
PHYSICAL REVIEW B VOLUME 50, NUMBER 24 15 DECEMBER 1994-II

Modiffed muffin-&in potential for the study of semiconductors using
the orthogonalixed-plane-wave method

Michihcde Kitamura
Depttrtrnent pf Qiectricgi gnd Qiectronic Engineering, Utsunorniya Uni uersity, Utsunorniya 321, J&pan

(Received 22 June 1994; revised manuscript received 29 August 1994)

The positions of empty lattices (EL's) are defined as the positions obtained by shifting the real lattices

by ao/2 along the [100] direction and, in order to study how the crystal potentials of semiconductors
with small packing fraction should be represented within the framework of a muSn-tin (MT) approxima-
tion, the MT potentials are constructed on the EL sites. Furthermore, in order to take into account the
emect of a nonspherical potential due to the site symmetry of Tq, the nonspherical potential whose angu-
lar momentum I =3 is built up. The electronic structures of the common semiconductors Si, Ge, GaAs,
ZnSe, InSb, and CdTe are calculated by a method in which the nonspherical potential and the MT po-
tential on the EL site are introduced into the orthogonalized-plane-wave method within the framework
of the MT approximation based on the self-consistent-field atomic-structure calculations. It is shown
that the symmetry of the potential consisting of MT potentials on real atoms and EL sites coincides with
that of the nonspherical potential, which is closely related to sp hybrid orbitals, and that the calcula-
tions including both the nonspherical potentials and the MT potentials on the EL sites predict fairly well
the experimental facts rather than the calculations using only the MT potentials on the real atoms.

I. INTRODUl=l ION

There are many different kinds of electronic structure
calculations of condensed matter, ' which differ in how
the potential is constructed and what mathematical ex-
pansion of the wave function is used. However, all calcu-
lations should give reasonable answers if the appropriate
potential is used and if the expansion is complete enough.
Actually, I studied the electronic structures of
perovskite-type compounds and a K2PdC16 crystal and
the elastic properties of semiconductorss' by the extend-
ed Hiickel tight-binding (XHTB) (Refs. 3, 4, and 6) and
universal tight-binding parameters (UTBP) (Ref. 5)
methods, and obtained results which are consistent with
the corresponding experiments. On the other hand, re-
cently I calculated the electronic structures of rare-earth
hexaborides RB6 with no adjustable parameters using a
modified orthogonalized-plane-wave (MOPW) method
within the framework of the muffin-tin (MT) approxima-
tion based on self-consistent-field (SCF}atomic-structure
calculations, and also found results which are reasonable
for a comparison with experiments. In the MOPW
method, the wave function is expanded by the linear com-
bination of the wave functions of the orthogonalized-
plane-wave (OPW} and tight-binding (TB) methods, so I
think that the MOPW method is also applicable to the
study of the electronic structures of magnetic semicon-
ductors (MS's} like Cd& „Mn„Te in which the 3d orbits
of Mn atoms form the TB basis sets in the MOPW
method. In the present paper, before proceeding to the
study of MS's by the MOPW method, we consider as a
first step how the electronic structures of zinc-blende-
structure semiconductors (ZBS's}which are the host crys-
tals of MS's, are calculated by the OPW method within
the framework of the MT approximation based on the

SCF calculations, because for the study of the valence-
and conduction-band structures of the common semicon-
ductors it is not necessary to take into account the effect
of the localized d or f orbits such as the 3d orbits of Mn
atoms.

In the present paper, the well-known OPW method
based on the MT approximation is adopted for the study
of the ZBS's, so the reader may think that there is no ad-
ditional finding to be mentioned. However, it is well
known that the MT approximation does not work well
for crystals with a small packing fraction. Actually, the
packing fraction of the ZBS's is small, e.g., that of rare-
earth hexaborides is 74.7%, but that of Si is 34%, so the
electronic structures of the ZBS's have usually been cal-
culated by using the TB method or pseudopotential
method instead of the method based on the MT approxi-
mation. One of the aims of this paper, therefore, is to
show how the crystal potential of a crystal with a small
packing fraction should be represented within the frame-
work of the MT approximation. In addition to this fact
of small packing fraction, furthermore, ZBS's form sp
hybrid orbitals as a reflection of the effect of the non-
spherical potential. Therefore, in the study of ZBS's, the
effect of the nonspherical potential must be taken into ac-
count as accurately as possible even in the method based
on the MT approximation. In many calculations within
the framework of a scattering mechanism based on the
MT approximation, e.g., the band-structure calculation
based on a linearized-augmented-plane-wave (LAPW)
method of a magnetic semiconductor Cd& „Mn„Te car-
ried out by Wei and Zunger, ' the most essential quantity
is the phase shift for an electron scattering by the MT po-
tential. I have also calculated the x-ray-absorption near-
edge structures (XANES) of some crystals using a
multiple-scattering (MS) theory based on the MT approx-
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imation. "" Usually the phase shift is calculated for
only the spherical potential, so if we wish to study the
electronic structure of matter in which the effect of the
nonspherical potential cannot be neglected, we have to
solve the scattering problem for the nonspherical poten-
tial. This is not so easy a problem. In the OP%' method,
however, since the effect of the crystal potential is evalu-
ated by an integrated form such as a Fourier component
of the crystal potential, once the nonspherical potential is
built up the effect of the nonspherical potential can easily
be evaluated as compared with the methods based on the
scattering mechanism like AP% or Korringa-Kohn-
Rostoker (KKR). This is the reason why, in the present
paper, the OPW method based on the MT approximation
is adopted for the study of electronic structures of the
ZBS's whose packing fraction is small and in which the
effect of the nonspherical potential cannot be neglected.
The second purpose of this paper is to do the calculation
taking into account the effect of the nonspherical poten-
tial as correctly as possible and to compare the calculated
results with the experiments or other calculations. I.et us
remember that a calculation should give a reasonable
answer if the appropriate potential is used and if the

mathematical expansion of the wave function is complete
enough.

The aim of this paper is to show how the electronic
structures of zinc-blende-structure semiconductors
(ZBS's) are calculated by a method based on the MT ap-
proximation. Since the effect of the nonspherical poten-
tial cannot be neglected in ZBS's, the nonspherical poten-
tial due to the site symmetry of Td is constructed, and the
Fourier components for the nonspherical potential are
added into those for the MT potential. Moreover, in or-
der to increase the packing fraction, the MT potential on
an empty lattice (EL) site is introduced into the OPW
method within the framework of the MT approximation
based on the SCF atomic-structure calculations.

II. THEORY

A. Crystal potential

The crystal potential V„„(r) consists of the spherical
V,',„'(r) and nonspherical V,'",„'(r) terms, and is given as
follows:"

(lc)

V(ns)(r) V(ns)(r) 2a (3/8 )
3 (s)(r) — 3 (ns)(r)

V, (r)=V,"(r)+ V,'"'(r), (»)
V" (r) = V"(r)—6a,„(3p"(r)/8m )' (lb)

V(ns)(r) V(ns)(r) 6a,„(3/8')r))/3[ tp(')(r)+p("s)(r) j
—p

' (r)l/3]

Usually, since the ratio p'"'(r)/p"(r) of the spherical and nonspherical electron densities can be regarded as a small,
Eq. (lc) is further approximated as follows:

(ld)

The spherical term V,"(r) of the V, (r) can be written in more explicit form by using the V,"(r) and p"(r) evaluated
as follows:

R +r
V,"(r)=V (r)+(2r) 'gR ' I r W(r )dr + +25q /R

+@0 a

R +r
p"(r)=p"(r)+(2r) 'gR ' J r p"(r )dr

a%0 a
(2b)

where a function W(r ) is the short-range function intro-
duced in order to separate the long-range Coulombic part
due to the charge transfer (whose value is given by 5q )
from the atomic Coulomb potential V (r ), and is
de6ned as

W(r )=V (r ) 25q /r— (2c)

By using the spherical term V,"(r) of the crystal po-
tential V,~(r), the MT potential characterized by the
MT radius and the MT zero is constructed. From the
physical point of view, the MT radius should be decided
from the point in which crystal potentials calculated for

two different atoms separated by the minimum intera-
tomic distance cross, and the MT zero should be given by
the value obtained by averaging the crystal potentials
over the whole volume except for the MT spheres re-
gion, "however, it is well known that in the ordinary cal-
culations based on the MT approximation, if the MT zero
obtained from the above scheme is used on the electronic
structure calculations of matters, the bands subsequently
found do not agree with the experimental facts, and that
this discrepancy can be resolved by varying the magni-
tude of the MT zero until the agreement with the experi-
ment is obtained. ' ' %e will see in Sec. III that an aver-
aged value of the MT potentials on the empty lattice sites
corresponds to this energy variation for the MT zero.



50 MODIFIED MUFFIN-TIN POTENTIAL FOR THE STUDY OF. . . 18 009

B. Fourier components of the nonspherical potential uL(r, r)=( —8nZ /21+1)(r IR +')Yl»(P ) . (4)

From Eq. (ld), the nonspherical potential V';~ (r) is
written as

V',~ (r)= g g gal(r, r)YL(9),
a+01%0 m

(3a)

Here, since vL (r, r) and gL (r, r) are defined by

J dF Yg (f)V (r ) and Jak YL(9)p"(r ), respectively, "
Eq. (3b) is further evaluated as

ul (r, r)= f cubi' YL (P)h(r, r), (3c)

$(r, r)=V;(r ) —2a,„(3/8m) p'(r) 2 p'(r ), (3d)

where

V;(r )=—2Z Ir +U(r ),
V U(r }=—8n.p"(r } .

(3e)

(3f}

Here, in order to represent the coefficient ul (r, r) given
by Eq. (3c) as an analytical form, if we assume that the
potential h(r, r } is given by —2Z» /r with a constant
value Z', the coefflcient ul (r, r) can be evaluated as fol-
lows:

uL (r, r)=vL (r, r) —2a,„(3/8m)'~ p"(r) gz (r, r) .

(3b)

It is noted here that the constant value Z should be
smaller than the atomic number Z because of the exist-
ing repulsive electron-electron interaction U(r ) which
satisfies the Poisson equation defined by Eq. (3f). By the
way, group theory tells us that the maximum angular
momentum l,„of the nonspherical potential for a site
symmetry of T& is 3, so if we focus our attention on only
the largest nonspherical potential and the first-nearest-
neighbor (FNN} atoms whose distance is do, the non-
spherical potential V,'g'(r) can be represented by the
third order of cubic harmonics:

V,'~'(r)=( —40ZFNN/ado)xyz .

Here it should be mentioned that if the nonspherical po-
tential of a cation is given by a form of Eq. (5), i.e., —xyz,
that of an anion is given by the form of xyz, and further-
more it is instructive to note that the symmetry of the
nonspherical potential, xyz, is closely related to the fact
that sp hybrid orbitals form an asymmetric electron den-
sity which is large for the [111], [111], [111],and
[111] orientations and small for the [111], [111],
[111],and [111]ones.

Fourier components (G'~ V,'"'(r) ~G} for the non-
spherical potential given by Eq. (5), therefore, are evalu-
ated as follows:

&MT
(G'~ V,'~ (r)~G}=g(N„/V)e "( 4@i)(——40Z FN/N~3d )(0q„q q, /q3) f r j3(qr)dr,

0
(6)

where the meaning of symbols q, d„, N„and V is the
same as in Ref. 7.

In the practical calculations of the band structures, we
use the value of Z~~N as a parameter which is adjusted so
that the calculated result coincides with the experiment
or other calculations.

C. MT potential on the empty lattice site

We define the positions of the empty lattices (EL's) as
the positions obtained by shifting the real lattices by ao/2
along the [100] direction, where ao is the lattice constant.
The unit cell consisting of both the real and empty lat-
tices is shown in Fig. 1. This unit cell consists of eight
small cubes, and each cube forms a bcc structure. The
MT potentials on the EL sites, hereafter denoted as EL-
MT potentials, are first principally calculated by the same
method as described in Sec. II A with no difBculties. This
point will be discussed below. There are two kinds of
EL's: One is located on the position originating from the
shift of a cation, and the other on the position originating
from that of an anion. Therefore, the MT radius for the
EL-MT potential of the former is given by that of the cat-
ion, and that of the latter is given by the MT radius of the
anion. It is easily understood that by introducing the

EL's, the packing fraction becomes about 68%, which is
two times larger than that of the ZBS's constituted from
only the real lattices.

We have found that the packing fraction is increased
by introducing the EL's. However, the most essential
point to be mentioned in introducing the EL is that the
EL-MT potential, whose origin of energy is of course the
MT zero, is repulsive, contrary to that for the real atom.
This is understood as follows: The EL can be regarded as
an atom with atomic number Z =0 (hereafter we call it
an empty atom}, so the atomic potential of the empty
atom is zero. Roughly speaking, the crystal potential for
an atom denoted by index y is given by the sum of the
atomic potential of itself (y atom) and those of the a
atoms (any } surrounding the y atom. Therefore, if we
select an empty atom as the y atom, it can be seen that
the crystal potential for the empty atom is constructed
from the atomic potentials of the real atoms surrounding
the empty atom. The influence of the atomic potentials
of the surrounding real atoms to the empty atom site in-
creases with increasing distance r from the EL point.
Since the atomic potential of the real atom is a
Coulomb-like attractive potential, like the crystal poten-
tial for the empty atom, we can obtain a potential which
is negative and decreases with increasing distance r. The
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atomic chain through the [100] direction of the ZBS's.
The crystal potential for this one-dimensional atomic
chain is shown schematically in Fig. 2. If we wish to
study the electronic structure of this chain on the basis of
the MT approximation, it is natural to adopt the value of
ao/2 as the MT radius; however, we are now considering
ZBS's, so the MT radius must nearly be given by half the
bond length do/2. Therefore, if we wish to study the
electronic structure of ZBS's on the basis of the MT ap-
proximation, we must evaluate the crystal potential on
the interstitial region between real atoms as correctly as
possible. The potential on the interstitial region shown in
Fig. 2 is just the crystal potential for the empty lattice. It
is expected that the MT zero is nearly located on the en™
ergy position indicated by a broken line in Fig. 2, so that
the MT potentials of ZBS's become an attractive form for
real atoms and a repulsive one for EL's.

D. OP% band-structure calculations

Cation

Anion

& Empty Lattice

Empty Lattice

FIG. 1. Unit cell for zinc-blende-structure semiconductors
used in the present paper. Open and hatched circles represent
the cation and anion, respectively, and the structure constructed
from those real atoms corresponds to a so-called "zinc-blende
structure. " Open and solid triangles represent empty lattices
(EL's) defined in the present paper, and the positions of those
EL's are defined, respectively, as the positions obtained by shift-
ing the cation and anion by ao/2 (ao is the lattice constant)
along with the x axis. Note that this unit cell consists of eight
small cubes, and each cube forms a bcc structure.

crystal potentials for the real atoms are obtained in the
usual way which does not depend on whether the EL's
are considered or not, as already mentioned in Sec. II A,
the MT zero is given by the value obtained by averaging
the crystal potentials over the whole volume except for
the MT spheres region. Therefore, the resultant MT po-
tentials measured from the MT zero become attractive
for the real atoms and repulsive for the EL's. Circles and
triangles indicated in Fig. 1 show the real atoms and
empty lattices, respectively. Here it is very interesting to
point out that the symmetry of the potential consisting of
MT potentials on the real atoms and empty lattices coin-
cides with that of the nonspherical potential, i.e., xyz, be-
cause the potential for an electron propagating in a crys-
tal is attractive for the real atoms and repulsive for the
empty lattices. Since the symmetry of xyz is the same as
that of the sp hybrids, for the study of the electronic
structures of ZBS's by a method based on the MT ap-
proximation it would be important to consider the MT
potentials on the EL sites in addition to those on the real
atoms.

We have found that the MT potentials are attractive
for real atoms and repulsive for EL's. This fact is easily
understood if we focus our attention to a one-dimensional

The formulation of OP% band-structure calculations
within the framework of the MT approximation based on
the SCF atomic-structure calculations, which has already
been given in Ref. 7, remains the same even if the EL-MT
potentials are considered. The MT potentials are first
principally calculated from Eqs. (lb), (2a), and (2b) by us-

ing the atomic data obtained from the SCF atomic-
structure calculations, so the electronic structures of the
ZBS's are calculated with no empirical parameters, ex-
cept for how many OPW's are used in the practical calcu-
lations. In order to check how many OP%'s are enough
to obtain the converged result, first I carried out calcula-
tions using 89, 113, 181, and 259 OPW's. In these four
calculations, the amplitudes G,„of the maximum
reciprocal-lattice vectors are given by &19/2, &5, 2~2,
and 3 in units of 4m. /ao, respectively, so the correspond-
ing kinetic energies Gm, „are, for example, evaluated as
97.0, 102.1, 163.3, and 183.8 eV for Si. As a result, I
found that 113 OPW's are suScient to obtain the con-
verged results for all the valence bands and for the con-

I ) BG j 0 I r ect l ort

V 0CUUPl
Leuel

ao/2 &o r'2,

do/2 I do/2 do/'2 . do/2

— a—MT zero

L-
m

LLI

FIG. 2. Schematic diagram for the crystal potential of a one-
dimensional atomic chain through a [100] direction of zinc-
blende-structure semiconductors (ZBS's). The meaning of cir-
cles and a triangle is the same as in Fig. 1. The muffin-tin (MT)
zero to be expected for the ZBS's is indicated by a broken line.
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duction band up to about 10 eV from the conduction-
band bottom; that is, we can say that in the electronic
structure calculations for ZBS's based on the OPW
method, the mathematical expansion of the wave func-
tion is complete enough if we use 113OPW's and if we do
not consider the structures of the higher conduction band
distributed on an energy region larger than about 10 eV
from the conduction-band bottom. This is the same num-
ber of OPW's adopted by Herman, Kortum, and Kug-
lin, ' who calculated the energy-band structure of silicon
using the empirically adjusted OPW method. In the
present paper, therefore, let us consider only how the
crystal potentials of ZBS's should be represented within
the framework of the MT approximation.

The densities of states (DOS's) are accumulated from
2048 numbers of the sampling points defined within the
first Brillouin zone as the forms of histograms with an en-
ergy resolution of 0.25 eV. It is of course possible to cal-
culate the DOS's in more detail if we do not consider the
large CPU time required for those calculations.

III. RESULTS AND DISCUSSION

A. MT potentials

As an example, the MT potentials calculated for CdTe
are shown in Fig. 3 along with the [111]and [100]direc-
tions. The calculated MT zero is —13.0 eV measured
from the vacuum level, and the calculated MT radii are
2.5351 and 2.7674 a.u. for Cd and Te atoms, respectively,
so those values are also equal to the MT radii of the EL-
MT potentials originating from the shifts of cation and
anion. For the EL, the spherical term V,"(r) of a crystal
potential is constructed from the sum of the integrated
values of the short-range-type functions W(r ) and
p"(r~) in the region between R~ rand R +r ap—art
from the Madelung term given by a constant value, be-

cause V (r) and p"(r) in Eqs. (2a) and (2b) are zero for
the empty atom. Therefore, if we consider a very small
distance r measured from the EL point, the integrated
value also becomes very small. Since the atomic potential
and the atomic electron density for the empty atom are
zero, the resultant crystal potential for the empty atom is
given by zero (= vacuum level) in the very small value of
r. This is the reason why the EL-MT potential forms a
pointed structure in the vicinity of the EL point. It is
noted that the Fourier components of the crystal poten-
tial are evaluated by the integral defined by Eq. (B6) in
Ref. 7, so that the pointed structure in the vicinity of EL
point of the EL-MT potential makes no significant contri-
bution to the Fourier components of the crystal potential.
Hereafter, we call the EL-MT potential the "bell poten-
tial" from its shape.

The energy value obtained by averaging the bell poten-
tials, which is —9.08 eV measured from the vacuum lev-
el, is indicated by a broken line in Fig. 3. As already
mentioned in the second paragraph in Sec. IIA, if this
value VMT'z' is used as a MT zero, instead of the MT zero
VMTz' obtained by averaging the crystal potentials over
the whole volume except for the MT spheres region, it is
expected that the results obtained by the ordinary calcu-
lational procedure will be improved.

B. Results for CdTe

First, the density of states (DOS's) obtained by using
the ordinary calculations procedure, i.e., without the bell
potentials, are shown in Figs. 4(a) and 4(b). The DOS's
drawn in Figs. 4(a} and 4(b} have been obtained by using
the VMTz' and VMTz', respectively, mentioned in Sec.
III A as the MT zero. Prom the meaning that there is no
energy gap in Fig. 4(a) but well-resolved gap in Fig. 4(b),
we can see that, within the framework of the ordinary
calculational procedure, results are fairly improved by
varying the magnitude of the MT zero, and that this vari-
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Flax. 3. Muffin-tin (MT) potentials on Cd, Te, and empty lattice (EL) sites of CdTe drawn through the [111]and [100] directions.
In the present paper, the MT potentials on the EL's (EL-MT potentials) are referred to as be11 potentials from those shapes. The
meaning of the circles and triangles is the same as in Fig. 1. Note that the calculations of the MT potentials are carried out in first
principles for not only the real atoms but also for the EL s. The energy value obtained by averaging the bell potentials is also indicat-
ed by a broken line.
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FIG. 4. The density of states (DOS s) of CdTe obtained from the difFerent four calculational conditions. The bell potentials are not
used in (a) and (b), and are used in (c) and (d). In (b), the value VMT~z' obtained by averaging the bell potentials has been used as a
muSn-tin (MT) zero, instead of the MT zero VMTz

' obtained by averaging the crystal potentials over the whole volume except for the
MT spheres region. In (a), (c), and (d), VMTz' has been used as the MT zero. Moreover, in (d), the nonspherical potential de6ned by
Eq. (5) has been introduced by adjusting the value of ZFN„so as to fit the experimental value of a direct energy gap of CdTe. The
comparison of the calculated DOS's with the others is made in (d), in which the DOS's calculated by Wei and Zunger (Ref. 10) on the
basis of the linearized-augmented-plane-wave (LAPW) method and the photoemission spectrum observed by Eastman et a1. (Ref. 17)
are shown by solid and broken curves, respectively. Note that the spectrum shown by a one-dot broken curve around —9 eV in (d) is
the DOS's that originated from the Te Ss level roughly estimated by Eastman et al.

ation would be closely related to the existing of the bell
potentials.

Next, the DOS's calculated by introducing the bell po-
tentials in addition to the MT potentials on real atoms
are shown in Fig. 4(c), and furthermore those obtained by
using not only the bell potential but also the nonspherical
potential, which is adjusted by the value of Z„'NN so that
the direct energy gap coincides with the experimental one
of 1.59 eV at 4 K (Ref. 16), are shown in Fig. 4(d}. Here
it is noted that the results in Figs. 4(c) and 4(d) have been
obtained by using the VM&z as the MT zero. By com-
paring the calculated DOS's drawn in Figs. 4(c) and 4(d),
we find that (1) the width and shape of the upper valence
band are almost the same; (2) the lower valence band in-
dicating the sharpened shape is located in nearly the
same energy region; (3) the energy gap estimated from the
DOS's is exactly the same; and (4) the shape of the con-
duction band is very similar. The facts mentioned above
explicitly indicate that in CdTe, the efFect of the non-
spherical potentials taken into account by Eq. (5) is not so
large. Actually, the adjusted value for the ZFNN was
2.34, so the resultant absolute value of the energy of the
nonspherical potential on the midpoint of the bond was
3.33 eV. We will see in Sec. III C that the nonspherical
potential defined by Eq. (5) makes a significant contribu-
tion to the electronic structure of Si.

Finally, let us compare the calculated DOS's with the
experiment and other calculation. The DOS's calculated

using the LAPW method by Wei and Zunger' and the
photoemission spectrum observed by Eastman et ol. '

are drawn by solid and broken curves, respectively, in
Fig. 4(d). Here it is noted that Wei and Zunger used the
same value of 2.53 a.u. for all the atoms as the MT ra-
dius, but I could not recognize the value they used for the
MT zero because there is no description of the MT zero.
Moreover, the DOS's calculated by Wei and Zunger have
not been indicated by an absolute scale, so there results
have been drawn in Fig. 4(d) in such a way that the am-

plitude of the upper valence band nearly coincides with
that of mine. From the comparison of the present result
with Wei and Zunger's and the experiment, we can see
that (1} the width and shape of the calculated upper
valence band are almost the same and that the experi-
mental spectrum is fairly well predicted by both calcula-
tions; (2) the width and the shape of the conduction band
distributed on the energy region up to about 3 eV from
the conduction-band bottom are also nearly the same; but
(3) for the lower valence band originating from a Te Ss
level, there is a not negligible difference between the
present result and Wei and Zunger's, and from a compar-
ison with the experimental spectrum indicated by a one-
dot broken curve; and (4) the present result predicts the
energy position of states originating from the Te 5s level
rather better than Wei and Zunger's result.

From the above discussion, it is concluded that in 8.

CdTe, the e8ect of the nonspherical potential is not so
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large, and that for the study of the electronic structure by
the method based on the MT approximation it is essential
to consider the bell potentials.

C. Results for Si

The dispersion relations obtained for several calcula-
tional conditions are shown in Fig. 5 along with the 5
axis. The results drawn in Figs. 5(a), 5(b), and 5(c), re-
spectively, are the results calculated by using 0.0, 10.0,
and 14.0 as the values of ZFNN without the bell poten-
tials, and those in Figs. 5(d) and 5(e) the results calculated
by using 0.0 and 10.0 as the ZF'NN and including both the
MT potentials for the real atoms and the bell potentials.
In the present paper, I am interested in how the electron-
ic structure of matter with small packing fractions should
be treated by a method based on the MT approximation.
Therefore, if we are not interested in the method but only
in the electronic structures, we should calculate the elec-
tronic structures of matter by one method in some
methods widely accepted. As already described in Sec. I,
there are many methods to calculate the electronic struc-
ture of matters, and for the electronic structure calcula-
tions of zinc-blende-structure semiconductors (ZBS's)

with small packing fractions, it is mell known that the
empirical pseudopotential method (EPM} used by Cohen
and Chelikowsky leads to excellent results not only for
the valence band but for also the conduction band, be-
cause in the EPM, Fourier components of the pseudopo-
tential are adjusted so as to fit the experiments. In the
present paper, therefore, results calculated by using the
EPM are used as a standard for the comparison of the
present results with others when there are no experimen-
tal data. From the comparison of the present results with
the result drawn in Fig. 5(f) which has been calculated by
Cohen and Chelikowsky, we can see that the dispersion
relation drawn in Fig. 5(e} well represents that of Si. In
order to see how the energy eigenvalue is changed by the
calculational condition, energies for irreducible represen-
tations I », I z5, I, and X„are plotted in Fig. 6 as a
function of ZFNN for two cases: one is the case without
the beH potentials, drawn in Fig. 6(a), and the other the
case including all the potentials, shown in Fig. 6(b). I
have already mentioned that the value of ZFNN is decided
in such a way that the calculated result coincides with the
experiment or other calculations. If we approximately
regard the indirect energy gap of Si as the difference of
energies on the X&, and I 25, in the case without the bell
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FIG. 5. Dispersion relations of Si calculated
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and 14.0 as the value of ZFNN without bell po-
tentials, and the results in (d) and (e) have been
obtained by using 0 and 10.0 as the value of
ZFNN and including the MT potentials for
both real atoms and bell potentials. For the
comparison, the dispersion relation calculated
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FIG. 6. Changes of the energy eigenvalues for r, r,'„r»,
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izing the nonspherical potential defined by Eq. (5). Results in
(a) have been obtained without the bell potentials, and those in
(b) with the MT potentials for both real atoms and bell poten-
tials. Note that the difference of the energy eigenvalues for X„
and I &5 approximately gives an indirect energy gap for Si,
whose experimental value is 1.1696 eV at 4 K (Ref. 18).

potentials we obtain 18 as the value of ZFNN since the in-
direct gap of Si is known experimentally as 1.1696 eV at 4
K. ' Using this value, the width of the valence band and
the direct energy gap on the I point are determined as
10.7 and 5.9 eV; however, there seems to be a consider-
able difference between these values and the values of
12.4 eV for the former and 3.7 eV for the latter, which
have been deduced from the result of Cohen and Cheli-
kowsky. Furthermore, it is noted that the adjusted value
18 for Z„'NN is larger than 14, which is the atomic nurn-
ber of Si. From the same analysis for the case including
both MT potentials on real atoms and bell potentials, we
obtain 10 as the value of the Z„'NN and obtain 11.6 eV as
the width of the valence band and 3.8 eV as the direct en-
ergy gap on the I point. It is found that these values are
in good agreement with the values of 12.4 and 3.7 eV of
Cohen and Chelikowsky.

The DOS's obtained by using the value of 18 as the
ZFNN without bell potentials and those using 10 as the
Z~~N with bell potentials are shown in Figs. 7(a) and
7(b), respectively, together with the photoemission spec-
trum observed by Ley et al. ' and the DOS's calculated
by Cohen and Chelikowsky, CC-DOS's, which are
shown in Fig. 7(b} by broken and solid curves. By com-
paring the present results with the experiment and CC-
DOS's, we can see that (1) the calculation including both
the nonspherical and bell potentials well predicts the ex-
perimental fact, and (2} the agreement between the calcu-

-l2 0
Energy (eV)

8 12

lated DOS's shown in Fig. 7(b) and the CC-DOS's is ex-
cellent for not only the valence band but also the conduc-
tion band.

From the facts mentioned above, we can conclude that,
in Si, the effect of the nonspherical potential is not negli-
gibly small. For example, the absolute value of the ener-

gy of the nonspherical potential on a midpoint of the
bond is 17.0 eV, which is about five times larger than that
of CdTe. In order to explain the electronic structures by
a method based on the MT approximation, it is crucial to
consider not only the nonspherical potential but also the
bell potential in addition to the MT potentials on the real
atoms.

D. OveraH result

By introducing the nonspherical potentials and the bell
potentials into the OP% band-structure calculations
based on the MT approximation, I have calculated the
density of states (DOS's} for common semiconductors Si,
Ge, GaAs, ZnSe, InSb, and CdTe. The calculated DOS's
are shown in Figs. 8(a) —8(f) as shapes of a histogram to-
gether with the photoemission spectra observed by Ley
et al. ' for Si and by Eastman et al. ' for the others.
Furthermore, the DOS's for Si, Ge, GaAs, and ZnSe cal-
culated by Cohen and Chelikowsky are also drawn by
solid curves in Figs. 8(a), 8(b), 8(c), and 8(d). From a
comparison of the calculated results with the results of
Cohen and Chelikowsky, we can see that there are no
significant differences between the present results and
theirs. Moreover, the calculated results predict fairly
well the photoemission spectra if the ainplitude in the
low-energy side of the valence band is overlooked.

In the present calculations, the values of 10.0, 9.14,

FIG. 7. The densities of states (DOS's) of Si obtained from
the two different calculational conditions as follows: (a) The bell
potentials have not been used, and a value of 18 has been adopt-
ed for ZFNN. (b) The bell potentials have been used, and a value
of 10 has been adopted for ZF». The calculated DOS's are
compared with the photoemission spectrum observed by Ley
et al. (Ref. 19) and the DOS's calculated by Cohen and Cheli-
kowsky (Ref. 9), which are shown in (b) by broken and solid
curves, respectively. The energy is measured from the valence-
band maximum.
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FIG. 8. Densities of states (DOS's) calculated as a shape of the histogram for Si (a), Ge (b), GaAs (c), ZnSe (d), InSb (e), and CdTe
(f). For comparison, the DOS s for Si, Ge, GaAs, and ZnSe calculated by Cohen and Chelikowsky (Ref. 9) are indicated by solid
curves in (a), (b), (c), and (d), and the photoemission spectra observed by Ley et al. (Ref. 19) for Si, and by Eastman et al. (Ref. 17) for
others are drawn by broken curves. The energy is measured from the valence-band maximum.

8.92, 9.20, 1.30, and 2.34 have been used as those of
Z~N's for Si, Ge, GaAs, ZnSe, InSb, and CdTe. I can
say that those values are always smaller than the atomic
numbers of calculated semiconductors; however, I cannot
present the physical meaning for the values of the ZzNN's
used at the present time, because, as described in Sec.
II B, ZFNN is the constant value based on an assumption
introduced in order to represent the nonspherical poten-
tial as an analytical form. I think that the physical con-
sideration for Z~N should be given when the nonspheri-

cal potential is evaluated in a more accurate manner, e.g.,
numerical calculation.

IV. SUMMARY

The electronic structures of common semiconductors
Si, Ge, GaAs, ZnSe, InSb, and CdTe have been calculated
by using the orthogonalized-plane-wave (OPW) method
within the framework of the muSn-tin (MT) approxima-
tion based on the self-consistent-meld (SCF) atomic-
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structure calculations. In the calculations, the efFect of a
nonspherical potential originating from. the site symme-
try of T& has been considered, and. Fourier coxnponents
of the nonspherical potential have been added into those
of the MT potential. Moreover, the MT potential on the
empty lattice (EL) site, which has been called the bell po-
tential because of its shape, has been calculated in first
principles, and it has been shown that the symmetry of
the potential consisting of MT potentials on real atoms
and EL's coincides with that of the nonspherical poten-
tial rejecting the nature of sp hybrids. It has been found
that the present calculation including both nonspherical

and bell potentials predicts fairly well the experimental
fact, and we point out that for a study of the electronic
structures of semiconductors based on the MT approxi-
mation it is essential to consider not only the nonspheri-
cal potential but also the bell potential in addition to the
MT potentials on the real atoms.
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