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The electronic structure of semiconducting diamond is calculated by the scalar-relativistic lin-

ear muon-tin-orbital method within the local-density approximation. Information about matrix
elements, effective masses, and Luttinger parameters is extracted by comparison with k . p calcu-
lations. An extended 16 x 16 k p calculation is performed using the parameters above as input
so as to obtain the detailed band structure of the higher valence and lower conduction band states
around the I' point in the (llD) direction.

I. XNTRODUCTXON

Semiconducting diamond is characterized by a number
of interesting properties. The material has the highest
thermal conductivity, the lowest dielectric constant, aud
the highest breakdown field and saturated electron veloc-
ity of all known semiconductors. It has, therefore, the
potential to become an important material for applica-
tions in semiconductor devices. Progress in the growth
of single-crystal diamonds and thin films has recently re-
sulted in a renewed interest in diamond. ' In comparison
with the diamondlike materials Ge and Si, our under-
standing of the electronic and optical properties of dia-
mond is very poor, although considerable experimental
and theoretical work has been performed over the past 40
years. This can be attributed to the difhculty in grow-
ing high-quality single crystals, the high energy gap of
the material, the presence of strong impurity-induced ab-
sorption and, &om the theoretical point of view, problems
inherent in using the empirical pseudopotential method
for atoms without p electrons in their cores. 4 Basic as-
pects, such as the values of carrier efFective masses and
the detailed band structure, are still unknown. Conduc-
tion band masses are difficult to obtain due to the ab-
sence of n-type semiconducting diamond. The valence
band masses, or, equivalently, Luttinger parameters have
been reported by a few authors ' but the results are
in disagreement with each other.

In the present work, we use scalar-relativistic baud
structure calculations in the local-density approximation
assisted by k.p calculations to obtain information about
momentum matrix elements, efFective masses, and the
Luttinger parameters of diamond. The parameters found
in this way are subsequently used as input iu a 16 x 16
k - p model involving matrix elements between six I'25„
six I'~~, two I'2, , aud two I'~ wave functions. This
calculation allows us to determine the detailed upper va-

lence and lower conduction band structures around the
I' point. Results along the (110) direction are presented.

II. LMTO BAND STRUCTURE CALCULATIONS

The electronic band structure of diamond is calcu-
lated here within the framework of density-functional
theory (DFT) using the local-density approximation
(LDA). This is done by means of the self-consistent
scalar-relativistic LMTO method. Each unit cell con-
sists of four "atoms, " including two empty spheres, i.e. ,

atomic spheres with no net nuclear charge positioned in
the empty tetrahedral sites in order to obtain a close-
packed structure. 3 Calculations are performed within
the atomic-sphere approximatiou including the so-called
"combined correction term. " Wave functions in each
atomic sphere (including empty spheres) are expressed
in terms of s, p, and d partial waves and, treating the
spiu-orbit interaction as a perturbation to the scalar-
relativistic Hamiltonian, we find a Hamiltoniau matrix
of dimension 72 x 72 (4 atoms x 9 partial waves x 2

spin states). It is well known that the DFT-LDA calcu-
lation yields quite reliable results for the valence baud
structure but uuderstimates the baudgap for all usual
semiconductors. This is a consequence of the fact that
LDA energy values are not exact single-particle energies.
To overcome this problem, quasiparticle corrections to
the Hamiltonian must be added. A perturbative way ta
include quasiparticle corrections is given by the GR' ap-
proxiruation. This approach is computationally very
expensive and will not be used here." However, it is also
known that the LDA wave functions are already very
close to those obtained using the CR' approximatiou.
We therefore expect momentum matrix elements to be
well described by the LMTO calculations in the LDA
approximation.
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This fact is used in the present paper in order to de-
termine effective masses and Luttinger parameters of di-
amond at the I' point by using the LMTO-calculated zno-
mentum matrix elements as input in k - p models. The
effective masses calculated in this way, and corrected for
the discrepancy between the experimental and calculated
energy gaps, are expected to be quite accurate since mo-
mentum matrix elements &om LMTO calculations are
supposed to be accurate. Our results are compared with
the few data for diamond available in the literature. We
also estimate the transverse and longitudinal effective
masses at the conduction band minima located close to
the X point. Finally, we determine the upper valence
and lower conduction band structures of diamond as cal-
culated from a 16 x 16 k p model using the parameters
found above. In this manner the question of the possible
existence of valence band maxima away from k is nega-
tively answered.

III. 1c ~ p THEORY

In diamond, where spin-orbit effects are very small, '

we use the following expressions for effective masses at
the I' point given by Kane~r and Shtivel'man~s (As ——

0).

(100) direction:
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FIG. 1. Band structure of diamond as calculated &om the
LMTO method in the local-density approximation.

L = E+2G,
M = Hg+H2,
N = I' —G+Hg —H2,

where

masses and momentum matrix elements, we use atomic
units, i.e., mo ——e = 5 = 1, energies in Hartree units,
and Luttinger parameters in units of 52/2ms.

The parameters L, M, N, and A' are given by Dres-
selhaus, Kip, and Kittel and Kane:

my = 1 + 2L

m2 ——m3 ——1+2M;—1 —1

(111)direction:
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Here, m2 (ms) is the light-hole (heavy-hole) mass, and
mq is usually referred to as the split-ofF band efFective
mass in the case of nonvanishing spin-orbit interaction.
For the s-type conduction band (I'2, ') the effective mass
is isotropic and given by

and

)"- l(x I p !u )
E~ —Er+

ms'

)".I(x IJ„I u, )
E~ —Er+ss'

)"., 1(S I p. I u, &
I'

2 gl

P =i I'~+5, p

0= (r'.",.Ir, I

R =i I'~+5, p

Er- —Er+
zs' as'

(7)

Note that the s-type conduction band (I'2, ') in diamond
is located at a higher energy than the p-type conduction
band (I'~~'), see Fig. l. In our discussion of the effective

The I'~~, ~ state in Eq. (7) is equivalent to the p~ state
of the representation I' 2, in Dresselhaus's notation. In
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Eq. (6), primes on the summation symbols mean that
the I'2, conduction band states (for F) and the I'2+s, va-
lence band states (for A') are not to be summed over.
Note that the coefEcient 2 in the expression for G comes
from Dresselhaus's definition of G, where summation
is over one of the two states representing I'z&, . Our ex-
pression agrees, therefore, with Dresselhaus's. The first
term in I", and H2 vanishes in our approach, since we
neglect coupling to the high-energy f-like bands. We ex-
pect A' to give important contributions to the conduction
band mass m4 in (4), since the I'2, and I'2+s, conduction
bands are relatively close in energy, see Fig. 1 (the energy
separation E&+. —E&- is close to the energy difFerence

25

Er-. —Er+. ).
2I 25'

In the calculation of Luttinger parameters pq, p2, p3,
and z we use the following expressions:

tization axis. Portions of the Hamiltonian are given in
Table 1 of Ref. 10 (between the I'z ', I's ', and I'7+", I's+",
I's+ states) and in the appendix of Ref. 11 (the "diagonal"
matrix connecting the I'2+s, states with themselves).

We recall that for diamond-type materials with
inversion symmetry, the parameters: ~

= — ((-.'-.'„)
I
II.. I (-.'-,'.)), P' = '(I';;,. I p. I

I' ), &.
and Cz (coefficients of the linear k terms in the Hamilto-
nian produced mainly by bilinear second-order pertur-
bation terms in Hg. p and H, for the I'8 and I'8'
bands, respectively) which are important in zincblende-
type semiconductors all vani8h. Here, Hg. & is the k p
part of the Hamiltonian, and H, is the spin-orbit con-
tribution.

IV. NUMERICAL RESULTS

1
pg

————(2F + 4G + 4M) —1,
3
1

q, = —-(2F + 4G —2M),
6
1

q, = —-(2F —2G+ 2M),
6
1 2 2

K = ——'7x + —'72 + &3 ——.
3 3 3' (8)

Following the determination of the matrix elements P, Q,
and A' &om the LMTO results, and using the parameters
P"'= (I' '

I p I

I'+') = 0.?480 . . (LMTO), E"' =
Er+. (upper) —Er+. = 24.0 eV (LMTO), b, o ——Er+. —
Er+. = 0.013 eV (LMTO), and Bo = Er . —Er-
0.012 eV (LMTO), we are in a position to perform a more
accurate calculation based on a 16 x 16 k.p Hamiltonian
matrix involving matrix elements between six I 25„six
I y5 two I'2, ', and two I'~ ' wave functions. As a ba-
sis we take the linear combinations of these wave func-
tions which correspond to (2, 62), (2, 6s), and (2, +2)
angular-momentum states with z (i.e., [001])as the quan-

The band structure of diamond calculated within
the local-density approximation using the self-consistent
scalar-relativistic LMTO method is shown in Fig. 1. We
emphasize that the adjusting potential method first de-
scribed by Christensen2o using b-like potentials centered
at the atoms to shift the s-like states, and later extended
to include potentials shifting the p-like states, 2 cannot
be used to adjust the LMTO gaps of diamond. The low-
est direct gap involving the p-like conduction band states
at the I' point is underestimated in our calculation by
2.0 eV compared to the experimental direct band gap of
7.3 eV. Unfortunately, we have not found a way to acid
adjusting potentials to the self-consistent LMTO band
structure calculation so as to shift the p states by about
2.0 eV. Therefore, we apply here the LMTO band struc-
ture calculations in the local-density approximation to
obtain the momentum matrix elements necessary for the
evaluation of efFective masses. As mentioned earlier, we

expect these matrix elements to be quite well described
by the LDA, since wave functions are close to those found
in t W calculations.

TABLE I. Energies in eV at the I' point and the X point of diamond, and the indirect energy
gap.
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0.0
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0.0
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(Ref. 23)

—24.2+1, —21+1
0.0
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0.006

5.48



50 LINEAR MUFFIN-TIN-ORBITAL AND k-p CALCULATIONS. . . 18 057

In Table I we show the calculated energies at the I'
point and the X point for diamond using the LMTO
method in the local-density approximation. This table
also contains the theoretical results of Hybertsen and
Louie~s (GW), Bachelet et aL, (pseudopotential), and
the experimental data.

The Gner structure around k = 0 has been studied by
dividing the [100], [110],and [111]directions of the Bril-
louin zone into a dense k mesh. By 6tting a straight
line to the calculated electronic energies versus k2 in the
immediate vicinity of point I', the slopes yield the LDA
effective masses for the different directions. The effective
mass of the 8-like conduction band I'2, ', m4, is found to
be isotropic, in contrast to the split-off, heavy-hole, and
light-hole masses, which show a strong anisotropy de-
scribed by Dresselhaus's parameters L, M, N, or equiv-
alently, the Luttinger parameters p~, p2, and p3.

In Table II we list the LDA effective masses calculated
by the LMTO method and the experimentally corrected
effective masses obtained &om our LMTO and k p cal-
culations. We have listed both the masses for Ao ——0
obtained directly &om our calculations and those near I'
«r 4e P 0 (mht„mp„m, ) calculated with the expres-
sions given in Eqs. (46) and (47) of Ref. 17. The exper-
imentally corrected effective mass values given in Table
II were calculated using the following scheme: First, we
determine the matrix elements P2, Q2, and Rz in (6)
using the energies in Table I and the effective masses in

TABLE II. Effective masses of the p-like valence band
states and lower s-like conduction band state (m4) of dia-
mond calculated in the present work. m~ is the calculated
effective mass at the conduction band minimum located in the
Brillouin zone at —(0.742, 0, 0). mq, ms, and ms represent
the hole masses in the absence of spin-orbit splitting while
mhh, mlh, and m, represent the physically more meaning-
ful hole masses including the spin-orbit splitting at I'. The
LMTO-corrected effective masses in the third column are cal-
culated Rom the LDA effective masses in the second column
corrected for the discrepancy between the experimental and
calculated energy gaps.

TABLE III. Matrix elements (in atomic units) and other
band parameters at I' obtained by the LMTO and k p cal-
culations. If we assume that A' is due exclusively to the
interaction of I'2, ' with I'25' we obtain for the corresponding
matrix element P" = 0.

F
M
G
P

B
~III

—0.5325
—1.868
—0.520

0.538
0.708
0.709

—0.786
0.7480

20-
C-c

Table II calculated with the LMTO method in the local-
density approximation. These matrix elements are solely
determined by the wave functions and, therefore, they
are expected to be well described by the LDA approx-
imation. From P2, Q, and Rz, and the experimental
energy values in Table I, we obtain the renormalized (or
corrected) effective masses in the second column of Table
II. In Table III we give the matrix elements and param-
eters obtained from the LMTO and k p calculations.

In Table IV we list the corrected Luttinger parameters.
These can also be derived &om the corrected effective
masses given in Table II. Also shown are all the values
for the Luttinger parameters reported to date. As can
be seen, there are considerable discrepancies among the
results. The values of Bashenov, Gontar, and Petukhov
and Lawaetz, however, agree quite well with our data.

In Fig. 2 we show the upper valence band structure
and lower conduction band structure at the I' point in
the (110) direction calculated with the 16 x 16 k . p
Hamiltonian using the experimental direct gap values.
Furthermore, we obtain &om the 16 x 16 k p Hamil-
tonian band structure analysis values for the I' 5' p-like

100m1
111m1
110m1
100m2
111m2
110m2
100m3
111m3
110m3

m4
mJ
mao

100
mhh

111
mhh

110
mhh

100
mph

111
mlh

110
mlh

LMTO (LDA)
0.482
0.147
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2.375
0.258
0.292
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0.575
0.519
0.244
0.196
0.203

LMTO corr.
0.466
0.198
0.232
0.366
0.778
0.366
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FIG. 2. The upper valence and lower conduction band
structures of diamond as calculated from the 16' 16 k p
model in the (110) direction. 0 (1) on the z axis corresponds
to the I' point (K point). The zero of energy has been chosen
at the I'8+" state. The inset shows the detailed band structure
of the upper valence band close to the I' point.
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TABLE IV. Luttinger parameters for diamond.

Present work
Lawaetz
Eremets
Bashenov'
Bagguley
Rauch
Kono

Reference 5.
Reference 1.

'Reference 6.

+1
2.54
4.62
4.24
2.19
2.16
0.94

0.67, 0.67

'72
—0.10
—0.38

0.82
—0.12
—0.23

0.22
—0.57, —0.98

'Y3

0.63
1.00
1.71
0.87

—0.15
0.25

—2.23, 0.56

"Reference 7.
'Reference 8.
Reference 9.

0.18
—0.61
—1.69
—0.58

—3.50, —0.98

conduction band effective masses:

m~ ——0.340,
m2 ——1.252,
m", "= 0.5335.

ner we obtain the corrected value of m~ ——0.341. Such
corrections should alter little the value of m~~ which is
determined by much larger gaps.

V. CONCLUSIONS

These values can, of course, be obtained directly from a
k ~ p analysis similar to that presented above in the s-
like conduction and p-like valence band states. The most
important conclusion &om Fig. 2 is that the valence band
maximum occurs at I', contrary to a suggestion in Ref. 9.

We found the conduction band minimum to be located
at —(0.742, 0, 0), i.e., close to the X point of the Bril-
louin zone, see Fig. 1. Our LMTO calculations give the
following values for the lower conduction band effective
masses at the conduction band minimum and the indi-
rect band gap in eV [m~~ is the efFective mass in the (100)
direction and m~ is the efFective mass in the (010) direc-
tion]:

m'DA = 1.5O
ll

mLDA 0.26,
Es ~(indirect) = 3.74 . (10)

In analogy with the previous prescription, we correct
these masses for the difference between the LDA value
of the indirect gap (3.74 eV) and the experimental one

(5.48 eV). This difference re8ects itself in a difference by
the same amount, i.e., 1.74 eV, between the direct gap at

;„which determines the mass at 6;„.In this man-

In summary, we have performed self-consistent scalar-
relativistic LMTO band-structure calculations of dia-
mond in the local-density approximation. Prom the wave
functions, matrix elements for the k . p Hamiltonian are
determined which are expected to be accurate although
obtained with the LDA approximation: quasiparticle cor-
rections to the Hamiltonian leave the wave functions
more or less unaffected. The matrix elements so ob-
tained and the experimental energy gap values allow us
to calculate renormalized effective masses and Luttinger
parameters for diamond, parameters which are still un-

der debate for this material. Following the determination
of renormalized parameters, we perform a 16 x 16 k ~ p
Hamiltonian analysis in order to obtain the detailed band
structure of the upper valence and lower conduction band
states around the I' point in the (110) direction and to
settle the question of the possible existence of valence
band maxima away from I. Our calculations show that
the valence band maximum is located at the I' point.

ACKNOWLEDGEMENT

M.W. acknowledges financial support from the Danish
National Science Research Council (Contract 11-0855-1).

M. I. Eremets, Semicond. Sci. Technol. 6, 43S (1S91).
T. R. Anthony, W. F. Banholzer, J. F. Fleischer, Lanhua
Wei, P. K. Kuo, R. L. Thomas, and R. W. Pryor, Phys.
Rev. B 42, 1104 (1990).
Thin Film Diamond, Royal Society Book, edited by A. Let-
tington and J. W. Steeds (Chapman and Hall, London,
1994).
M. Cardona and N. E. Christensen, Solid State Commun.
58, 421 (1986).
P. Lawaets, Phys. Rev. B 4, 3460 (1971).
V. K. Bashenov, A. G. Gontar, and A. G. Petukhov, Phys.
Status Solidi B 108, K139 (1981).
D. M. S. Bagguley, G. Vella-Coleiro, S. D. Smith, and C. 3.

Summers, J. Phys. Soc. Jpn. 21 (Suppl. ), 244 (1966).
C. J.Rauch, in Proceedings of the International Conference
on the Physics of Semiconductors, Exeter, Ig6g, edited by
A. C. Sticldand (The Institute of Physics and the Physical
Society, London, 1962), p. 276.
j. Kono, S. Takeyama, T. Takamasu, N. Miura, N. Fuji-
mori, Y. Nishibayashi, T. Nakajima, and K. Tsuji, Phys.
Rev. B 48, 10917 (1993).
U. Rossler, Solid State Commun. 49, 943 (1984).
M. Cardona, N. E. Christensen, and G. Fasol, Phys. Rev.
B $8, 1806 (1988).
O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
D. Glotzel, B.Segal, and O. K. Andersen, Solid State Com-



50 LINEAR MUFFIN-TIN-ORBITAL AND k.p CALCULATIONS. . . 18 059

mnn. 36, 403 (1980).
G. B. Bachelet and N. E. Christensen, Phys. Rev. B 31,
879 (1985).
M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390
(1986).
M. RohlSng, P. Kruger, and J.Pollmann, Phys. Rev. 8 24,
17791 (1993).
E. O. Kane, in Semiconductors and Semimetals, edited by
R. K. Willardson and A. C. Beer (Academic, New York,
1966), Vol. 1, p. 75. Note that the expressions of I", G,
and H~ found in the literature difFer sometimes from those
given here and in the present work by a factor of 2.
K. Ya. Shtivel'man, Fiz. Tverd. Tela (Leningrad) 5, 348

(1963)[Sov. Phys. Solid State 5, 252 (1963)].
G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98,
36/ (1955).
N. E. Christensen, Phys. Rev. B 80, 5753 (1984).
T. Brudevoll, D. S. Citrin, M. Cardona, and N. E. Chris-
tensen, Phys. Rev. B 48, 8629 (1993).
G. B. Bachelet, H. S. Greenside, G. A. BarafF, and M.
Schliiter, Phys. Rev. B 24, 4745 (1981).
Numerical Data and Functional Relationships in Sci-
ence and Technology, edited by K. H. Hellwege and O.
Madelung, Landolt-Bornstein, New Series, Group III, Vol.
22, Pt. a (Springer, Berlin, 1982).


