) (57)

so that the bare response function may be written as

Ko (l, (u) = D„„(l,(d) + 'b„„[1—b„()] .
mb

The actual calculation of the retarded correlation func-
tion D is relegated to Appendix C.

where (I'o) and (r) are the induced density fluctuation
and angular current calculated self-consistently in the
RPA. The factor of N is introduced here to correct
for the fact that the quasiparticle is not affected by its
own Beld. This factor disappears in the limit of N ~ oo,
but is clearly necessary if we wish to recover the correct
response function for a single electron when N = 1. Sim-

ilarly, the induced Coulomb potential is taken to be that
arising from a charge density

IV. THE RPA

hn', "(n, t) = (-„= ) (r, (n, t))
= ("„=)[(n.(A, t)) —n. ] (64)

A. Self-consistent RPA

The RPA on a plane can be defined by saying that the
quasiparticles respond via the bare response function K
to an effective scalar and vector potential A„given by

~efF ~ext + ~in
P P p

where A'„ is an induced vector potential which includes a
contribution from a self-consistently calculated Coulomb
potential due to the induced variation of the electron
density and a contribution arising from the self-consistent
Chem-Simons magnetic and electric fields given by

so that an induced electric Beld E' can be defined whose
three-dimensional divergence satisfies

4~eV' E' (r) = hn', (r/~r~) b(~r~ —1). (65)

where

eA'„, = ( —=--'-) ) U„„(l)(r ( )
V

(66)

The required induced Chem-Simons Belds and
Coulomb potential can be obtained on the sphere from

an induced angular vector potential A' = n x A'n and
scalar potential +~ = Aio whose angular momentum
components are given by

b' (r, t) = 2~/[(n. (n, t)) —n.]i, (60)
U„v(l) = v(l)b„ohvo+ iv(l) [h„ibvo+ hvihvo] (67)

and the coe%cients v and m are given by

e'"(r, t) = 2mgi x (J), (61)

where (n, ) and (3) are the density and current calculated
self-consistently in the RPA. For the present case of %
electrons on a sphere, we write the analogous expressions

e~ 4'

2m
v) l

gl(l + 1)

(68)

(69)
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To derive Eqs. (66) and (67) we calculate the scalar
potential and angular vector potential created by the
N quasiparticles (charge —e particles attached to P flux

quanta) when their density and current is given by (I'„).
These potentials are then multiplied by the above men-
tioned factor of ~ to account for the fact that a quasi-
particle is not affected by its own Geld. With this pre-
scription, the Coulomb contribution to the scalar poten-
tial from induced charge Buctuation is given by

'Av" (n)C*vl*mb ("; ) f dn' v(n, n')(r, (n')),

(vo)

and then differentiating to find

V'A'~ ——A'~ = E' +
ot

(77)

A (V'xA' ) =b' (vs)

These equalities are demonstrated explicitly in Appendix
F.

Once we have derived Eqs. (66) and (67) we can make
the RPA approximation that the quasiparticles respond
via the bare response to the effective angular vector and
scalar potential

whereas the scalar potential &om the motion of the
Chem-Simons flux quanta is given by

{I'„i ) = e) K„„(l)A, (vg)

Av (n)ct -s' o = ( „-') f dn'W(n, n') (r(n'))

(71)

so that

o (A) Ao (A)Coulomb + Ao (A)Chem-Simous ( )

and the angular vector potential &om the Chem-Simons
Qux quanta is given by

~'.(n) =(-„- )d f dn w(n, n)(r, (n)), (7s)

where the effective angular vector and scalar potential is
given by the sum of external and induced contributions

Aeff Aext + Ain
P P (80)

On the other hand, the full response is defined via

{I'„i ) = e) K„„(l)A„", (81)

Using Eq. (66) and eliminating (I') we solve to find the
RPA result

where K(l) = K (l) 1 —("„-')U(l)K (l) (82)

A x (A x A')

[A —A'f2 (74)

A'"=A' =) A', T
lm

A' = —AxA' =) A',.i (—Ax T,i ),
ilm

(v5)

(76)

is the flux quanta Green's function [see Eq. (16)]. Finally,
we use Eqs. (E3) and (E14) to evaluate the angular mo-
mentum components of v and W, and thus establish the
given forin [Eqs. (66) and (67)] of the induced vector po-
tential.

We can verify that this prescription [described by
Eq. (66)] does in fact correspond to the induced Chern-
Simons electric and magnetic fields given by Eqs. (62)
and (63) as well as the induced Coulombic electric field
described by Eq. (65) by reconstructing the induced vec-
tor potential

where all of these quantities are 3x3 matrices (p, v =
0, 1,2).

Although this self-consistent calculation has been per-
formed in terms of the response function K and the full
physical current F it is also possible to perform a self-
consistent calculation in terms of the retarded correlation
function D and the mean-field current I' +. The result of
such an approximation must then be corrected to account
for the Quctuations in the diamagnetic current. However,
once this correction has been properly taken into account
to Gnd the response K, the end result will be exactly the
same as the RPA equation we have given here.

At this point we note that there are restrictions on the
response function from gauge invariance [Eq. (Bv)] and
current conservation [Eq. (B15)] derived in Appendix B.
With these restrictions, along with the manifest symme-
tries of the response matrix, there are only three inde-
pendent entries in the 3x3 response matrix, and we can
write

K(l, (d) =
( Kpp(l, (d) Koi(l, (d)) Kpp(l, (dd) )

Kpi(l, nd) Kii(l, (d) * Koi(l, (u)l(i+ 1)

Koo(l, nd) +
' Koi(l, ~) i(i+i) Koo(l, (d) )

(s3)
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( )
( Kpp(l, (u) Kpi(l, ~) )
( Koi(l, u)) Kii(l, (u) )

(84)

Furthermore, the Hermitian interaction matrix U, con-
sidered as a 3x 3 matrix, only has entries in the
(0,0), (0,1), and (1,0) places. If we choose the gauge
of our external magnetic field so that Az&

——0, we can
eliminate redundancies and reduce the RPA to a 2x2
matrix equation. In this gauge, the RPA equation (82)
remains the same, but now the matrices are 2x2 and are
given by

In terms of angular momentum and frequency compo-
nents (in our chosen gauge) we can easily derive

E2( = —Ap( Ql(l + 1),
(93)

(94)

which is then used, along with the gauge invariance (B7)
and current conservation (B14), to derive the form of the
conversion equation (89).

Similarly, we can define a bare quasiparticle conduc-
tivity o which in the RPA we approximate as

and
o. =iTK T*. (95)

where

U(l) = V(l) + W(l),

V(l) =
] 0 0 (86)

It should be noted that these definitions of the conductiv-
ity in some sense do not give the proper v ~ 0 limit. '

However, we will not be concerned with this limit in the
present paper, and we expect that over the range of &e-

quencies where we expect the RPA to be a good approx-
imation, these definitions are appropriate.

In terms of these conductivities the RPA equation is
written as

K '(t, (u) = II (l, (u) —(-"„-'-)V(t,(u) (88)

In other words, II is the sum of all diagrams that are
irreducible with respect to the Coulomb interaction.

We now can define the 2x2 conductivity matrix o as

o =iTIIT*, (89)

where T is the conversion matrix

T=e (90)

This conductivity matrix has been constructed to satisfy
Ohm's law

,
( I „

ilm ) 4 ~llm
(91)

where 8';~ are the angular momentum components in
the T basis of the angular electric field 8 which is given
in terms of the true electric field E as

It is sometimes convenient to think in terms of the
conductivity rather than the electromagnetic response.
The conductivity o is defined as the response to the to-
tal electromagnetic field A„t whereas the electromag-
netic response K is the response to the external elec-
tromagnetic field Ae~&t . The magnetic field generated
by the quantum Hall system is small, so there is essen-

tially no difference between Ai and A& . On the other

hand, the scalar potentials Aoi and Aeextt differ by the
Coulomb potential v(l)I'ot generated by density fiuctu-
ations. Thus we define a 2x2 matrix II(t, u) which is
more closely related to the conductivity to be the elec-
tromagnetic response without the Coulomb contribution:

K = iT'pT —(~N')V,
p= p+pcs )

(96)

(»)

a- = &P' ']*IV[& '] =, ("~') (98)

where
—1p=o'

p=o
(99)

(100)

B. Mass renormalization: Modified RPA

or

Q2 e2

m lo ~l
OC (101)

E = |"m*
e2lp

As pointed out in previous work, ' within the RPA
theory considered thus far, the quasiparticle effective
mass m* is just the bare band mass mb. In this theory,
we perturb around the reference Hamiltonian (24) that
describes quasiparticles with the bare band mass mb. We
expect, however, that interactions may renormalize the
quasiparticle mass significantly. In the limit where the
Coulomb interaction is turned off, all of the states in a
Landau level become degenerate, and the effective mass
diverges. In order to estimate the importance of the mass
renormalization when the Coulomb interaction is turned
back on, we follow Halperin, Lee, and Read and make
a crude estimate for the value of the effective mass. If
we assume that the characteristic Coulomb interaction
energy (e /elo) is small compared to the characteristic
energy spacing between Landau levels (hey ), then level

mixing can be neglected and all energies of interaction
should scale as e2/elo. Thus, if a finite effective mass m'
exists, we should have

E = A x K. (92)
(102)
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for some proportionality constant | where we have set
1 again. The estimate C —0.3 has been made

by Halperin, Lee, and Read by examining results &om
exact diagonalization of small systems. Using the experi-
mentally relevant dielectric constant e = 12.6 appropriate
for GaAs, a magnetic field B=10T, and a filling fraction
v = 2, this estimate yields

m* = 4mb. (103)

Using a self-consistent analysis of a selected set
of diagrams for the self-energy of the transformed
fermions which describes the interaction with long wave-

length Buctuations in the Chem-Simons vector potential,
Halperin, Lee, and Read2 conclude that for the case of the
Coulomb interaction between the electrons, the efFective
mass m* should actually exhibit a logarithmic divergence
for energies near the Fermi energy, and for p —i oo (i.e. ,
for v —i 2). The coefficient in f'ront of the logarithm
obtained by Ref. 2 is relatively small, however, and the
resulting values of the effective mass, in practice, will not
be very different from those given by Eq. (102).

The important thing to note here is that the effective
mass can be renormalized considerably. Therefore our
RPA procedure of expanding around a Hamiltonian that
describes particles of mass mb is likely to be a poor ap-
proximation. As noted in Ref. 1, if one simply inserts the
effective mass m' in place of the band mass mb in the ref-
erence Hamiltonian (24), one obtains a "naive response"
function that should reasonably represent the low energy
excitations of the systemi but which violates the f-sum
rule. In this section we will follow Ref. 1 and propose a
modified RPA, generalized to the sphere, that reasonably
represents the low energy excitations while satisfying the
f-sum rule.

As described in Ref. 1, the f-sum rule requires that
the high &equency response of our system must be de-
termined by the bare band mass mb and not the effec-
tive mass m*. More specifically, in the high frequency
limit, the response of N interacting electrons on a sphere
around a monopole of charge 2S fIux quanta must be the
same as the response of a system of N noninteracting
electrons on the same sphere. In terms of the resistivity
matrix p, this limit is given as

mb —ice
p se n naq

—s
mg—Z(d

(104)

which can be verified by numerically examining the result
obtained in Appendix C where we derive the response for
a system of noninteracting electrons (In the Appendix,
the total field is called 2AS. ) Since at high frequency
the particles essentially oscillate in place, it is not sur-
prising that this high &equency limit yields exactly the
same high &equency resistivity as the analogous planar
system.

Now, in our Chem-Simons approach, we actually begin
by calculating the response of a system of quaisiparticles
in the effective field of a monopole of charge 2AS Aux
quanta. In the RPA, the high &equency limit of the
quasiparticle resistance is given by

mb —iu
p 2 ase n~

—AS
(105)

as required by the f-sum rule for the effective quasiparti-
cle system. This is then converted into a total resistance
using Eq. (97) to yield

mb
p e2n,

—AS
(106)

which can be shown to be equivalent to Eq. (104) by
using relation (23) to relate S to 6S. More generally,
we see that our original electron system will satisfy the
f-sum rule with respect to the monopole charge S, (104),
if and only if the quasiparticle system satisfies the f-sum
rule with respect to the effective monopole charge AS,
(105).

As we mentioned above, we know that the quasiparti-
cle mass is renormalized to some new effective mass m'.
In the naive approach we simply replace the band mass
mb by the effective quasiparticle mass m' everywhere it
occurs in the calculation of p, which amounts to sim-

ply replacing the band mass by the effective mass in the
Haxniltonian (24). The result of such a substitution is
what we will call the naive quasiparticle resistivity ten-
sor

m*
p e2n,

—X(d
AS

—AS
m'
—lb'

(107)

i(u(m' —ms)p= p" + 1.
n~e

(108)

If we assume that the same prescription works on the
sphere, we find that the resulting resistivity satisfies the
f-sum rule as desired. One can in fact formally derive
this result on a sphere, following the exact same proce-
dure as given in Ref. 1. The validity of such an approach
for small systems is, however, questionable. Instead, we
simply take Eq. (108) as a motivated ansatz for modi-
fying our naive results such that they satisfy the f-sum
rule and give the correct energy scale for low energy ex-
citations. In addition, this approach clearly agrees with
Ref. 1 in the limit where the sphere is taken to be large.

The complete prescription for the modified RPA for
quantized Hall states on a sphere is to calculate the un-
perturbed response function for the quasiparticle system
Ko for quasiparticles of mass m* as described in Eqs. (58)
and (C31) where all occurrences of the band mass m~ are
replaced with the efFective mass m*, then convert to the
naive resistivity p" using Eqs. (95) and (100), and then
add the off diagonal Chem-Simons term and the diagonal

which clearly violates the f-sum rule. In order to repair
this naive approximation, we will simply adopt the result
of the Landau-Fermi-liquid theoryis approach developed
in Ref. 1. In that paper, an analogous theory is developed
in detail for a planar geometry. It is found that Fermi-
liquid theory can be used to self-consistently account for
an arbitrary quasiparticle mass renormalization. The full
resistivity is then given in terms of the naive resistivity
and the mass renormalization as
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mass renormalization term to yield the total resistivity

i~(ms —m') 1 0 2vrg „0—101+,. (-) 1o
(109)

which can be converted back to a response function using
Eq. (96).

V. SUMMARY

In this paper we have used the fermion Chem-Simons
approach to model a fractional quantized Hall state on a
sphere as an integer quantized Hall state of transformed
fermions interacting with a Chem-Simons field. Linear
response theory is used to find the bare mean-field re-
sponse function. We then use the RPA to account for
fiuctuations in the Chem-Simons field as well as the di-
rect Coulomb interaction. The RPA result, however,
cannot properly account for the eHects of mass renor-
malization. Using results derived in Ref. 1 we propose
a "modified RPA" prescription that more appropriately
accounts for these mass renormalization effects. A quan-
titative comparison between the response functions de-
rived in this paper and response functions given by exact
numerical diagonalizations will be made in a following

I

paper. We remark that the modified RPA can also be
used to describe excitations of a &actional quantum Hall
state of bosoms on a sphere at v = p/(4)p+ 1), if we simply
choose P to be an odd integer.
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APPENDIX A: ROTATIONAL INVARIANCE
IN THE SPHERICAL BASIS

Given a function K p(n, n') (such as our response
function) that is rotationally invariant, for any rotation
R around the origin of our three-dimensional space, we
have

K(~ p)(n n)' t)—t') = K ~ ~ (Rn)RA' t —)t') ) (Al)

where the R applied to the a and P indices rotates the
three-vector valued part of the K function. We now
transform into the T basis

or equivalently

K&ImvI'm, ' = dO dO T&lm 0 *
K(~ p) 0,0, t —t Tv&'ml 0

dA dA T~)m 0 ' K(~~ ~p) RO, RA, t —t Tv)'m'

(A2)

Kp)~;v)(~i —— dO dO' R T„im R 0 '
K(~ p) A, A', t —t' R T I,

i R 0' (A4)

where we have used the fact that the measure dA is in-

variant under rotation. Now, since the basis vectors T,i

are spherical tensors of rank 1, under an arbitrary ro-
tation R, we have the rotation law

which immediately gives us

K()l)));vl')))' = bll' b rK)))p))v(i) ~ (A8)

RT)(m(Rn) = ) D (R)T)(n (A5)

APPENDIX B: GAUGE INVARIANCE
AND CURRENT CONSERVATION

where D is the rotation matrix as defined in Ref. 14. This
then results in the identity

The response of the system must be invariant under a
gauge transformation of the perturbing electromagnetic
field. Given an arbitrary function y(n, t), a gauge trans-
formation is given by

K„(~v( ~ = ) [D„. (R)]'[D„', , (R)]K„(„,„(„), (A6)

A

x
Bt

:A+ V'y.

(Bl)

(82)
which must be true for all rotations R. Thus we can inte-
grate over all possible rotations and use the orthogonality
relation

If we expand y into its frequency and angular momentum
components

K2
dR [D„' (R)]'[D„', , (R)] = b(( b b ~, (A7) g(n, t) = — d~e ' ') Yi (n)x( (~)

27r
lm
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and use the definitions of A [Eqs. (10) and (41)] as well

as Eq. (44) and the definitions of the basis T [Eqs. (31)
and (32)] we find that the gauge transformation results in
a transformation of the angular vector potential A given

by

i~r„(~) —g&(t+1)r„(~)= o

and hence

i(uKp (l, (u) —gl(l + 1)K2~(l, td) = 0.

(B14)

(B1s)

Api

Ail rn

: Ap) —
usque ((u),

A~1lrn

A,&,A, &
—gt(l+1)y~ (~).

(B4)
(as)
(B6)

APPENDIX C:
THE RETARDED CORRELATION FUNCTION

iaK&p(l (d) + gl(l + 1)K&2(t a) = 0.

On the other hand, current conservation demands that

V J+ "'=0,
t

(as)

Since the current I'„must be unchanged under this arbi-
trary gauge transformation, we have from Eqs. (46) and

(47)

Here we calculate the retarded correlation function for
a system of N noninteracting quasiparticles of mass ms
on a sphere around a monopole of magnetic charge 26S
flux quanta. It should be noted that in the calculation of
the naive response o" = [p"] i, we must replace mg by
m' everywhere in this calculation. Since the eigenstates
of this system are given by the monopole spherical har-
monics of Wu and Yang' (see Sec. IID) we can expand
the quasiparticle operator in this set of eigenstates

where the current J is given by 4'(n, t) = ).[1 '(n)l'" (t), (C1)

J = —n x r = @t(n) [
—iv'+ eA]g, (n).1

mQ
(B9)

v (n. r)-',"=o. (B10)

Recalling that I'0 is just the fluctuation in density, the
current conservation equation becomes

1 'P+ ebA
mQ

(C2)

where c&~ creates a quasiparticle in the l, m state, and
the sum is over all quasiparticle eigenstates. We also
define

We can rewrite this in terms of the angular momentum
and frequency components

such that

r~"(n) = yt(n)rn"y(n). (C3)

i(arrp) ((u) + ) V' (n x T ) )I' ) ((u) = 0, (Bll) In addition, we define

where the index j is summed over the values 1 and 2.
Using the definition of the T basis [Eqs. (31) and (32)]
we can derive

—gl(t + 1)' Tzl~ = lm, )

V' T2l ——0,
(a12)

(B13)

which then can be used with the current conservation
equation (Bl1) to yield

(C4)

for this calculation which yields

rn" = yt(n)y(n) = n. (n), (Cs)

which differs &om the proper definition (39) by a con-
stant. This difference can be neglected here since the
cominutator [Eq. 54] of a constant with anything is zero.

With these definitions, we can now write the retarded
correlation function (S4) as

D &(n, t;n, t ) = —i8(t —t') ) [~(as).(n)r&Ay(as'(n)y(as)*(n, )rn&+ ns)(n,
)

s'es
rsvp sI I

x (E'[c~ (t)c,(t)ct,„,(t')c, , (t') ~y')

-I;( 'l'(n')r~ "I;(.'i(n')I'„'..."'(n)ra"V,(..."(n)(Z[c~ (t')...t,t, , t,, . t F

(C6)

where E represents the full Fermi sea (i.e., the ground state of quasiparticles filled up to the Fermi level). The matrix
element is clearly zero unless (pr) = (q's') are states below the Fermi level, and (qs) = (p'r') are states above the



1818 STEVEN H. SIMON AND BERTRAND I. HALPERIN SO

Fermi level. Thus we have

below above
D p(n, t; 0', t') = —io(t —t') ) ) [e*(' ' )( ) Y(Ps)*(g)l'~+Y(~s)(g) Y(»)*(g')f &&Y(&s)(gq)

p~ q~

') Y *(0')I'~ Y ) (0')Y( *(0)I' Y( ) (A)], (C7)

where we have also used the law for the time propagation of creation and annihilation operators. Transforming into
angular momentum and frequency components as defined in Eq. (56) now yields

below above
DO y q ~ ~ ~ ~ dqiqqq, ul'm'(pq q) M i „i (q p)

p, lm, vl'm' h J g g ~ +(~ + i0+) —(~v —~i ) (~ + i0+) + (Bdq —Bd„)
(C8)

where u„ is given by Eq. (25),

M„i~,ui ~ (p, q) = ) &~Im (p) & qq &)&u& ~ (p) "q qq s) ~

L = r x (p+ eAA) —rAS

= mbF + radial component.
-aA

(C13)

(C14)

and

(C9) This operator acts on the monopole spherical harmonic
(as)

Yq8 to give the monopole vector harmonics of Olsen,
Osland, and Wu:

Pq„, (p, , q, ) = f dB[T, (B)]" [Y, *(B)I'

x Y,(~s) (n)] (C10)

where the T and F are four-vectors. The evaluation of
the p = 0 element of this vector is quite simple using the
identity derived in Appendix D:

LY,', "(&)= V'q(q+ 1)Y,',."(&)

where the monopole vector harmonic is defined as

Y
& (0) = ) (llna~ jm)Y&~ )(A)e

(C15)

(C16)

Pqg (p, r, q, s) = f dBY,' (B)YI„ I'(B)Y,. I(B)

(C11)

(2l + 1)(2p+ 1)(2q+ 1)
4'

1),~as
~

p q
—m Ts )—

x
i 0 AS —ASp (C12)

where the large parentheses are signer 3j symbols.
Now in order to calculate the other elements ¹,we con-
sider the natural angular momentum operator for the
monopole system"'

1
equi —P (e + icy),

2
(C17)

eo = ez ) (C18)

where (e, e„,e, ) are the usual three-dimensional Carte-
sian basis vectors. In the case of DS = 0, Eq. (C16)
defines the usual ' spherical vector harmonics Y~~

Y.
&

in terms of the usual spherical harmonics Yj

y- {0)
I.n
Using the relation (C14) we now have

Here, the Clebsch-Gordan coefBcients are defined as in
Ref. 14, and the spherical tensor vector basis e is given
by

Y,'. "'(&)I' "Y,'. "(&)= [V'q(q+1)Y,'. "'(&)&,',."(&)+ V' ( +1)&,',."*(&)Y,'. "(&)]
+radial component, (C19)

where we have left-right symmetrized the operator. Since the unknown radial component cannot contribute to the
response of a system on the sphere, we can safely drop this piece [as long as we do not try to calculate a radial ()(d = 3)
response].
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We now note that the T functional vector basis can be written in terms of the usual spherical vector harmonics
as14

Tilm = +iA:Yl(l+k)rn
k

where i = 1,2, 3, the index k is summed over the values —1,0, 1, and

(C20)

/ 2 I+I
0 —i

( )j 22+2

2l+1

2l+1

(C21)

Now using this relation, the definition (C16) of the monopole vector harmonics, and the same identity (C12) derived
in Appendix D, then converting Clebsch-Gordan coefficients to 3j coefBcients, 13 14 we find that Eq. (C10) can be
rewritten for i = 1, 2 as

&a~(p2 r, q, 3) = ).&' j Qi, i+i,~(p2 r2 q, 3) 2

A:

where k is summed over the values —1,0, 1, and

1 (2t + l)(2j + 1)(2p + 1)(2q + 1) ' j' j p q l ( / p q 5

2m) 4x ~0 AS —bSy ~
—m rs—y~

V'p(p+ 1)(2p+ 1)(-1)'"""""'pj1
+ 22'2(2+ ~)(~2+ j)(-j)'"""''""' 1

q j 1

(C22)

(C23)

The curly brackets here denote Wigner 6j symbols, and we have used the orthogonality identity13

) j (III+I+ + + ) ( jI j2 l2 l„jI. j2 4, ( jI l2 j2 \ ( jI j2 j2
l~~(

jI j2 j2)
( ml ri2 ri3 j ( ri1 m2 r13 ) ( n1 n2 m3 j ( ml m2 m3 ) tl ~2 t3

Ag )AQ gas

(C24)

and the symmetry properties of the 3j symbols1 to derive Eq. (C23). We now note that each N„c ontains a Wigner
3j coefficient with indices r and 3 that are then summed over in Eq. (C9). Using the orthogonality relation13 14

p ql & l' p ql &ii&
-

(
—m rap q

——m ray 2&+—1
(C25)

we perform the sum in (C9) such that

and

M„i „i (p, q) = M„„(t,p, q)hii b

M, , (t, p q) =
4 ~~(»q)~.*(p q)

(2p+ 1)(2q+ 1)

(C26)

(C27)

where

l p q(pq)=j 0 as —xs ' (C28)

X(p, q) = ):C;.qi, i+.(p, q).
k

(C29)

Once again, k is summed over —1,0, 1, the matrix C is the conversion matrix from Eq. (C21), i takes on the values
1,2, and now
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Q&z( ql) = 422'+ 1
l 2 11q 2q l ( 1) 11q(q+1)(2q+1) 1 )

t p q

mb

+(—1)~ ~++ + 11q(q+ 1)(2q+ 1) . )
t q p

Finally, collecting our result, we have

(C30)

()
( )

. . M„„(t pq) M„„(t qp)
((u + i0+) —((vq —(v„) ((v + i0+) + ((uq —sr~)

(C31)

where the p sum is over states such that ~„ is less than or equal to the Fermi energy, and the q sum is over states
such that cuq is greater than the Fermi energy.

APPENDIX D: COUPLING OF THREE MONOPOLE HARMONICS

The monopole spherical harmonics Y& (8, $) of Wu and Yang~ can be written in terms of the rotation matrices
D', ($, 8, g) of ordinary quantum mechanics. ~4 The relation between the two is given by

Y( )(8 y)
2l+ 1 [D',—,(& 8 —&)]* .

Now, using the coupling relation for three rotation matrices

27r 1 2'

0 —1 0

(D2)

and the decomposition of the rotation matrix,

~l (y 8 q) iqt1nq'dg —
(8)

igm— .

we can easily derive the corresponding law for monopole harmonics

f
27r 1

dP dcos8Y& '
(8, $)Y&

' (8, $)Y&
' (8, $)

0 —1

(D3)

1

(2t) + 1)(2t2+1)(2ts+ 1) ' f l, l2 ts ) )' lg l2 ls ')

4' —mz —m2 —mz y ) qq q2 q3)

Finally, we use the relation

(D5)

where

1

f( = — dcos 8 P~ (cos 8) v([2 —2 cos 8] ' )
2 —1

(E2)

and the fact that Y&
—Y~ is just the usual spherical

harmonic to trivially derive Eq. (C12).
and P~ is the I.egendre polynomial. For the Coulomb
interaction v = 1/~A —A'~, for example, it is a well-known
result that

APPENDIX E: INTERACTION COEFFICIENTS
4 fCoulomb

2l+ S
(E3)

An arbitrary rotationally symmetric function v(~A-
A'~) on the unit sphere can be expanded in terms of
spherical harmonics as

In order to calculate the Chem-Simons interaction co-
efBcient, we begin by considering the function

v(A, A') = 4~ ) Y,
'

(A)Yi (A') f(,
I,m

(E1) —1n(~A —A'~ ) = 2m ) Y(* (A)Y(~(A') fi, (E4)
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where

1

fi = — dz Pi(z) [ln2+ ln(1 —z)].
2 —1

Wam;o)m = d0 d0'T, ) 0 'W 0 0 Yi

(E12)

x —1
lnz = lima+0 (E6)

to rewrite the integral as the following limit for I g 0:

Now, since Po is a constant, and the Legendre polyno-
mials form an orthogonal set, the first term vanishes
except when I = 0, which is a case with which we will
not be concerned. To evaluate this integral, we first
change the integration variable to —z, using the fact that
P~(—z) = (—1) P~(z). Next, we use the well-known iden-
tity

dA dA'T;&m A . T~I, Y&„A'
- Icn

gk(k + 1)
2'= —bi;8(( b

Ql(l + 1)

(E13)

(E14)

APPENDIX F: EFFECTIVE ELECTRIC
AND MAGNETIC FIELDS

(-1)' (1 + z)
fi = dzPi(z) lim

2 a-+0 Q
(E7)

Here we write the induced vector potential in terms
of its angular momentum components as described in
Eqs. (66), (75), and (76):

The second term is a constant with respect to z and, as
discussed above, integrates to zero except in the l = 0
term. The Grst term is an integral that can be found in
a standard table to yield

~o (0)co l b = ( ) ).Yi (0)U(t)roi
Lm

(F1)

2"' [r(~+1)]'
o ar(a + t + 2)r(o. + 1 —t)

(Es)
&o (0)ch- -s. o ~ =(" ')).Yi (0)~(t)ri~

lm

(F2)

The limit can now be taken by using the reBection prin-
ciple that I'(z)I'(1 —z) sin(mz) = 7r to give

1

l(l+1) . (E9)

for I P 0. Using this result along with Eq. (E4), we then
derive the useful identity

A' (0) = ("„')) T (0)io(l)r
lm

where here r„i represents the expectation (r„i ) and
we have used the definition of the T basis. We will now
establish that associated electric and magnetic fields are
those given by Eqs. (63), (62), and (65)

We calculate the Chem-Simons magnetic field

1—V'o 1n(iA —0'i2) =I 2 0 —0' b'"(0) = 0 [V' x A' (0)]
= ("„-')) iU(l)rp~ 0 [V' x T2~ (0)].

(F4)

(F5)

= 27r ) T;,~Yi (0')
l(t + 1)

(E1O)

where we have used Eq. (31) to take the gradient of the
spherical harmonic.

We are now interested in the angular momentum com-
ponents of the quantity

Ax(Ax A') (0' —0) 0
]0 —0']2 ]0 —0']2 2

Using a vector identity of the T basis this becomes

b'"(0) =( „- )) y
' r„

t(t + 1)

xgl(l+ 1)Y( (0)0
= ("„-')27rg (rp(0)) 0,

(F6)

(F7)

which agrees with Eq. (62). Similarly we can calculate
the Chem-Simons electric field

where we have used various simple vector identities to
obtain this form. Since the second term is purely radial,
it will only contribute to the T3 component which we
have already completely decoupled. Thus we can safely
drop this piece. So, converting into angular momentum
components yields, for i = 1,2, and l g 0,

= ("„-')) io(l) VYj (0)I'ii
lm

19—T2i (0)—roi
Bt (F9)

Using the definition (31) of the T basis and the current
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conservation equation (B14) this can be rewritten as (F12)

e"(n) = (-"=-')).&
Ql(l + 1)

x [Ti( (n)ri( + T2( (n)r2( j Ql(l + 1)

(FIO)

= ("„--'-)2z.g (r(n)) (F11)

in accordance with Eq. (63). Finally we have the Coulom-
bic electric 6eld

We cannot take the divergence of this expression directly
to verify Eq. (65) since there is some component of the
electric 6eld which is normal to the surface of the sphere
that is not included in (F12) (we do not care about
this component since it does not couple to our problem).
However, it is a trivial application of electrodynamics to
use Eqs. (El), (E3), and (70) to establish that this elec-
tric 6eld does indeed correspond to the charge density
(I'o) and thus satisfies Eq. (65).
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