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The truncation of the infinite hierarchy of equations of motion is discussed for optically excited
semiconductors. We derive a complete set of equations of motion, which are valid up to third order
in the excitation Beld amplitude. To illustrate the results the induced four-wave-mixing signals for
linearly polarized laser Belds are computed by numerically integrating the y semiconductor Bloch
equations. As the dominating nonlinearity a strong excitation-induced dephasing efFect is obtained
in the y regime.

I. INTRODUCTION

As a consequence of the continuum of states and the
Coulomb interaction between optically excited charge
carriers, the nonlinear optical response of semiconductors
exhibits characteristic differences from inhomogeneous
two-level systems. In the last few years, both theoreti-
cal and experimental work has revealed the importance of
many-body Coulomb interaction in semiconductor coher-
ent optics. Examples include the single-particle energy
renormalization, the approximate doubling of the Rabi
oscillation &equency, the exchange interaction enhanced
four-wave-mixing or photon-echo signals, excitation in-
duced dephasing effects, ' and polarization scattering
effects.

Theoretical descriptions of such coherently excited
semiconductors, however, always encounter an inher-
ent diKculty: in a derivation of coupled equations for
the relevant expectation values one always arrives at
the infinite hierarchy of equations of motion, known as
the Bogoliubov-Born-Green-Kirkwood- Yvon hierarchy.
The occurrence of this infinite hierarchy is a direct con-
sequence of the Coulomb interaction term in the system
Hamiltonian. To solve this problem, several approxima-
tion techniques have been developed, such as random-
phase-approximation (RPA), Hartree-Fock (HF) approx-
imation, and screened Hartree-Fock (SHF) approxima-
tion. In the HF method, the four-operator correlations
are factorized into products of "macroscopic" observ-
ables like optical polarization and carrier densities, and
higher order correlations are neglected. This approxi-
mation allows for the truncation of the infinite hierar-
chy of equations of motion into a closed and finite set
of equations. These truncated equations of two-operator
correlation functions are often referred to as the semicon-

ductor Bloch equations (SBE) because of their similarity
to the optical Bloch equations in atomic systems. They
can be written in the form of the atomic optical Bloch
equations but with renormalized transition energies and
Rabi frequencies. Numerical solutions of the semiconduc-
tor Bloch equations have explained successfully various
experimental observations in nonlinear spectroscopy of
semiconductors and semiconductor laser physics. 7

The HF truncation of equations of motion plays a cen-
tral role in the theory of many-body systems. This ap-
proach can be justified rigorously only in the limit of in-

finite plasma density, where the Coulomb interaction be-
comes negligible with respect to the kinetic energy of the
particles. The semiconductor Bloch equations based on
the Hartree-Fock factorization are likely to overestimate
the optical coherence of the system. At the HF level, they
do not contain incoherent effects such as carrier-carrier
scattering and polarization dephasing. The theoretical
approach to these many-particle correlations are either
based on regular perturbative methods or on Feynman
diagram techniques. Within the diagrammatic approach,
the treatment of the pure plasma case has been most suc-
cessful, for it can be treated in the so-called SHF approx-
imation (see, for example, Refs. 16 and 1—3). Its simplic-
ity and applicability to the nonequilibrium state allows a
straightforward implementation of correlation effects into
the semiconductor Bloch equations. This SHF approach,
which is based on the Keldysh Green's function tech-
nique, contains effects like the screening of the Coulomb
potential by a nonequilibrium electron-hole plasma, band

gap reduction, and exchange interaction induced renor-
malization of the effective Rabi &equency. In many appli-
cations, the scattering and dephasing rates are computed
ft. om the quantum Boltzmann equations and are inserted
in the screened SBE. This partially phenomenological
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method has been successfully used to describe a variety
of semiconductor experiments, such as hole burning in
inverted semiconductors and many others.

The extension of the SHF approximation into the low
carrier density regime requires a detailed understanding
of exciton-exciton scattering, biexciton formation, exci-
tonic screening, or a combination of all such effects. Al-
though the Keldysh diagram technique solves this prob-
lem, in general, it is not possible to give a strict estimate
for the error one makes summing up certain diagrams
and ignoring others. Most of the theoretical calculations
of the optical properties of weakly excited semiconduc-
tors are based on the semiconductor Bloch equations with
various screening models. These calculations provide sat-
isfactory agreement with a large number of experiments.
Nevertheless, some recent experiments in the low carrier
density regime show the limits of the SHF treatment.
A pronounced example of disagreement between the ex-
periments and the theory stems &om four-wave-mixing
(FWM) measurements in the low density region. io These
experiments are performed in strained GaAs samples or
in quantum wells. The excitation &equency is chosen in
the vicinity of the lowest exciton resonance, and, there-
fore, only the two topmost valence bands are excited. Ac-
cording to the SHF theory, the FWM signal induced by
two cross-linearly-polarized pulses would have the same
intensity (I~) as that induced by two copolarized pulses

(I~~), i.e. , I~~/I~ =1 under otherwise same experimen-
tal conditions. However, experimentally the ratio of
I~~/I~ is found to be of the order of 10 in some cases and
increases even further if the carrier density decreases.

In order to understand the difference between the the-
ory and experiments, we proposed a model based on
an extension of the SHF approximation in which the
Coulomb hole self-energy is expanded in terms of the car-
rier density and the exciton screening is modeled using a
single plasmon pole approximation. ' This partly phe-
nomenological theory explains the excitation dependence
of the polarization selection rules of FWM experiments,
showing that the inclusion of incoherent-scattering effects
into the SBE significantly affects the predictions for the
FWM signals.

A rigorous theoretical treatment of the many-body ef-
fects for carrier densities well below the Mott density is
not only desirable theoretically, but also necessary for the
explanation of experiments. Recently, Axt and Stahl
pointed out that it is possible to classify the nonlinear
optical response of semiconductors according to an ex-
pansion in powers of the applied light field. This ap-
proach, which is similar to the susceptibility y~ ~ expan-
sion in atomic systems, establishes a systematic trunca-
tion scheme up to arbitrary order in the field strength.
This method is especially useful when the carrier density
is low so that only the lowest nonlinear expansion terms,
the y& & terms, are needed in the calculations.

Within our model (i.e., no carrier-phonon or carrier-
impurity coupling) the validity of the ylsl expansion is
restricted to the case of off-resonant excitation where the
Rabi kequency is smaller than the normalized detuning,
or to the case of small area (= time-integrated E-field
amplitude) pulses. Concerning the applicability of the

approach in the long-time regime, a y~ & expansion with
n & 3 would extend the range of validity of this approach,
because, as we will show in the following, thermalization
processes due to carrier-carrier scattering can only be de-
scribed in such higher order expansions. These processes
are crucial for a correct description of the long-time be-
havior of the system. The absence of these thermaliza-
tion processes might be of less importance if an extended
model would be considered, such as thermalization due
to carrier-phonon interaction. Such models are, however,
beyond the scope of this paper.

Comparison of the y~ ~ treatment with the widely ap-
plied HF truncation approach yields an interesting in-
sight of the validity of the HF factorization in the low
density region. As shown by Axt and Stahl, the HF equa-
tions (the sexniconductor Bloch equations) are similar to
the equations of motion in third order in the external
electric field.

In this paper, we apply the y~ ~ analysis to compute
results for a four-wave-mixing con6guration in semicon-
ductors. The paper is organized as follows. In Sec. II,
we present the electron-hole Hamiltonian in an arbitrary
representation and derive the necessary equations of mo-
tion for further discussion. In Sec. III, we analyze the
factorization of the expectation values. Using the equa-
tions of motion, we establish the minimum order of mag-
nitude of the contribution resulting from particular ex-
pectation values of relevant operator products. This dis-
cussion shows that for y~ ~ properties only a finite num-
ber of operators is necessary, leading to a truncation of
the in6nite hierarchy of equations into a 6nite and closed
set of equations. In Sec. IV, we discuss the equations of
motion up to third order in the external field. The set of
equations obtained generalizes the semiconductor Bloch
equations. The exciton-carrier scattering introduces ex-
citation induced dephasing which strongly affects the y~ ~

properties of semiconductors. In Sec. V, we give the op-
tical polarization equation in the quasimomentum rep-
resentation and discuss its application to the two-beam
FWM induced by linearly-polarized pulses. For strained
GaAs bulk sample, the numerical solutions show that the
ratio of I~~/I~ could be up to 10 when the dephasing time
is suKciently long.

II. HAMILTONIAN AND EQUATIONS OF
MOTION

We use the multiband electron-hole Hamiltonian in an
arbitrary representation. The Hamiltonian is

0 = ) c(ai, a2)a (ai)a(a2) + — )
Qy, Qg, Q3 Q4

xV( ,ai,a2,as4)aa (ai)a (a2)a(as)a(a4)

+2 ).((P „-,. E)o'(ai)o'(a2)

In the standard basis, the index a contains both the
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band (includes the spin) and the momentum, a = (b, A:),
where the band index 6 denotes either the conduction
band or the valence band of interest, and k is the quasi-
momentum. However, the notation is completely inde-
pendent of the choice of the single-particle states, so
that any other basis set can be used as well. s(ai, n2)
is the kinetic energy matrix element in the chosen ba-
sis. An example of such kinetic matrices is the Luttinger
Hamiltonian for the valence bands of a semiconductor
with zinc-blende structure. In the dipole approximation
the Geld-semiconductor interaction is expressed through
the scalar products, p, , , E, where p, , is the anti-
symmetrized dipole moment between the single-particle
states ~ai) and ~a2), i.e., P~, ~, = (o2~ergo. i) if a2 is
in the conduction band and o.q in the valence band and

P~, ~, = —(a2~ergni) if the opposite is true. The matrix
element is zero if both indices refer to the same band.
These scalar products determine the polarization selec-
tion rules for optical transitions. Because of the hermitic-
ity of the Hamiltonian Eq. (1) and the anticommutation
of the Geld operators, the Coulomb potential matrix ele-
ments can be chosen to have the symmetries

V(o.'i ) c12 p (x3) cK4) —V((x4 cx3) cK2) o.'i)

V(oi~ o'2~ o's~ a4) = V(o'2~ o'i ~ &» &4)
= —V(cli) o!2, c14, mls).

The antisymmetrization of the matrix elements is used to
compress the notation in the equations of motion. In the
Heisenberg picture, straightforward commutator manip-
ulations yield the basic equations for the Geld operators
(5 = 1 throughout this paper),

~ t9
l —G Ck = 8' 0!)Ay G A]

+ ) V(a, ni, a2, ns)a (oi)a(o2)a(as)
CRI )CXg )CX3

+).(~-,-, E)a'(~ ),

i—at o = — e a, ~, 'at ~,
Ot

AI

) V(o.i, o.2, ns, u)at(ni)at(cx2)a(us)
~I )~2 )~3

—) (P-,-, &)'a(~i).

The expectation values of the normally ordered operator
products

(+™}= a (~&)a (~&—i) 'a (~i)a(~i) 'a(~M)

contain all the dynamical information needed to study
the optical polarization and carrier densities. Here, we
use the short hand notation (N, M} to denote any oper-
ator belonging to the complete set of operator products
which have N creation operators and M an~~hilation op-
erators normally ordered. VVe obtain the equations of
motion for these normally ordered operator products by
inserting the equation of motion Eq. (2) into the time

derivative of the corresponding deGnitions. In general, an
iterative form for the equations of motion can be derived
from

i—(%+1,M+1}=
~

i
0 t.Oat(a~+i) l
Ot q Ot )

—
~
(X,M}a(pM+i)

Ot

xa(PM+i)at(a~+i)(N, M}
~ (P )&

Ot

After Eq. (2) has been inserted into the right hand side
of the equation of motion, it has to be normally ordered
in order to obtain a closed set of equations. Similar
equations of motion can be derived for the products con-
taining no creation or no annihilation operators. In the
Heisenberg picture the state is time independent and the
expectation values of operators satisfy the same equa-
tions of motion as the operators. As we will see in the
next section, the operators for which N-M is odd are not
coupled to the operators for which N-M is even. There-
fore all expectation values for operator combinations for
which N-M is odd are initially zero. Furthermore, they
remain zero during the interaction for the case that the
initial condition is ((0,0}) =1 and all other expectation
values are zero.

III. DYNAMICAL TRUNCA'f ION
OF THE HIERARCHY OF EQUATIONS:

FACTORIZATION OF EXPECTATION VALUES

Equation (3), with a normally ordered right hand
side, shows that the external field couples the operator
(X,M} to operators like (%—1,M+ 1},(N+ 1, M —1},
(X —2, M}, and (X,M —2}. The Coulomb potential,
however, couples the operator (N, M} only to (N, M}
and (N + 1,M + 1}. This important feature was first
noticed by Axt and Stahl. All couplings to smaller
moments are at least proportional to the external Geld
amplitude. This coupling scheme makes it possible to
classify all operator products according to the powers
of the external Geld amplitude because the lowest or-
der of magnitude of each operator is solely determined
by Geld driven terms in the dynamical equations. The
Coulomb interaction only couples higher order terms into
the equations for operator products of any given order.
Consequently, the lowest order of magnitude of (N, M}
is determined by the corresponding equations of motion
in which the Coulomb potential is neglected.

We study the case when the system is initially com-
pletely unexcited. Then the only initially nonzero ex-
pectation value is ((0,0})= 1 and all other expectation
values are zero. In the general case with nonzero ini-
tial carrier density, the orders of magnitude of the initial
conditions must be taken into account. The coupling
scheme of the optically excited semiconductor is plotted
in Fig. 1. The circled numbers denote the corresponding
minimum order of the expectation value ((N, M}). The
solid lines denote the Coulomb coupling and the dashed
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FIG. 1. Sketch of coupling between dynamical variables,

((N, M)). The numbers in the circles are for the minimum
order of the corresponding operator ((N, M)) in the external
Seld amplitude. The dotted lines denote the coupling due to
the dipole interaction between the light Beld and the semi-
conductor. The solid lines denote the coupling due to the
Coulomb interaction.

lines indicate the coupling by the external field. Well-
known examples of the such operators are the interband
polarization, (at a~ ) corresponding to (2,0} and car-

rier densities (a.-a,&), i = e, h corresponding to (1,1},
which are of first and second order in terms of the ex-
ternal 6eld, respectively. As noted by Axt and Stahl,
the many-body hierarchy equations of motion, Eq. (3),
can be truncated into a form. ally 6nite set of equations
according to the powers of the electric field. It is evident
from Fig. 1 that for a given order of magnitude in the am-
plitude of the external field only a 6nite nuxnber of vari-
ables contribute to the semiconductor optical properties.
For example, in the y~ ~ regime, which is the most impor-
tant special case in nonlinear optics, we need the expecta-
tion values up to third order in the external 6eld. These
are ((0,0)), ((1,1}),((2, 2)), ((2, 0)), ((0, 2)), ((4, 0)),
((0 4)) ((6 o)) ((0 6)) ((»1)) ((I 3)) ((4 2)) and

((2, 4)). The polarization of the semiconductor, which
determines the optical properties of the semiconductor, is
given by ((2, 0)) or ((0,2}).They can also be called exci-
ton amplitudes. In this manner, ((4, 0)) and ((0, 4)) can
be called biexciton amplitudes and ((6, 0)) and ((0, 6))
triexciton amplitudes. However, the triexciton ampli-
tudes couple back to the optical polarization equation
in a higher order than E, as shown in Fig. 1, so they
can be neglected in a y~ ~ treatment. The equations of
motion of other relevant operators can be derived &om
Eqs. (2) and (3). In Ref. 20, these equations are given in
real space coordinates. As is seen from Fig. 1, and more
rigorously proven in Appendix A, the minixnum order of
((N, M)) in the field amplitude is (N + M) j2 if both N
and M are even and (N+ M)/2+ 1 if they are both odd,
z.e.,

(a (a2N). . .a (ai)a(Pi). . .a(P2M)) = O(E + ), (4)

and

(a (a2N+i). . .a (ai)a(Pi) . .a(P2M+i)) = O(E + + ).

These orders of xnagnitude can then be used to consis-
tently truncate the equations of motion in arbitrary or-
der.

If the system is initially excited so that electron and
hole states are partially occupied but there is no induced
polarization nor other higher order correlations, we can
also find the orders of magnitudes for the expectation
values. In this case, initially only ((N, N)) is nonzero
and of the order of 1. The coupling scheme shows that
in this case the nonzero expectation values have

(ot(aN). . .ot(ai)g(Pi). . .a(PM)) O(EI — Il )

This relation is not as restricting as that for the unex-
cited initial state. In the thermal case the hierarchy of
equations cannot be truncated rigorously to a finite set
of equations in any order in the field axnplitude. It, how-

ever, limits the number of correlations needed in a given
order.

If the initial state is unexcited, the number of equations
can be further reduced because the expectation values

((N, M)) factorize in their miniinum order. We show in
Appendix A that

(a (a2N) ".o'(»)o(pi) " o(p2M))

= (a'(a2N)" a'(»))(~(pi)" o(p2M))
+O(EN+M+2) (6)

and

(u (a2N+1) ' ' ' a (ai) (pl) ' ' ' (p2M+1))

Q Q2~+y .6 Qy 6

X(a(bi)a(Pi) . a(P2M+i)) + 0( + + ).

This factorization is not the same as the Hartree-Fock
factorization since here the factorization only takes place
between the creation and annihilation operators. We can
loosely say that in the 6rst approxixnation, all expecta-
tion values can be represented in terms of the exciton
amplitudes, biexciton amplitudes, etc. , because there are
no &ee carriers in the low excitation regime. In y~ ~, we

do not need now the equations of motion for (2,2), (4,2),
and (2,4} since their expectation values factorize in this
order according to Eq. (6). We can also factorize the ex-
pectation values of (1,1), (3,1), and (1,3) according to
Eq. (7). However, here the benefits are not straightfor-
ward since a single expectation value is given in terms of a
sum of products. This adds one degree of &eedom which
is not always wanted in numerical evaluations. One sees,
however, that in y~ ~ the problexn is formally completely
solved in terms of the exciton and biexciton amplitudes.
To complete our discussion, we provide a finite and closed
set of equations, which give the optical polarization in the
third order of the external field.
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IV. THE SEMICONDUCTOR g&s& BLOCH EQUATIONS

The equations of motion for the interband polarization ({2,0})and for the carrier density ({I,I})are given by

r

(a (nl)a (n2)) ),~ (nl hl)(a (hl)a (n2)) ) s (n2 hl)(a (nl)a (hl))
bI

) V(hl h2 n2 nl)(a (hl)a (h2)) + ) V(hl h2 h3 nl)(a (hl)a (h2)a (n2)a(h3))
bI, b2 bI, b2, b3

) V(hl, h2, b3, n2)(a (nl)a (hl)a (b2)a(b3))
bI, bg, bs

(r -„--, &)*+).(I:„~, @)'(a'(n2)a(hl)) + ).(~~„-, E)*(a'(nl)a(bl))

and

&g (a (nl)a(n2)) ) ~ (nl hl)(a (hl)a(n2)) + ) ~(n2 hl)(a (nl)a(hl))

) V(hl) h2& h3) nl)(a (hl)a (h2)a(h3)a(n2))
bI,bg, b3

) V(n2, bl, b2, h3)(a (nl)a (hl)a(h2)a(b3))
bI, b~, b3

—) (P-„~, &)'( (ah )1(an)2)+). (P-. ,~, @)(a'(»)a'(bl)). (9)

These equations are still completely general. The many-body eH'ects are embedded in the expectation values

(at(nl)a (bl)a (b2)a(hs))and (a (bl)a (b2)a(b2)a(n2)). The expectation value (at(nl)at(hl)a (h2)a(bs)) describes the
momentum transfer between an exciton and an electron or a hole and hence can be called the exciton-carrier scattering
amplitude. Similarly, (at(h'1)at(b2)a(h2)a(nl)) is called the exciton-exciton scattering amplitude. The Hartree-Fock
factorization of these expectation values of the four-operator products lead to the well-studied semiconductor Bloch
equations. According to Eq. (6) the exciton-exciton scattering in Eq. (9) factorizes exactly in the third order, i.e. ,

( '(nl) '(n2) (») (n4)) = ( '(nl) '(n2))(a(n3)a(n4))+ o(&').

As a consequence, Eq. (9) is reduced to the density equation in the semiconductor Bloch equations if we neglect the
carrier density variation of the order of E4 or higher.

(a (nl)a(n2)) ) s (nl hl)(a (hl)a(n2)) + ) s(n2 hl)(a (nl)a(hl))
bI bI

—).{(P-,A E)'+ ).V(h2 h3 hl nl)(a'(h2)a'(h3)}}(a(hl)a(n2))
bg, b3

+ ) {(P,b ' E) + ) V(n2 h2 h3 hl) (a(b3)a(h2)) }(a (nl)a (hl)) ~

b2, b3

The carrier-carrier scattering, which stems from the expectation value of {3,3}, is of the order of E4. Hence, in third
order, the carrier-carrier scattering does not give any contribution to the optical properties.

In the polarization equation (8) the exciton-carrier scattering amplitude does not factorize in third order the same
way as in the Hartree-Fock factorization. According to Eq. (7) we would have

( (n3)a (n2)a (nl)a(n)) ) (a (n3) (n2)a (nl)a (bl))(a(bl)a(n)) + 0(E )

However, in order to derive numerically tractable equations, we will assume that the biexciton binding energy is small
compared with the exciton linewidth. Therefore, the bound biexciton states can be neglected. We write the deviation
from the Hartree-Pock factorized contribution in the form,

(a'(n3) a'(n. )a'(nl) a(n)) =—h(a'(n3) a'(n2) a'(nl) a(n)) + (a'(n. )a'(n. )) (a'(nl) a(n))
—(a'(n. )a'(nl)) (a'(n2) a(n)) + ( '(n2) a'(nl)) (a'(n3) a(n)).
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In Eq. (11),we merely define b(at(ns)at(n2)at(ni) a(n)) as the expected deviation of the factorized form from the real
four-operator expectation value. From its definition with the single-operator equation, Eq. (2), it is straightforward,
although tedious, to obtain the dynamical equation for b'(at(ns)at(n2)at(ni)a(n)),

i—h(a (ns)a (n2)a (ni)a(n)} = ) (s(n, b)b(a (ns)a (n2)a (nr)a(b)} —s'(ns, b)h(a (b)a (n2)a (ni)a(n))

—s (n„b)b(at(n, )at(h)at(ni)a(n)) —s*(nl, b)h(at(ns)at(n2)at(h)a(n)) j
—2 ) (V(br, bs, ns, n2)(a (ni)a (b2)} —V(br, b2, ns, nl)(a (n2)a (b2)}j

81,82

x(a (br)a(n)} + 2 ) (V(biib2, bs, n2)(a (ni)a (br)}(a (ns)a (b2)}
~i,~i,~S

—V(bi, h2 bs ni)(a (n2)a (br)}(a (ns)a (b2)}

V(bl b2 '4 n3)(a'(ni)a'(bi)}(a'(n2)a" (b2)}j(a(bs)a(n)} (12)

In Eq. (].2), all contributions of the order of Es or higher are neglected. We have also neglected the Coulomb
interaction ln the homogeneous part of the equation. Moreover, all contrlbutlons &om blexclton blndlng, wh ch are of
order of E, are neglected. The biexciton amplitudes, described by the correlations (at(ni)a (n2)at(n3)a (n4)})
created when excitons interact via the Coulomb potential. Here, we assume that the excitons do not form molecules
but remain unbound units, i.e., the binding energy of biexciton is neglected. In this case, (at(ni)at(n2)at(ns)a (n4))
is factorized. These assumptions are not in agreement with the g~ ~ treatment of semiconductors, in general, but
simplify our problem remarkably. This approach should be a reasonable approximation for conditions where the

ound biexcitons are not dominating, for example, when the excitation &equency is above the biexciton resonance
and close to the exciton resonance. The biexciton contribution to g~ l of optically excited semiconductors, especially

e optical Stark efFects, was studied by Axt and Stahl. 21 The absence of terms proportional to the external 6eld
amphtude in Eq. (]2) show concretely that the interaction with the light field creates excitons which are described
by the factorized contributions of the expectation values. However, one should note that by neglecting the biexciton
binding we have also neglected a contribution which in powers of the Coulomb interaction V are of the order of V
as can be seen from Eqs. (B3), and (B4). In the theory of plasma screening, however, the terms proportional to V
in the equation for the optical polarization are of the order of E . Hence, the terms omitted do not describe plasma
screening.

In an optical field h(at(ns)at(n2)at(ni)a(n)) oscillates with the external field frequency, ur, and has a relatively
slowly varying envelope. This time dependence enables us to separate the envelope &om the fast varying osclllatlon
part by replacing the time derivative ictjest in Eq (12) w. ith —w. We further insert the obtained solutions of Eq. (12)
into Eq. (8) and find

'—(a'(ni)a'(n2)) = —).4'(nr)b .A —2 ) V(b2 br bs nr)(a'(b2)a(bs))j(a'(bi)a'(n2))
~s,~s

—) fc'(n2)b, 3, —2 ) V(b2) br, h3 nr)(a (b2)a(bs)) j(a (nr)at(br))
Bg,bs

8g, 8g

—) ((& .,3. E)'+ ) V(b2 bs b»inr)("(b2)"(bs)) j("(n2)a(br))
~s,~s

—) &(~3.,-. )'+ ) V(b2 bs n2 br)( '(h2) '(bs)}j( '(ni)a(bi)}

) (b ) (b ) (b ) ( )
) (V(bl' b2' bl b2) (a (n2)a (b2')}

V(bl' b2' bl n2)(a (b2)a (b2')} + V(bl' b2' b2 n2)(a (bl)a (b2')}j(a (bl')a(bs)}

) (V(bl'1 b2'1 bs'1 b2)(a (n2)a (bl')}(a (bl)a (b2')} V(bl'1 b2'~ hs'1 n2)
~i ~2 ~s

X (a (bl)a (b2'))(a (b2)a (bl')} V(br'1 b2'I bs'1 bl) (a (n2)a (bl')}(a (b2)a (b2')}j
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{aq,' ,'az} means the indices aq and a2 are interchanged. In order to simplify the expression, we have chosen the
kinetic energy eigenstates as the basis states, i.e. , s(aq, az) = s(aq)8, , It is remarkable that the first part of Eq.
(13) is identical to the HF equation of the interband polarization although the starting points of both methods are
quite diferent. In addition to these HF-like terms, we have scattering terms which contains both an out- and an in-

scattering rate. These scattering terms occur as exciton-electron, exciton-hole, or exciton-exciton scattering instead of
carrier-carrier scattering in the quantum Boltzmann equation. The real parts of these exciton-carrier scattering terms
contribute to an energy renormalization and the imaginary parts result in an induced polarization dephasing, which
has been referred to as the excitation induced dephasing (EID). The exciton-exciton scattering (the triple product of
the optical polarization) has recently been studied in Ref. 12. To show more concretely how these non-HF scattering
terms contribute, we neglect in the following the exciton-exciton scattering and assume for the rest of this paper that
the carrier-exciton scattering dominates the intraband coherences.

V. EXCITATION-INDUCED DEPHASING EFFECTS IN FWM MEASUREMENTS

In our previous studies of four-wave-mixing spectroscopy of semiconductors, we utilized the excitation-induced
dephasing in order to explain the observed polarization and excitation dependence of FWM signals. Equation (13)
shows that in the low excitation regime the EID scattering terms might play an equally important role in determining
the optical response function as the exchange interaction. As an example for the applications of the general theory
discussed in the previous sections, we compute the FWM signal from a strained GaAs sample, in which the hh-lh
degeneracy is lifted due to the external strain. This simplification drastically reduces the numerical efforts and keeps
most of the physical insight.

We replace the general index a by the momentum and band index, e.g. , a = (b, k), where 6 refers to s = +1/2 for
the conduction bands or to j = +3/2 for the heavy-hole valence bands. The antisymmetric interaction potential is
given by

V(b] ky, bzkz, bsks, 54k4) = +—{'UIb b I&4~,b ~b4~, bg Ib b
I

bg, bg bg, b4 } (14)

here the plus sign ls used lf all four band indices denote either electron or hole bands, and the minus sign lndlcates the
electron-hole interaction, i.e., two band indices are electron indices and two are hole indices. The Coulomb potential
vq has the usual form. In 3D we have

and in 2D

4vre 1

8'pL q

27t 8 1
'Uq

epL2 q

ep is the background dielectric constant which does not include the contribution from the excited carriers. As usual,
we define the optical polarization and carrier densities as

Inserting Eqs. (14) and (15) into Eq. (13) and neglecting the exciton-exciton scattering contributions, we obtain the
polarization equation in a more familiar form:

—.;- =-'».„- -(",+ ."»„- +) l,-,-, l.,-, +) .I.-,-,I{(-.„-, +-,"-, »„-
k' kl

(n„- + n„"- .)P'„-, .—}+(Pb„. . F)* —) (Pb, ,, E)'n'„-, —) (Pb., E)*n„"- .,
7 12

8

) N. , ) W'(k, k')(p'„- . —p*-, .) — ) N", ) W"(k, k')(p„*- . —p„'-, .)

)
+ ) {U;(k,k', k")n„„—U,"(k, k', k")n„"„.}(p'„.—p*„„„,„.)

k'k"

—) {V;(k,k', k")n„„—V,"(k, k', k")n„"„.}(p*„, . -p„*„„,„
k'k"
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where N; = g- n; ., is the total carrier density in the band i .Here we have introduced a phenomenological dephasing
rate p to stabilize the following numerical calculations. We have reduced the triple summations in the S' terms to
double summations by approximating ng NIP&~'I2, where P&~' is the ls-exciton (hydrogenlike) wave function in the
momentum representation. This approximation stems &om the assumption that if the excitation is in resonance with
the ground state exciton, the carrier density follows the square of the ground state exciton wave function when the
excitation intensity is sufEciently low. The exciton-carrier scattering matrix elements are

W'(k, k') = n„- „-, )
, QJ —6'g

1 1 1s 2+ . . „. . I&a I

g
+8' —X f & —8' (

—8', —6' +8' —Zp
I kq+Ie' —k ( II,—I +I I

W"(k, k') = W'(k, k')I,;,h, ,

Ue(k ki kn)

Ue(k
iP —I+I

i

+ 8'I gg

e+ 8'I gl

U,"(k, k', k") = U;(k, k', k")I. U2" (k, k', k") = U2 (k, k', k")I, ; (17)

As in the quantum Boltzmann equation, the exciton-
carrier scattering terms in Eq. (16) are proportional to
v2. However, it should be emphasized here that vq is
the unscreened Coulomb potential. The divergence of
the square of the three-dimensional Coulomb potential
(oc 1/q4) is removed by the factor pg —pg+~ the angu-

lar integral of which approaches zero as q2. These can-
cellations may indicate the validity of the susceptibility
expansion in this many-body Coulomb system.

Eq. (16) also shows that the exciton-carrier scatter-
ing efFectively couples the 0.+ and u transitions, which
would be completely independent within the HF fac-
torization. In the coherent excitation regime, where
N~+ = Nh s/2 = Ne, ],/2 and Na —= Ns s/2 = Ne, l/2)
the terms proportional to W in Eq. (16) can approx-
imately be expressed in a form of b[N + N ]p
where b is the complex excitation induced dephasing
coefficient. ~~ Hence 0 excitations significantly influence
0+ transitions and vice versa. This kind of effective band
coupling induced by many-body interactions remarkably
modifies the polarization selection rules of four-wave-
mixing spectroscopy in semiconductors, resulting in car-
rier density dependent polarization selection rules. ~o

A detailed discussion of the carrier density dependence
of polarization selection rules formally requires a yis)
treatment which is beyond the scope of this paper. The
exchange exciton-carrier-scattering terms (U-scattering
terms) are less important in determining the y( ) proper-
ties of semiconductors because the matrix elements con-
tain the product of vqvq~ which are small in the case
of small momentum transfer q. Furthermore, these off-
diagonal scattering matrix elements do not couple the
different optical transitions (here, the o+ and o transi-
tions) and, therefore, contribute to the polarization selec-
tion rules in a similar manner as the HF exchange terms.
In the following calculations, these terms are neglected

for numerical simplicity.
In a standard two pulse FWM setup, two pulses prop-

agate at a small angle in the directions Kq and K2, re-
spectively. The y(s) nonlinearities give rise to an induced
optical signal in the direction of 2K' —K2. Many-body
exchange eEects in FWM of semiconductors have been
studied using the semiconductor Bloch equation. ' We
follow the same numerical technique of Ref. 9. In order to
compute the measured far 6eld signal, we 6rst perform
the spatial Fourier transform of the polarization equa-
tion, Eq. (16), and the density equation, Eq. (9). Sec-
ond, we use a fourth order Runge-Kutta method to inte-
grate these difFerential equations. The Coulomb potential
matrix elements are computed using a Gaussian quadra-
ture method. In Fig. 2, we show the computed time-

0.0 0.2 0.4 0.6 0.8 1.0
TIME (ps)

FIG. 2. Computed four-wave-mixing signal, I~~ (solid) and
I~ (dashed) from the heavy-hole exciton in a strained GaAs
sample. m /mo ——0.067, where ms is the free electron mass.
The Luttinger parameters are p&

——6.9, pz ——2.1,p3 ——2.9,
the background dielectric constant ep = 12.5. The probe and
pump Beld strengths are, p, E = 0.01,0.001ER, respectively
(p „ is the dipole matrix elements). The time delay is 100
fs. The dephasing time is 1/7 = 300 fs. The dashed line is
multiplied by a factor of 100.
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resolved FWM signals induced by cross-polarized pulses
and copolarized pulses. The material parameters are cho-
sen for the heavy-hole band in a strained GaAs saxnple,
i.e., m, /mo ——0.067, where me is the free electron mass,
the I uttinger parameters are pz ——6.9, p2

——2.1,p3
——2.9,

the background dielectric constant ep ——12.5. Both pump
and probe pulses have a temporal width of 100 fs (full
width at half maximum in amplitude) and field ampli-
tudes of p E = 0.01,0.001E~, respectively. ER is the
exciton binding energy. The excitation &equency is cho-
sen to be in resonance with the lowest hh exciton state.
The time delay is 300 fs (the probe precedes the pump by
300 fs). The dephasing time is chosen as 1/p = 300 fs. I~~

is plotted as solid curves and I~ is as dashed curves. For
comparison, the dashed curve is multiplied by a factor of
10 .

The numerical solutions of the y~ ~ semiconductor
Bloch equations show that the ratio of FWM signals
I~~/I~ drastically increases as the dephasing rate de-
creases. In the case where the laser fields are extremely
low, I~~/I~ is of an order of 10 or higher. Our yi l treat-
ment cannot be applied to study the excitation intensity
dependence of the ratio I~~~/I~. However, qualitatively we
can predict that, as the pump intensity increases, the in-
creasing carrier density effectively reduces the Coulomb
interaction. Screening of Coulomb interaction has a more
significant inQuence on KID terxns than on the direct and
exchange Coulomb interaction matrix elements since the
KID terms are proportional to ~v~~ while the direct and
exchange Coulomb interaction matrix elements are pro-
portional to ~v~~. Consequently, as the carrier density
increases the exciton-carrier scattering induced effective
band coupling decreases more quickly than the renor-
malization of the Rabi &equency and of the band gap.
Theoretically these effects can be studied by solving the
equations corresponding to the order of E . When the
system is doped or optically preexcited, we need to mod-
ify our equations according to the discussion in Sec. III.

VI. SUMMARY

In this paper, we present a y~ ~ analysis of coherently
excited semiconductors. A theoretical approach to solve
the many-body problem in coherently driven semicon-
ductors is discussed in detail and applied to four-wave-
mixing spectroscopy of semiconductors. This expansion
approach avoids the dificult problem of modeling screen-
ing and carrier-carrier scattering in the cases when the
carrier densities are far below the Mott density. When
the interband polarization and the densities are solely
created by the external Geld, the infinite hierarchy of
equations of motion can be truncated according to the
powers of the external Geld. This decoupling scheme
stems &om the fact that the Coulomb interaction only
couples a given correlation function to higher order cor-
relations, not to lower order correlations. Therefore, a
finite set of equations can be obtained, which, if solved,
provide accurate information about the y& & response in
semiconductors. Neglecting the biexciton contribution

enables us to generalize the well-studied semiconductor
Bloch equations into the low density region. Comparison
of the y~ ~ semiconductor Bloch equations with the HF
equations yields information about the validity of the HF
factorization below the Mott density. The HF factoriza-
tion gives the leading contribution to the four-operator
correlations in terms of the external Geld in most of the
cases. However, in the low excitation regime the exciton-
carrier scattering, which is neglected in the HF approach,
may be as important to the y~ ~ as the exchange and
direct Coulomb interaction. The excitation-induced de-
phasing effects are derived &om Grst principles as a conse-
quence of the exciton-carrier scattering in the low density
regime where the y~ ~ analysis is valid. We also integrate
numerically the generalized semiconductor Bloch equa-
tions to study the FWM spectroscopy. The excitation
induced dephasing effects show remarkable signatures in
the nonlinear spectroscopy. In this paper, we lixnit our-
selves to the y~3~ regime, however, the principle discussed
in this paper can be extented into higher order expan-
sions, which may provide new insight into the dynamics
of exciton screening, carrier-carrier scattering, and other
collective properties of optically excited semiconductors.
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APPENDIX A: DYNAMICAL ORDER
OF ((N, M)) AND ITS FACTORIZATION

A central point of the truncation scheme of the infi-
nite hierarchy of equations discussed in this paper is the
well-defined minimum order, in powers of the external
field, of each set of operators denoted by (N, M). In this
Appendix, we show that the order of magnitude of the
expectation values, is a direct consequence of the dipole
interaction between the Geld and the semiconductor in an
initial state in which no carriers are preexcited or doped.
The Coulomb interaction does not change the total num-
ber of the carriers and, hence, does not play an active
role in determining the order of each operator product.
To see this, we write the Hamiltonian in three parts,

H =Hp+V++V,

where

IIO ——) s(o.i, n2)a (a])a(o.2)
CX1 )EXg

V(o!i) cx2~ cps) c14)
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V+ ———) (P, , E)at(ai)at(az), V = V+.

The total carrier number operator N coxnmutes with Ho
and its commutators with V~ are given by

[N„V~] = +2V~.

These commutators re6ect the fact that V+ creates two
carriers when operating on a given state and V annihi-
lates two carriers. The coxnmutator of N with the oper-
ator product (N, M) [N„(N, M)] = (N —M) (N, M),
meaning that the operator (N, M) always creates or an-
nihilates ]N —M~ carriers.

In the interaction picture, a time dependent operator
Al is de6ned as

A (t) = e' "Ae '~"

where A is the Schrodinger picture operator. In this ap-
pendix, the operators are in the Schrodinger picture un-
less explicitly denoted by a subscript "I"or "H" for the
interaction or Heisenberg picture, respectively. The wave
functions have the correspondence

l@r(t)) = Ur(t) l@rr)

where Ur(t) is the solution of the difFerential equation

Ur(0) = 1.

Hl is the operator V+ + V in the interaction picture
similarly to Ar(t). The equation for Ur(t) has a formal
solution of the form

U (t) =) U (t)
A;=o

OO t
= 1+) —~ dt'Hi(d)Ur(a z)(d)),

with an additional condition Uro(t) = 1. Because Hr

is of the order of E, we have Ur& = O(E"). Now any
expectation value of the operator (N, M) is given in the
forxn

((N, M)) = ) ) (@]Ur(„)(t)(N,M)rUri, (t)]@)
I =on =0

= ) (N, M)i, (t).

where the operator U2 creates 2m carriers into a certain
state if m ) 0 and annihilates 2]m] carriers if m ( 0.
Note that the all operators Uz are of the order of E".
When U2~ operates on the ground state, in which there
are no carriers, all the annihilation terms vanish and we
have

Uri (t)IO) = ) .U" (t) IO).
m, =o

(Al)

Since the operator (N, M) is normally ordered, we can
use its annihilation operators to obtain

(N, M)(t)Uri, (t)i0) = 0

if M & 2k. Similarly, we can also 6nd that the expecta-
tion value

(0~ Urt~„ l (t) (N, M) r (t)Ur (t) ~0) = 0

Obviously the order of magnitude of the operator
(N, M)i, is E". The remaining question is, therefore,
to determine the smallest value of k for which the expec-
tation value of (N, M)i, is not zero.

The operator Ulg can be expressed as a linear com-
bination of operators an~~hilating or creating difFerent
numbers of carriers. However, the maximum number of
carriers created or annihilated is 2k. Hence, we can write

if M & 2m or N ) 2k —2m. It is also obvious that N —M must be even. With these considerations, we conclude
that the sxnallest possible value of k must satisfy

2m&M, 2k —2m&¹
Therefore the smallest k, which is also the order of magnitude of the expectation value ((N, M)), satisfies k &

(N + M)/2, which is the desired result.
We choose the Heisenberg picture to study factorization of the expectation values in the minim»m order. Hence,

we can write

(a (a~)a (c1rr i) . .a (o'i)a(pi) . .a(pM)) = (0]arr(n~, t)arr(aiv i, t) . . arr(ai, t)arr(pi, t) . arr(pM, t) ~0), (A2)

where ~0) is the vacuum state and a~ are the creation operator in the Heisenberg picture. Inserting the identity
operator in the interaction picture into the expectation value (A2), we obtain
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(0]a~(nN, t)a~(nor z—, t) . .aH(nq, t)a~(Pq, t) aH (PM, t) ]0)

(0~a~(nw, t)aH(nor z, t) . . aH(n& t)IO)(OlaH(pz, t) ' are(pM t) lO)

+) (0~a~(n~, t)aH(nN z, t) . .aH(nz, t)al(8&, t) ~0)(0~a~(8&, t)aII(P&, t) a~(PM, t) ~0)

+- ) (Ola~(n~ t)a~(n~-~ t)" aH(n& t)al(b& t)ai(b& t)IO)

x (0lal (bx, t)ai (bz, t)ap(pz, t) .aH (pM, t) IO) + ' ' (A3)

The interaction picture is used for the identity operator because the vacuum state is an eigenstate of the interaction
picture operators but not of the Heisenberg operators. Consequently the unity cannot be written in the same form
in terms of the Heisenberg operators. In the following we show that if both N and M are even the Grst term in Eq.
(A3) is the factorized contribution and the rest of the expansion is of higher order in E If 1V. and M are both odd
the irst term is zero and the second term is the factorized contribution and has the lowest order in terms of E. This
conclusion follows from the fact that Hq conserves the total number of particles. It can be expressed as

[N„ai(n, t)] = aI(n, t-).

However, the same relation is not valid if aI(n, t) is replaced by the Heisenberg operator, n~. The connection between
the Heisenberg operators and the interaction operators is

aH(n, t) = Ult(t)al(n, t)Ur(t).

Using the expansion of UI(t) in Eq. (Al), we see immediately that

a~(n, t) = ) 2~2„g(n, t),

where AH 2„q(n, t) creates 2n —I carriers if 2n —l & 0 or annihilates ~2n —1] carriers if 2n —l & 0 and it is of the
order O(E~"~) or higher. This fact immediately gives that

(Olai(b~)" al(bzp)a~(P~) "a~(P2M)IO) = O(& ") (A4)

and

(Olal(bz, t~) al(82„x, tz„~)a~(Pz, tx) aH(PzM+z t2M+s)IO) = O(& '").
When we insert Eq. (A4) into Eq. (A3), we immediately obtain that

(OlaH(nz~, t) aH(nq, t)aa(Pq, t) a (PH, Mt) IO)

(A5)

=(Olaa(n2~ t)" aa(n~ t)]0)(OIa~(P~ t)" a~(P2M t)IO)+O(E"' ") («)
as given in Eq. (6). In the case with an odd number of creation and annihilation operators the first term in Eq. (A3)
vanishes and the second term contains interaction picture operators. Hence, the Brst nonzero term is not directly an
expectation value. However, we have that

(Olaa(bq, tz)aa(P&, tq) aH(P2M+& t2M+~) lo) = (Olai(b&, t', )aa (Pq, tq) aa(P2M+& t2M+~) IO) + O(& +')

because A~ q(n, t) = ar(n, t) + O(E ). So we obtain the second factorization result

(O~a&(nzg+z, t) a&(nz, t)aH(px, t) .aH(p2M+x, t)]0)t

= ).(Ola~(n2N+1. t) . a~(nq, t)a~(h& t) IO)(OlaH(bq, t)aa(Pq, t) ass(P2M+& t)10) + O(E + +
.), (A7)

as stated in Eqs. (6,7). We have simultaneously again shown that

a (nz&) a (nq)a(Pq) .a(PzM)) = O(E + ),
( +) '' ( ) (P) ' (P +))=O(E ).
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APPENDIX B: COMPLETE AND CLOSED y& & EQUATIONS IN A MULTIBAND SEMICONDUCTOR

As shown in Sec. III, it is possible to truncate the infinite hierarchy of equations of motion into a formally finite
and closed set according to the powers of the external field. In this appendix, we write down the missing equations for
a multiband semiconductor. Equations (8) and (10) give the general equations for (at(nq)at(n2)) and (at(nz)a(n2))
in y~sl. In a two band semiconductor, the equations are simplified slightly because we can explicitly use conservation
laws. In the Hamiltonian (1) we denote the index n = (b, k), where the band index takes the values +1, +1 denoting
the electrons and —1 the holes. k is the momentum vector. Therefore, we have p,+q q

——p, , p, q+q ———p, , and
((7, , = 0 else. Also, we have V(n), n2, ns, n4) g 0 only if nq + nq ——ns + n4. For the two band model, we obtain

—( '( ) '(- )) = — ( )( '( ) '(- )) —) ( — — )( '( ) '(- ))

+ ) (V(b&, b2, bs, n)(a (bz)a (b2)a (—n)a(bs))
~I,4,~3

-V(bg, h'2, bs, -n)(at(n)at(bp)at(b2)a(bs)) }
—(P E)(1 —(at (n) a(n) ) —(at (—n) a(—n)) ), (B1)

where s (n) = e(n) + s(—n) is the kinetic energy of the exciton, and

i (oi(a)a(a—)) = —
I(p g)* + ) v(b, —b, —a, a)( t(b)a~o( —b)) )(a(—a)a(a))

+ p, E + V~ —~ —bb a gag ato. at o. +O (B2)

The equation of motion for carrier density equals that of the Bloch equations. In the same way, one can derive the
equation of motion for the exciton-carrier scattering amplitudes, (at(nq)at(bq) at(h2) a(bs)). In the equation of motion
for (at(nq)at(bq)at(bq)a(bs)), the only relevant six operator expectation values factorize again exactly in third order,
1.e.)

(a'(n4) a'(ns) a'(n2) a'(n~) a(~~)a(~2)) = ("(n4)a'(ns) a'(n2) a'(n~)) (a(~~)a(~2)) + O(@ ).

Consequently, for a full g~ l description, we need the equations for the biexciton amplitude, (at(n4)at(bs)at(b2)at(bq))
and for the exciton-carrier scattering amplitude, (at(nq)at(n2)at(ns)a()9)). These equations are given by

. 0
~—(a'(n4) a'(ns) a'(n2) a'(ni)) = -[s(n~) + s(n2) + s(ns) + s(n4) j(a'(n4) a'(ns) a'(n2) a'(n~))Bt

+) ( (q, 2, 4, s)( (q)a(2) ( 2) ( q))
bI, bg

—V(bq, h2, n4, n2) (a (bq) a (bq) a (ns) a (n). )) + V(bq, h2, n4, nq)

"( (b).)a (b2)a ( s) ( 2)) —V(b~ b2 ns 2)(a (b~)a (b2) (n4) ( ~))
V(b] b2 n3 n] ) (a (b) )a (6'2)a (n4)a (n2))

+V(bq, b2, nq, nq)(a (bq)a (bq)a (n4)a (ns))}
(( E) ( (n2) (n&)) () E) ( (n4) (ns))

+(~:.,-, &)*( '(ns) '( ~))n+(P-. .-, . &)'( '(n4) '(n. ))
-(~-.;, . &)'(a'(ns) a'(n. )) —E)'(a'(n4) a'(n~)) + &(&')
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. 0
i—( '(~3) '(~2) '(~1) (&)) = -[s(~1) + e(~2) + e(~3) —e(&)I(a'(~3)a'(~2) (~1) (&))

+ ) (l (blb2~3cr2)(a (bl)a (b2)a (crl)a(P))

(blb2n3o'1)(a (bl)a (b2)a (~2)a(P)) + l (blb2cr2nl)(a (bl)a (b2)a {~3)a{lan))j
) (V(bib2b3cr2)(a (bi)a (b2)a (a3)a (ai))

61,4,63

(blb2bscrl)(a (bl)a {b2)a (~3)a (&2))
—&(bib2bscrs) {a (bi) a (b2) a'(o'2) a'(~1)) ){a(b3)a(&))f
—) (&P,s. E+ ) l Vbibzbs)(a(bz)a(bs))}(a'(bi)a'(crs)a'(cr2)a'(~1))

6g 6z 6s

—) ((P .,s, E)'(a'(~2)a'(~i)) —(v „s, . &)*(a'(~3)a'(~1))
6g

+(P „s, &)*{~'(~3)a'(~2))j(a(bi)a(P))
-(P-.,-. . &)'(a'(~1)a(&)) + (J .. . &)'(a'(~2)a(&))

+(P -.,-, E)'(a'(~3) a(&)) + o(E'). (84)

In these equations we have assumed the kinetic energy to be diagonal in the chosen basis just to get shorter equations.
If the kinetic energy is not diagonal, we need only to do substitutions like

s(~1)( '(») '(~2)a(~1) (&)) ~ ):s(~1 bi)( '(~3) '(~2) (bi) (&)).

Equations (8), (10), (83), and (84) form a finite and closed set of equations which when solved give the polarization
in third order in the external field. However, solving these equations is a numerically formidable problem since one
has to solve the full quantum mechanical three-body and four-body problems which give the homogeneous parts of
the equations of motion.
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