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Using strong-coupling perturbation theory for the Hubbard model, explicit expressions are ob-
tained for the integrated weights, energy positions, and widths of the upper and lower Hubbard bands
separately, both for the optical and photoemission spectrum. In one dimension all expressions can
be explicitly evaluated using the large-U Bethe-ansatz wave function. The k-dependent moments
for the one-particle spectrum are compared with the closely related two-pole ansatz. The strong
momentum dependence of the spectra demonstrates the importance of the k-dependent correlation
functions in the spectral moments, which are often neglected. In order to estimate corrections due to
the neglect of higher-order terms (in t/U), all results are compared with numerical-diagonalization
data for intermediate-U values. The sum-rule results show a rapid spectral-weight transfer from
the high- to the low-energy regime upon doping, similar to what is observed experimentally in one-
particle and optical spectra of Cu (high-T, ) and Ni compounds. Such fast weight redistributions
as a function of the carrier density are a natural consequence of the strong correlations in these
materials. The redistribution of intensity in the optical conductivity is connected with the dilution
of the spin system by the added holes. For the one-particle spectrum the decrease of weight in the
upper Hubbard band away from half Glling can be understood by state counting at U = oo, and
the effect is strongly enhanced for small doping by both the first- and second-order terms in t/U
Altogether, the one-particle and optical spectra show the importance of the three-site hopping term.
Therefore the t-J model does not represent well the spectral properties of the Hubbard model at
large U. The local spin order is essential and determines both the k dependence of the one-particle
spectrum and the intensities in the optical spectrum.

I. INTRODUCTION

The study of the one-band Hubbard model is of gen-
eral importance since it is one of the simplest models for
interacting electrons and because the understanding of
correlated systems is still far from complete. After the
discovery of the high-temperature superconductors the
interest in this model increased greatly. The electronic
structure of the Cu02 planes resembles the spectroscopic
properties of a two-dimensional (2D) square-lattice Hub-
bard model. At the same time the correlations are strong
and are responsible for the vast amount of anomalous
(low-energy) normal-state properties observed in these
materials.

However, not only the low-energy but also the high-
energy ( eV) electronic excitations in these materials
show anomalous behavior. This is dramatically demon-
strated in particular in the optical conductivity and in the
oxygen ls x-ray-absorption spectroscopy (XAS) experi-
ments or electron-energy-loss spectroscopy (EELS) ex-

periments. In this paper we will demonstrate that these
efFects can be understood in a generic way as being a
consequence of correlations.

In the 0 1s EELS or XAS experiments an electron is
promoted from the 18 core level to unoccupied levels in
the valence band. Therefore this experiment is related
to the electron-addition spectrum and the one-particle
Green's function. Because of the strong correlations, the
undoped Cu + d compounds are insulating and the XAS
spectrum shows a low-energy peak which can be identi-
fied as the upper Hubbard band. When introducing holes
(with a concentration 2;), the chemical potential moves
into the lower Hubbard band and one observes a pre-
peak. The surprising thing is, however, that while this
peak grows with increasing x, at the same time the upper
band rapidly loses its intensity and weight is transferred
to the low-energy region. A similar efFect has been ob-
served in Li doped NiO. This disappearance of weight
kom the upper band is totally unexpected &om a single-
particle point of view since the total intensity of a band is

0163-1829/94/50(24)/17980(23)/$06. 00 17 980 1994 The American Physical Society



50 SPECTRAL PROPERTIES OF THE HUBBARD BANDS 17 981

always equal to the number of electrons it can accommo-
date, i.e., equals one per unit cell and per spin direction.

A similar rapid spectral-weight transfer has been ob-
served in optical spectroscopy. The strong interband
transition observed in insulating La2Cu04 around 2—3 eV
rapidly loses weight, which reappears in the low-energy
region (( 1 eV) in the hole doped La& Sr Cu04. At
the same time the total spectral intensity remains alxnost

constant. This phenomenon has been observed in both
electron and hole doped materials. This eKect again can-
not be explained by Bloch bands since then only a small
decrease of the 2 eV feature is expected.

In this paper we will show that the observed intensity
changes are exactly what is to be expected for correlated
systexns with U & WB, where W~ is the one-particle
bandwidth. In order to understand the general physi-
cal principles behind the phenomena observed, we will

simplify our discussion as much as possible and take the
single-band Hubbard model as our starting point.

The well-known mapping of the Hubbard model onto
the strong-coupling model in the large-U limit leads to a
decoupling of the various Hubbard bands and the band-
index becomes a good quantum number. As a result, sum
rules can be derived for the individual Hubbard bands. In
1967 Harris and Lange considered this problem. They
derived expressions for the intensities and energies of the
two Hubbard bands for the one-particle spectrum to first
order in t/U. In this article we will closely follow Har-
ris and Lange. Their approach is extended to second
order and a modified first-order expression is obtained
which has the advantage that it is electron-hole symxnet-
ric. Furthermore, similar kind of expressions will be ob-
tained for the optical spectruxn. We will show that all
sum-rule expectation values can be explicitly evaluated
in one dimension using the Bethe-ansatz solution. The
results will be compared with numerical-diagonalization
data &om small clusters for intermediate-U values. This
gives an estimate of the qualitative and quantitative ac-
curacy of the derived expressions in the intermediate-U
range. It is our aixn to give a relatively complete overview
of quantities that can be obtained &om the mapping.
Therefore we will sometimes include previous results by
Harris and Lange and others.

In recent years various numerical studies on the one-
band and three-band Hubbard models have shown that
these models can explain the observed rapid weight
changes with doping very well. ' However, such com-
puter experiments by thexnselves do not give much insight
into the physical origin of the observed weight changes.
Unger and Fulde calculated the one-particle spectrum
of the three-band model using a projection operator for-
malism and found a similar weight transfer (see also Ref.
15). Since this approach describes accurately the local
dressing of particles, it suggests that the eEect has a lo-
cal origin. This is also evidenced by the numerical data
which show only a small dependence on cluster size.

Because of the charge-transfer nature of the CuO-
based high-T superconductors, it seems more reasonable
to use a three-band model as a starting point to describe
the electronic structure. However, the added holes have
a strong tendency to form local singlets ' and the cor-

responding triplet excitation is roughly 3.5 eV (Ref. 18)
higher in energy for realistic parameters. This observa-
tion leads to a reduced Hilbert space consisting of Cu
spins and "holes" (Zhang-Rice singlets), suggesting that
a t-J or single-band Hubbard model contains the essential
dynamics for the electrons close to the chemical potential.
This equivalence of the three- and the one-band model is
further suggested by the similar low-energy spectrum ob-
served in numerical calculations. ' However, because of
the doubtful validity of the usual perturbation approach
in t„~, the Cu-0 hopping matrix element, this reduc-
tion from three bands to one band has remained an open
issue. Recently various authors have proposed an alter-
native "cell" perturbation approach, in which the
Cu02 planes are divided into Cu04 cells. Then it can be
shown that the intercell my, trix elements are small com-

pared to the intracell excitation energies and a quantita-
tive derivation of an effective one-band model becomes
possible.

In previous work ' we have shown that the charge-
transfer model in the ionic limit (small t~g) is asymmetric
between hole and electron doping. On the one hand elec-
trons behave like strongly correlated objects and the one-
particle spectral weight is strongly doping dependent. On
the other hand, oxygen holes behave like free particles.
This asymmetry is removed for large values of t„p and
both electrons and holes show a correlated behavior. This
can be explained in a natural way by splitting the contri-
bution to the one-particle spectrum into an intercell and
an intracell part.

In order to make a quantitative comparison with ex-

periment, matrix-element efFects have to be taken into
account. This is especially ixnportant for the 0 1s spec-
tra where the 18 electron is excited to a local 0 2p level.
Since the oxygen is in between two copper sites and there-
fore belongs to two Cu02 unit cells at the same time, this
implies that the final states that can be reached have

to obey the phase relation enforced by the 2p symme-

try of the oxygen orbitals. Apart froxn this effect the
18 core hole in the final state also will inBuence the
spectrum. In a multiband model with explicit oxygen
degrees of &eedom such eKects are automatically taken
into account. ' Hybertsen et a/. have shown in de-

tail how these matrix-element eKects can be explicitly
incorporated in a single-band Hubbard model approach.
Also in the case of the optical spectra one would in prin-

ciple expect different matrix elements for the lower and
the upper bands since the microscopic current operator
will make d to p transitions which in general will look
diferent for Zhang-Rice singlets than for d spins. Here
we do not intend to study the xnatrix-element eH'ects as-

sociated with the three-band to one-band mapping,
but instead we shall focus on the correlation effects in
the simplest and generic physical situation, where the
relevant subspaces for the observed changes in the elec-
tronic structure are represented by the one-band Hub-

bard model.
The article is organized in the following way. First (in

Sec. II) we will review how to construct the mapping
from the Hubbard model to an effective Hamiltonian in
which the band index is a good quantum number. We
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will show how an arbitrary operator can be classified ac-
cording to the number of doubly occupied sites it gen-
erates (annihilates) and introduce a transformation be-
tween the physical fermions and effective fermions which
conserve the double occupancy. Using this formalism we

obtain (in Sec. III) expressions for the k-dependent oc-
cupation number, number of doubly occupied sites, and
kinetic and potential energy. Next (in Sec. IV) we use
the transformation of Sec. II to derive sum rules for the
upper Hubbard band (UHB) and the lower (LHB) Hub-
bard band in the optical spectrum. In Sec. V similar sum
rules are found for the one-particle spectrum up to sec-
ond order in t/U Ap.art from the total weight (zeroth
moment) the average energy and width (first and second
moment) also are discussed. In Sec. VI we compare the
perturbation results with the closely related nonpertur-
bative two-pole approach and discuss the k dependence
of the one-particle spectrum. The paper is concluded in
Sec. VII.

II. PERTURBATION THEORY: FORMALISM

0 = O(a), 0 —= O(c),

serves to identify to which Hubbard band a state belongs.
Note that 0 and 0 are only equivalent in the U -+ oo
limit.

We seek a unitary transformation

H = e He = H + [S,H] + —[S, [S,H]] + (4)

such that

H, V =0.

Then the effective double occupation (in c; fermions) is
a good quantum number and operators and vectors can
be labeled accordingly,

i.e., the operator 0 is obtained from 0 by replacing the
Fermi operators ai by the transformed operators ci In
particular,

V = U) n;gn, g

The transformation of the Hubbard model in the
large-U limit to the strong-coupling model or to the
simpler t-J model has a long history. ' Anderson
showed (without explicitly writing down the Hamilto-
nian) that the model can be reduced to a nearest-
neighbor spin Heisenberg model at half filling, with an-
tiferromagnetic exchange coupling J = 4t2/U, where t is
the hopping and U is the on-site Coulomb repulsion. The
strong-coupling model, which reduces to the t-J model
when the three-site hopping terms are neglected, was de-
rived by Chao, Spalek, and Oles in 1977. Since then var-
ious authors derived efFective Hamiltonians for the LHB
away &om half 6lling and up to eighth order. After the
discovery of the high-T superconductors many people
rederived the first-order mapping, leading to the famous
t-J model, usually considered to be the minimal model
which includes correlations in a realistic way.

The aim is to rewrite the Hubbard Hamiltonian in a
block-diagonal form, in which each block is characterized
by a conserved integer number of "effective" doubly oc-
cupied sites. [We will show later how one can express the
(noninteger) physical double occupancy in terms of the
transformed fermions. ] In what follows we will closely
follow the work of Harris and Lange and MacDonald et
a/. The Hubbard Hamiltonian reads

H=V+T=U) n;tn;g —t) a,. a+s

O„U~mU, n) = ) c p(O)~(m+ n)U, P), (6)

O„U, V = —nUO„U.

This will prove to be a very useful relation in the follow-
ing.

With the above considerations the derivation of S is
very short. First let us decompose T as

T = Tp+TU'+T U)

To — t ) [(I —n—; )ct c;+g (I —-n, +s)-
t+ni, aCi ~ci+b,nni+b, p] ~

Tv = t ) ni, nci ~ci+s,o (I ni+b, cr) ~

i,b, a

T U — t ) (1 nj ~) c ci+$ ~ni+$ s ~

where n and P label the internal degrees of freedom of a
particular Hubbard band mU and c p(0) are coeKcients
depending on the expanded operator O. Therefore,

Here the sums run over the N sites, i+ b stands for the
set of nearest neighbors of i, and t ) 0.

In this paper two types of Fermi operators will be dis-
tinguished. The original bare fermions that occur in
the Hubbard model are de6ned by a,-, while c,. rep-
resents the new dressed fermions that conserve double
occupancy. For an arbitrary operator 0 we de6ne an
operator 0 by

Equation (5) is fulfilled if S eliminates, order by order, all
the terms H ~ with n g 0 from the Hamiltonian. From
Eq. (4) one finds, for the first-order S,

S~ ), V = —T~ —T U.

This equation is directly solved using Eq. (7),
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S( 1

and using the first-order S~ ~ one Gnds

1 1
H = V+Tp+ TU' T U

—+ TU —T U Tp —+
U U

The second-order term in S has to remove the last term
in the above equation. Using again identity (7) one finds
straightforwardly

S ~ = TU+T U, Tp

This process can be continued to any desired order:
Si l generates H~ +il through Eq. (4) and the undesired

part g &&H "v is then eliminated by S& +il, which

follows directly from Eq. (7). The nth-order Hamiltonian
will contain terms connecting nth nearest neighbors.

The operators S and H can be written as sums over

products of T U operators and one could therefore
wonder whether the terms generated are all local, i.e.,
describing the dynamics of fermions within the nearest
and next-nearest neighbors, if the expansion in Eq. (11)
is terminated at second order (for instance, a single prod-
uct of two or more T terms is certainly nonlocal). How-
ever, it is easily proven by induction that this is indeed
the case. Suppose we have found S to order n and this is
local. Then H is generated to order n+ 1 using Eq. (4).
Since this consists of a sum of nested commutators, this
has to be local if S is local. The next-order S& + ~ is pro-
portional to the various terms in H~"+ ~ and is therefore
also a local operator.

Explicitly evaluating the commutator T~, T ~, one

finds, for the Hubbard Hamiltonian up to second order,

H = &+To+ rv, T v/U-+O(ts/U')
= V+ H., + H~+ H&. + 0 (t'/U'),

where

H„= t ) (—1 —n;, )c, c;+-g, (1 —n;+g ) —t /U )-[(1—n;, -)n;, n;+b, -(l —n;~g, ) —c, CJ+b c;+s -c; ]
i,b, cr

t'/U—
i,b, b', cr;blab'

i,b,e

[(1 —n, +s -)c,.+q n; ~(1 —n; )c;+g (1 —n;+g )-
(1 ni+8 cr)C +g crcc crci, crcj+8', cr(1 ni+b', cr)]r

2
Hcg = t nc crc —Cc+g crncyg cr + t /U [nc+g crc +g nc cr(1 —nc~cr)cc+g crnc+g

i,b, cr i,b,b', cr;blab'

+nc+S crc.+g crcc crcc crcc+gc crnc+gc, cr]c

Hg, =+2t /U) (1 —n;g)(1 —n;g)n;+gtn;+sg+2t /U) ct~c,. ~c;+sgc;+gg
i,b i,b

+t /U ) [C ' C ' —C +g ~ccrcc+g crnc+g cr (1 —nj+( cr ) + H C.]
i,b,b', o",6+6'

t /U )— [(1 —n, +g ~)ct+s n; -n; c;+g (1 —n;+g ~)
i,b, b', o",

blab'

n, +g ct+~ (1 ——n; )(-1 —n; ~)c;gg n;+g ]. - (14)

The Haxniltonian contains three terms. The strong-
coupling part (or t Jmodel including -three-site hopping)
H, describes the xnotion of holes in the spin background.
Hp does the same for doubly occupied sites and can,
apart from the second terxn, be obtained &om H, by an
electron-hole transformation and a sign change of t. Hg,
acts only if there are doubly occupied and empty sites
on neighboring places, i.e., describes excitations with en-

ergy nU, n ) 0. For less than half filling the states in the
j HB are fully described by H, only. We note that the
terms t2/U stand for the superexchange interaction
(the 1-term of the t remodel with J = -4t2/U) and the
three-site hopping term. Thus the strong-coupling model
H, for the LHB is not equivalent to the t-J model. The
three-site hopping part is often neglected using the argu-
ment that, for a small doping percentage x, it adds only
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an amount xJ to the total energy per site. We shall
discuss the significance and physical consequences of the
three-site hopping term in the following sections.

In this paper we study the efFect of the transformation
S on operators Q,

0 = e Oe = 0+ [S,O] + —[S, [S,O]] + . . . (15)

Using the second-order expression for S the above for-

mula is expanded to
i

O=O+ —TU —T U)Q
U

+ ~, ([[Tv + T v,—To], O]

+ 2 [T~ —T-v [Tv —T v-O]]) (16)
The wonderful outcome of the above exercise is that,

because the rotated operators Q can be directly decom-
posed into parts creating a particular number of doubly
occupied sites n [Eq. (2)], one can obtain such an expan-
sion for the original operators as well. Using Eq. (16)
one Gnds, to second order,

+ + T O(.— )
——T , 0(„„) + , {[[T , T,],O(„ ,) ] + [[T

( — ) ]] 2 [ » [ —v v ]] —
2 [ —v [Tv O v ]] + —[T v[j' v O ]]) (17)

In the following sections we will exploit this formula to
derive partial sum rules for the individual Hubbard bands
for the one-particle and optical spectra.

Of special interest is the decomposition of the fermion
operators themselves,

Ci,cr —Ci, cr;0 + Ci, cr; —U

c, ,o
——c, (1 —n; )- (18)

Ci, cr; —U = Ci, cr'ni, e ~

The occupation-number operator conserves double occu-
pancy and therefore n; = n; .p. Explicit evaluation of
Eq. (15) to first order gives

((n,+g — —n; )c,~g-
8

c,+g ~ci,oci, cr + c, ~ci,crci+b, rr ).
We stress that ci and ai are not related through ci
a; (1 —n, ). -

III. EXPECTATION VALUES

(O„v) = 0 when n g 0. (21)
In the case of finite temperatures the ground-state expec-
tation value has to be replaced by the thermal average.
The above equation will, however, still be a good approx-
imation when the temperature T && U.

Using Eq. (7) it is easy to show that the expectation
value of the potential energy becomes ((V) = 0)

T =T U+Tp+TU+ —TU —T U)T U+TP+TU
U

(23)
(T) = (T.)+ —'( T., T . ).
Combining Eqs. (22) and (24) one finds a kind of virial
relationship between the second-order corrections to the
kinetic and the potential energy

(+)= —p~( T~T rr )—
For the kinetic energy one finds, to the same order in
t U,

Before focusing on spectral properties we will show how
expectation values of operators in the Hubbard model
can be expressed in terms of the rotated operators ci
This will be especially helpful in those cases where the
lowest-order operator in the strong-coupling case has a
simple form. Expressions will be obtained for the double
occupancy and the k-dependent occupation number n&.

Although the strong-coupling model does not contain
explicitly doubly occupied sites, there still exists a direct
relation between the potential energy in the Hubbard
model and observables in the strong-coupling formula-
tion. The potential energy to second order in t is [see
Eq. (16)]

T(2) 2 V(2) (24)

and T~ ~ + V~ = H~2~, where H~ ~ js the second-
order term in the strong-coupling Hamiltonian given by
Eq. (14). This is a general feature of perturbation the-
ory. The (kinetic) energy gain due to the perturbation is
twice the energy loss in the unperturbed part.

To be more explicit one finds, for the double occupa-
tion on site i,

t 2

+ 2 ) (C+S n —c+b
b, b', cr;$/)'

t tC.+S C. Ci ~ci+S y—). (25)

Here we have split the sum into a two- and three-site part
and n; = g n; . At half filling the three-site terin does
not contribute and the amount of double occupation is
entirely determined by the spin order. This expresses the

Since the ground state contains no double occupancy in
ci for less than half filling the expressions for ground-
state expectation values () simplify considerably using

V=V+
U

TU-T-U, V + 2 TU+T U, TO, V

+- ITrr —T rr ITrr —T—rr &II) . —(20
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fact that spin exchange is caused by virtual states with
the two spins on the same site. If the spin would be able
to form a complete singlet with all its neighbors, the term
in the expectation value would be equal to —1 and the
amount of double occupancy would be 2zt~/U, where z
is the nuxnber of nearest neighbors. For a ferromagnetic
alignment of the spins the double occupation is zero.

So far, all the derived relations were general. Since the
explicit evaluation of the above formulas is possible in
one dimension, we present particular results for a one-
dimensional (1D) Hubbard model. In one dimension the
ground-state energy per site for large U is

sin(nor) t z
/' sin(2n&) l

( )Ep ———2t —4ln2 n —1—
U q 2nor

where n is the particle density. Using Eq. (24) one finds

(n;gn;g) =41n2 n
~

1 — I+V(t /U ).t z
t' sin(2nx) )

U'
g 2n~

(27)
In fact, there are two alternative ways to obtain the same
result. First, the number of doubly occupied sites is
equal to the derivative of the energy with respect to U.
Second, one can explicitly evaluate Eq. (25) using the
Ogata-Shiba wave function. We will come back to this
in Sec. IV.

In Fig. 1 the amount of double occupation given by
Eq. (27) is plotted as a function of the particle density
n. The large-U expansion is compared with Lanczos di-
agonalization data for a ten-site ring, for three diHerent
values of U. For intermediate-U values the second-order
expression clearly overestimates the amount of double oc-
cupancy. However, the curves are qualitatively similar to
the numerical data. Deviations are of the order of 40% for
U = 5. For very large U level crossings occur for particle
numbers with open-shell configurations, and the ground
states with different values of total momenta are stabi-
lized in place of those which follow &om the one-particle
picture. In these cases the amount of double occupancy
is suppressed. The numerical values for n = 0.2, n = 0.6,
and n = 1 (closed shell) agree well with the second-order
expression at U = 100.

Another interesting quantity is the k-dependent occu-
pation number

0.2

OJ

Q f
c~

1.0

C Q.5

0.0
z/2

FIG. 2. The k-dependent occupation number ng, for the 1D
Hubbard model at half filling for U = 20, 10, and 5 (t = 1).
The lines and the points correspond to first order in the t/U
result Eq. (31) and to ni, obtained from the numerical ground
state of a ten-site ring.

(30)

) ik. (R; —R~)
(

t (28)
Q ~

g 'll

Using Eq. (19) and the fact that the ground state has
zero double occupation in c; fermions, one finds

ng = ns + ) cos[k (R, —R, )]N U

~

~

X c-+g Ag ~c~ ~ —c.+g —c cg pc~ ~ . 29

In the Hubbard model with nearest-neighbor hopping (1)
one defines the one-particle energies as

ak {R, R+8
8'

At half filling Eq. (29) becomes therefore particularly
simple (see also Ref. 32),

1 6j ~ ~ 1n- = —+2— S, . S,+, ——
2 U

' '
4 (31)

Therefore, the entire k dependence is determined by the
one-particle dispersion eg.

In Fig. 2 we compare the above result at half filling
with a numerical calculation of ng for a ten-site ring. The
Bethe-ansatz result for the spin-spin correlation function

(S; S;+s) —1/4 = —ln 2 is used. From the figure one can
see that the correction to the value 1/2 is not small, even
for U/t as large as 20. However, already the first-order
term gives a good description of the t dependence in the
strong- and intermediate-coupling regime. In general op-
erators have sizable first-order corrections when written
in terms of strong-coupling Fermi operators. This should
be kept in mind when comparing results for the Hubbard
model with those of the strong-coupling or t-J model.

IV. OPTICAL SPECTROSCOPY

0.0
0.0 0.2 0.4 0.6 0.8 ).0

n
FIG. 1. The number of doubly occupied sites, in units of

(4t/U), as a function of electronic filling n. The line is the
second-order result Eq. (27) and the points are from the nu-
merical ground state of a ten-site ring for U = 100, 10, and 5
(t =1).

In this section we will use the above formalism to de-
rive expressions for the total optical suxn rule and partial
suxn rules for the two Hubbard bands. First the cur-
rent and sum-rule expressions for the Hubbard model will
be transformed to their strong-coupling form by replac-
ing the a; operators by the corresponding expression in
terms of c; operators. Then the operators are split into
an inter- and an intraband part and these decoxnposed
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operators will be used to calculate the sum rules for the
LHB and the UHB.

The usual way to treat optical spectroscopy is to
assume the electric field in the x direction and to start
from the x component of the polarization operator P

R; zz;, with R; standing for the 2: component
of the position vector of atom i. The "paramagnetic"
particle current is the time derivative of the polarization

j = i[H, P ] =it) b at+s a, . (32)
i,b,a

As before b is a vector connecting nearest-neighbor
sites. In the following we will discuss a (finite) system
with open boundary conditions, where no zero-&equency
Drude peak occurs. However, the final sum-rule expres-
sions [see Eqs. (38), (39), and (41)] are valid for periodic
boundary conditions as well. 37

Using linear-response theory one finds, for the real part
of the conductivity per site, 3

~*(~) = ).1(f ~lj*lo ~)l b(~ —&x+ Eo) (33)". f
Replacing one of the current operators with i[H, P ], one
obtains an extra term Ef —Ep ——cu in the above equation,
canceling the ur factor in Eq. (33). Now the integral
over ~ absorbs the b function and the sum over final
states f is the identity operator. Therefore the total sum
rule W is

OO 1W—= o d(u= ([j,P]) = — (T), (34)

where the last relation in Eq. (34) holds only for the
nearest-neighbor hopping model, and the distance be-
tween nearest neighbors is set equal to 1. The sum rule

(34) expressed in terms of the commutator of the cur-
rent and polarization will be our starting point in the
following.

To obtain expressions for the sum rules of the individ-
ual Hubbard bands the current and polarization operator
have to be decomposed as in Eq. (6). Using Eq. (19) the
polarization operator to first order becomes

P = P, g+ P,p+ P,U+ O(t /U ),
t tP~ U: zzi sc ci+s ~'(1 zzi+s ~)

'Lza

—n, + - c,+c; (1 —n-, .)-

and, for instance,

g .U = zt b n, +s -c.+s c; (1 —n, )-
i,b, a

. t2 ) (b —b' ) [n;+g ct-+s n, c,-+g

b bl

tx (1 —zli+b', cr j Ai+b, nc +s ci ~ci,crci+b'cr,

x(l —zz;+g )] . (»)
The current does cause excitations to the UHB in lowest
order.

The total sum rule is proportional to the kinetic en-
ergy in the x direction. For cubic lattices this is just the
total kinetic energy divided by the dimension. Using the
previous result Eq. (24) (see also Ref. 41),

) + U~ ) i+8 cr ~,~ ~+s', ~
i,b, b', a

—c+b c,. ci c+b — +0 t U, 38

with z being the number of nearest neighbors. If the
distinction between the a, and the ci Fermi operators
is not made, only the first-order term proportional to
the expectation value of T is obtained. The expectation
values refer to the ground state of the strong-coupling
model.

Using Eq. (35) and (36) we obtain, for the weight of
the LHB,

Z

~ ([2 ;o P*;o])
2 Q

=-,~ (T)

) (b —b ) c,.+s n, -c;+s
ebb' o

+O t' U'. (39)

Note that in between the current and polarization oper-

ator there is still the complete set of final states
~ f, X)

[compare with Eq. (33)]. Because both j .o and P odo.
not create doubly occupied sites in c;, only final states
in the LHB are reached and therefore Wp is the sum rule
for the LHB. From the above equation it is clear that leap

vanishes at half filling. The weight in the UHB is

P .p
—— R, ni

zqa

t
P~; p — (1 —zzi+z, e)ci+" ~ci,a+i, n

t—(1 —zz, -)c,. c;+ n,+-
Since ni = ni .p the polarization operator does not
cause transitions to the UHB to lowest order and the
weight of the UHB is of order t /U. The current operator
to second order is

t2=it) b ct~s c; +i—) (b —&')

i,b, o. i,b, b', o.

ci+b ani aci+b' a i+b o i a ci,aci+b', a

W~ = (j, ~P,U —P, Uj, U)
2N

2

UN
n', aci+b, a

~,b, b', a

—ct+b ct ci ci+b — + 0 t U

which is conveniently rewritten to
4t = = 1

W~ = — ) 8; S;~; ——n;A;~-)U% 4

~c. - n -ci —k,a i,a i+a,a
i,a

—ct ct c, c,+- -) + O(t /U').

(4o)
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Equations (39) and (41) show that the UHB and the
LHB measure diferent parts of the three-site hopping.
In a 2D system the t /U term consists of three distinct
processes: (i) "backward hopping" equivalent to the S; ~

S;+s term, (ii) "forward hopping" in the x (y) direction
to third neighbors at a distance 2, and (iii) "sideward
hopping" to neighbors at a distance ~2. The total sum
rule W (38) consists of the first-order term —(T)/z,
while the second-order term involves the sum of these
three independent contributions. At half filling the UHB,
however, gets all its intensity from the backward hopping
and for finite doping the weight is reduced by the forward-
hopping term. We note that the latter hopping term is
neglected in the frequently studied t-J model and thus
the optical spectra of the strong-coupling model and the
t Jmod-el are quite difFerent. The weight of the LHB (39)
is largely determined by the forward term. The prefactor
is {b —b' )2 = 4 and half of this consists of transferred
weight from the UHB. [Note that the sum of (39) and (40)
gives the total W (38).j Only the LHB weight contains
contributions from the sideward hopping term. Since the
backward hopping does not contribute to the LHB, the
weight of the LHB vanishes at half filling.

In one dimension all expectation values can be found
using the Bethe-ansatz results. Ogata and Shiba
showed that for large U the Bethe-ansatz equations de-
couple and the spin and charge of the electrons com-
pletely separate. The wave function is a product of a
spinless-fermion single-Slater-determinant wave function
for the charge and a spin wave function which is the solu-
tion of a "squeezed" Heisenberg spin chain with N (not
N ) sites, where N ( N is the number of electrons. Al-
though this is a major simplification, the actual calcula-
tion of large-distance expectation values, such as {nb), is
still involved. Since the wave function does not contain
doubly occupied sites it is equal to the wave function
of the Hubbard model only to zeroth order. However,
Ogata and Shiba demonstrated that the energy expecta-
tion value of the wave function using the strong-coupling
model gives the correct ground-state energy of the Hub-
bard model to order tz/U. Therefore, the spin and charge
correspond to the c; fermions and not the a; fermions
and for the strong-coupling model the wave function is
correct to first order.

For the sum rules derived above only up to next-
nearest-neighbor expectation values have to be calcu-
lated. As an example we will show explicitly how to
calculate the forward-hopping process in Eq. (41),s

) l ~ Ai ~ci+l, cr 'ci l ~ci rrci, o Ci+l, rr) (42.)

The charge dynamics is the same in both terms, i.e., the
spinless fermion hops from site i + 1 to site i —1 if site
i is occupied. The expectation value of the hopping for
a Slater determinant of k states filled up to the spinless-
fermion (SF) Fermi wave vector kP = 2k' ——7rN/N
Pin 1S

(
sin(27m) sin (urn)c.

y Aq ci+1 43
SF 2K 7r2

The spin part involves only two nearest-neighbor sites in
a Heisenberg chain (the holes are squeezed out). The first

sin{s'n) t ( sin(2z n) sin (mn) lR'p ——t —8ln2 — n
U g 2z. )

(46)

t ( 2 sin(2zn) sin (z'n) l—2 47Uq

Baeriswyl et al. calculated the total oscillator strength
at half filling. Their result is consistent with the above
expression for W.

The zero-frequency Drude weight D in one dimension
can be expressed in terms of the charge velocity uP and
the compressibility K~ (see Ref. 43). Writing cr(ur)
Db(ur) + (finite frequency par't),

D = 2K~u~ = z u 2 (d2Ep(n) l
(48)

where Ep is the ground-state energy per site in the Hub-
bard model as given in Eq. (26). The charge velocity, 44

to second order,

St2
u = 2t sin(z n) — ln 2n sin(2z n).P U (49)

Comparing with Eq. (46) we find that to order t2/U, Wp
and D are the same,

W, = D + G(t'/U').

The conductivity in one dimension can therefore be di-
vided into three parts: a Drude weight of order t, an
UHB of order t2/U, and a finite-frequency (incoherent)
intensity in the LHB of order t /U2 This agrees .with
the recent result of Horsch and Stephan, who showed
that for one hole the finite-frequency signal in the t-J and
the strong-coupling model are proportional to J2/t, due
to spin-charge interaction. This behavior should be con-
trasted with that observed in two dimensions, where the
finite-frequency weight in the LHB is proportional to t.
However, we stress that the weight transfer from UHB to
LHB is qualitatively independent of dimension, as will be
shown later. Only the weight distribution inside the LHB
itself is very sensitive on spin-charge separation. If the
separation is complete, as in the Ogata-Shiba wave func-
tion, the current acts on the spinless fermion part only

term Hips two antiparallel neighboring spins and is equal
to S+S,-+z + S, 8++x. The second term checks whether
the two spins are antiparallel and is 2S;S;.+l —1/2. The
spin part of the expectation value is therefore

12(Si ' Si+1 4)Heisenberg = (44)
The total expectation value Eq. (42) is the product of
the spin and the charge expectation values above.

The other expectation values can be calculated in a
similar way and the sum rules in one dimension to order
t2/U are found to be

sin(zn) t2 ( 2 sin(27m) )R'=t + 41n2 — n —n
U g 2n.
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and all the weight goes into the Drude peak. If charge
and spin do not decouple the electrons will scatter to
finite-frequency states. This argument, however, applies
only to the LHB since the current causes excitations to
the UHB in any dimension, independent of spin-charge
decoupling.

The optical experiments on the cuprate materials show
a fast decrease in intensity of the 2-eV feature with in-
creasing doping x. ' However, if one interprets the low-

energy and 2-eV features in the experiments as a single-
particle valence and conduction band, the intensity of
the UHB should remain almost constant. This weight is

roughly proportional to the number of k-conserving in-
terband transitions. For a doping of x = 1 —n holes per
unit cell of a Mott-Hubbard insulator one expects there-
fore W;nte&ba, „d(z) = (1—z) W;ntzqb~ng(z = 0) [while for an
ordinary insulator the prefactor would be (1 —x/2)]. For
a typical doping x = 0.2 this would imply an intensity
reduction of the 2-eV feature by only 20%%uo.

In Eq. (41) the weight of the UHB is determined by the
spin-spin expectation value. At half filling this term is
proportional to the number of neighbor bonds times the
neare«~t-neighbor spin correlation function. If one hole
is introduced, this will remove two bonds from the sum
[see Fig. 3(a)] and therefore WU = (1 —2x)Wrr(z = 0).
The UHB loses its weight twice as fast as expected for
the Mott-Hubbard insulator and four times faster than
in a semiconductor. In more than one dimension the
reduction of the UHB weight can be expected to go even
faster since the spin correlations weaken with increasing
x. The fast transfer of weight in the optical spectrum is
related to the dilution of the spin system and the decrease
of antiferromagnetic spin correlations.

It is easy to understand why (S, S,+s) appears in
Eq. (41) [see Fig. 3b]. The current moves an electron
from site i to site i + b. It will cause a transition to the
UHB if first site ~ + b is occupied and second if the spin
on site i is antiparallel to the spin on site i + b. Both
conditions are included in the term S, S,+g —n, n;+g/4.
It is interesting to compare this result with the usual

f sum rule. Here the commutator of the current and
the polarization in Eq. (34) becomes a commutator of
momentum and position, leading to a sum rule depending
only on the electron density.

The next-neighbor hopping term in Eq. (41) only con-
tributes for x ) 0 and reduces the weight of the UHB in
favor of the LHB. In Fig. 4 the nearest-neighbor spin-
spin contribution and the three-site hopping contribution

(b) o o

Oj 0

FIQ. 3. (a) A hole introduced in the spin background

brealrs two spin bonds in the x direction. (b) An excitation

to the upper Hubbard band caused by the current operator

)z-

1.0

0.5 spin

-0.5
0.0

3-site hop part

0.2 0.4 0.6 0.8

FIG. 4. The spin-spin and three-site hopping contributions
to the optical intensity [Wz/WU(z = &)] of the upper Hub-
bard band in one dimension.

4t2 2 sin(2vrn) sin (em)
n +n

U 2~
'

~2

1
x S S+g ——

Heisenber g

where the spin-spin expectation value depends on the
magnetic field. In order to relate this expectation value to
the magnetic field we use the result of Ogata, Sugiyama,
and Shiba, who showed that the spin system is de-

scribed by a Heisenberg Hamiltonian, H = J,ir P, S, -

S;+q, with an effective exchange,

4t2
2 ( sin(27m)J,s = n 1—

U i 27m

The magnetic field dependence of (S; S;+i) was cal-
culated by Griffiths. Combining his tabulated values
with the two equations above we obtain Fig. 5. The
II = 0 intercept is equal to our previous result for R'U-

((S; S,+i) = 1/4 —ln2). The critical field where the
UHB disappears is determined by J,g.

The dependence of the optical sum rule of the UHB on
the magnetic field might be measured on systems with
a suKciently small exchange constant J 10 —20 K. A
possible candidate realized in nature is CuC12 2N(CsDs),
a 1D antiferromagnet with J = 13.4 K. Although this
compound is considered to be an example of the 1D
Heisenberg antiferromagnet, the superexchange follows
effectively from a 1D Hubbard Hamiltonian. Thus the
magnetic field dependence should be as in Fig. 5. Note,
however, that because the superexchange is small, the

to Wrr [Eq. (47)] are plotted. The three-site hopping
term is proportional to —x for small x. Therefore, in
one dimension for small x, Wrr (1 —3z)Wrr(z = 0).
For x 0.3 the UHB will have lost already most of its
weight.

Because the weight of the UHB depends on the local
spin order, its intensity disappears in a sufficiently strong
magnetic field. The field dependence of R'~ can be cal-
culated explicitly in one dimension. Adding a Zeeman
term to the Hamiltonian will only in8uence the spin part
of the Ogata-Shiba wave function and one finds, for the
optical weight of the UHB,
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FIG. 5. Spectral weight of the upper Hubbard band, in

units of J = 4t /U, as a function of the applied magnetic
field gyH/ J, for difFerent fillings n, in one dimension.

intensity of the UHB will be small. Therefore exper-
imentally it might be dificult to identify the UHB or
it can become invisible due to other strong (interband)
transitions at the same energy (the Hubbard U value is
typically a few eV).

Stephan and Horsch studied the effect of the three-
site hopping term in the strong-coupling model on the
optical spectrum. They derived a formula for the total
oscillator strength, which is equivalent to our Eq. (39)
for the LHB. Their numerical results show the impor-
tance of the second-order corrections derived above for
the spectrum in the LHB. They lead to an increasing
Drude weight as well as total weight of the LHB as t/U
increases. In contrast, for the conventional t-J model
both contributions slightly decrease with increasing t/U.

As an example the optical conductivity for a 4 x 3 clus-
ter with open boundary conditions is shown in Fig. 6.
The curves correspond to zero, one, two, and three holes

(z = 0, 0.08, 0.17, and 0.25, respectively). The spec-
tra are averaged over the x and y directions. The inter-
band transitions into the UHB (u & 6t) are seen to be
clearly separated &om the low-energy intraband transi-
tions for large values of U. When holes are added, the
UHB rapidly loses weight in favor of the LHB. Clearly the
LHB has a substantial finite-&equency intensity, in con-
trast to the 1D clusters. Qualitatively similar results can
be obtained using an unrestricted Hartree approach com-
bined with random-phase approximation corrections.

The sum-rule results, Eqs. (45—47), are plotted in
Fig. 7. Since the weight at n = 1 is proportional to
t~/U, there is only little intensity in the UHB for the
case U = 20 and the total weight increases rapidly away
&om half filling. The UHB has already lost most of its
intensity when n = 0.6. The sum-rule expressions are
compared with numerical data for ten-site clusters. The
total s»m rule is obtained by calculating the ground-state
expectation value of the kinetic energy. The weight of
the UHB is estimated by calculating 0 (~) like in Fig. 6,
splitting the spectr»m into LHB and UHB by hand, and
integrating the upper part (see also Stephan and Horsch,
Ref. 13). The LHB intensity is the difFerence between
the total sum rule and the UHB part. The nice agree-

ment between the sum-rule expressions and the ten-site
data shows that these clusters are big enough to give an
accurate estimate of the sum rules of the infinite chain.

For U = 5 the weight at half filling has increased rela-
tive to the weight away &om half filling and the total sum
rule becomes almost constant in the low doping regime
for U W~, where W~ is the bandwidth. This feature
is reproduced by the above sum-rule expressions. The
difFerence between the numerical data and the sum-rule
expressions is due to the neglect of higher-order terms.
These are especially important for the weight of the UHB.

Q4

U=20

total

0.2

0 0 ~~ ~ ~ ~ ~ ~: r

0.6

04

0.2

Q, Q
0.0 0.2 0.4 0.6

n
0 8 1.0

FIG. 7. Total integrated conductivity and partial conduc-
tivity of the upper and the lower Hubbard band as a function
of the occupation n, in one dimension, for U = 20 (upper) and
U = 5 (lower). The large-U perturbation expansion (lines) is
compared with numerical data for a ten-site ring with periodic
boundary conditions (full circles) and with open boundary
conditions (empty circles).

FIG. 6. Optical conductivity a(u) for a 2D 4 x 3 cluster
with open boundary conditions. Full, dotted, short-dashed,
and long-dashed lines correspond to N = 12, 11,10, and 9
electrons, respectively. An artificial Gaussian broadening of
0.5t at half width is used. U = 10, t = 1.
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0.4

0.3
total

The figure shows that the weight transfer to the LHB is
enhanced by the higher-order corrections. Note that the
overall optical intensity has increased compared to the
V = 20 case due to the second-order terms.

The cluster with open boundary conditions underes-
timates the weights. This is due to the loss of kinetic
energy at the boundary, which is roughly 10'%%uo for the
ten-site chain. The finite-&equency integral is equal to
the expectation value of the kinetic energy. A Drude
"precursor" feature is found at finite frequency, the en-
ergy of which will go to zero as the system size increases.
The periodic boundary conditions give a better estimate
of the sum rule. However, the electric response is not
well defined for a ring. This, for instance, leads to spu-
rious positive or negative Drude weights at half filling
depending on the ring size. The finite-&equency sum is
not equal to the kinetic-energy expectation value because
part of the weight goes into an ~ = 0 Drude peak.

In Fig. 8 the sum-rule expressions are plotted for the
2D case. Since the ground-state wave function for large U
is not known, the expectation values are calculated &om
the ground state of the strong-coupling model H„, as de-
fined in Eq. (14). The cluster considered is a 2D ten-site
cluster with the standard periodic boundaries (see, for
instance, Ref. 10). Note that finite-size effects are larger
than in the 1D case. This is due to the small diameter of
the cluster as well as to the large degeneracy of the one-
particle states. The N = 6 particle case has total spin
equal to 2 due to this. The ten-site cluster has "acciden-
tal" fivefold degeneracies for K = 4, 5, 7, and 8 electrons.
In these cases the results are averaged over the five states.
At half filling there is a substantial negative Drude term.
Note that the perturbation expression does not show this
finite-size eKect. The negative Drude weight is due to
hopping of the electron all around the torus, so the spu-
rious Drude signal scales like (t/U), where I is the di-
ameter of the cluster. ' Therefore the Drude term is
higher order in t/U Smoother . curves can in principle
be obtained by optimizing the boundary phases for each
number of electrons separately. A 4 x 3 cluster with open

boundaries gives the same qualitative features as the ten-
site cluster, but the curves are much smoother and there
is no finite Drude weight at half filling. However, a lot,

of intensity is missing due to the large number of bound-
ary sites. We also compared the sum rules, calculated
using the strong-coupling model, with the Hubbard data
for U = 40. The results are in excellent agreement (as
they should be) and the expectation values follow all the
finite-size irregularities.

As can be seen the qualitative features of the data in
two dimensions are the same as in the 1D case. The
weight at half filling goes like t /U and the total
weight stays roughly constant away from half filling for
intermediate-V values. From n = 0.2 to n = 1 the total
intensity does not change by more than 30%. This re-

gion is much broader than in one dimension due to the
different one-particle density of states (DOS). In the 1D
model this is peaked at the band edge. Therefore, the
particles at the chemical potential in one dimension still
have a large kinetic energy for intermediate density and
the sum rule increases. In both the 1D and the 2D case,
the UHB rapidly loses its intensity away from half filling.

V. ONE-PARTICLE SPECTRUM:
Ie INTEGRATED

In this section we derive expressions for the weights,
energy positions, and widths of the UHB and the LHB
in the one-particle spectrum. The derivation is analogous
to the one presented in the preceding section. Like before
all expectation values will be explicitly calculated in one
dimension. The T = 0 formalism will be used, but the
results are easily extended to finite temperatures T (& V.

The local, k-integrated, one-particle spectrum is given
by

X,,(~) = ) (f, m+1Iut. IO, W)
f

x S(~ —(E,"+' —E~))

+) .1&f & —llu', -IO &)I'
f

x b((u —(E —E ') ),

0.2

0.1

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 8. Same as Fig. 7, but noir for two dimensions and
U = 10, t = 1. Numerical data for ~10 x ~10 Hubbard clus-
ter with periodic boundaries (dots). The sum-rule expressions
(stars) sre evaluated from the ground-state wave function of
the strong-coupling Hamiltonian using the same cluster ge-
ometry.

where
I f, X + 1) denotes a many-particle final state with

energy Ef + and IO, N) is the ground state of the N
particle system. In the above the one-particle spec-
trum is written explicitly as a sum over an electron
addition or inverse photoemission spectroscopy (IPES)
part (first term) and an electron removal or photoemis-
sion spectroscopy (PES) part (second term). Note that
the positive excitation energies in the N —1 spectrum
correspond to negative ~ values. A chemical potential
p~ = (Eo + —Eo ) /2 can be introduced by replacing
~ by ~+p~ on the right-hand side of the above formula.
It shifts the total spectrum in such a way that zero energy
(u = 0) lies halfway between the lowest electron-addition
and electron-removal state.

The nth moment of the one-particle spectrum
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A~ ctJ 4p (54)

is equivalent to the static expectation value (see, for in-
stance, Ref. 7)

+U ([[&-U»~1 c,'...v]

-2[&U F-U c,'...o]]

—2[&-U [&~ c,'...o]]). (59)

Curly brackets () are used for anticommutators and
square brackets [] for commutators. The number of com-
mutators (H terms) is equal to n

The total sum rule or zeroth moment for electron addi-
tion plus removal is simply equal to 1. Using the explicit
form of the Hamiltonian Eq. (1), the first moment be-
comes

(56)

In the restricted, translation-symmetric Hartree approx-
imation the one-particle levels with spin 0. are shifted
upward in energy by an amount U(n-). Since the ki-
netic part T of the Hamiltonian (1) is traceless, one finds
the same result for the first moment as above, i.e., the
mean field gives the correct energy average. The second
and higher moments, however, will not be correct since
the spread of spectral intensity is grossly underestimated.

The second moment is

(57)

The second term on the right-hand side is due to the ki-

netic energy and is the only term in the restricted Hartree
approach. In the Hubbard I approximation, 2 the single

dispersive Hartree band is replaced by two bands and the
second moment is also conserved (but not the third and
higher moments). s2 Equation (57) is therefore consistent
with two Hubbard bands, separated by the energy U,
with equal weight (at half filling) and both having the
same bandwidth as the U = 0 tight-binding band. A
similar picture is obtained &om a slave-boson approach
including Quctuations. 3

As before we will express the a, operators in terms of
the strong-coupling c; operators. Since the number of
doubly occupied sites is then a good quantum number,
the moments of the UHB and the LHB can be calculated
separately. For the LHB this means [see Eqs. (6), (17),
and (18)]

ai, cr;0& aq ~.p
(0) . t

Evaluation of this sum rule is somewhat tedious, but
straightforward. For less than half filling (n ( 1) there
is no double occupancy for c fermions, so

c; c; —i0) =0. (60)

With this the expression for the zeroth moment is sim-

plified considerably. The final result is

' ) m!".., =1+x+2—' ' ) (ct.c,„.-)
N a

U ~ ~ )~ ( i+J+ i+8
i,b,b', n;8'+8

t+6( c +s eni ~ci+s&~8

—c ~s c —ci ~ci+s& &y )). (61)

As before, x = 1 —n is the hole percentage measured
&om half filling. Since the total number of a; and c;
particles is the same, x = z. The first-order part was
derived before by Harris and Lange.

In a similar way it can be shown that a, 2& and

at . & are second order in t/U and therefore the inten-

sity of the Hubbard bands at —U and 2U is fourth order
in t/U This is .consistent with the numerical calcula-
tions which show that these higher bands have negligible
intensity. The intensity of the UHB to second order is

therefore

) m, U
——2 — ) m, .o. (62)

a
4)CJ

The above expression for the one-particle sum rule of
the LHB can be rewritten in terms of the original Fermi
operators a; . The first-order term in Eq. (61) leads
now to additional second-order terms when transforming
the c; operators back to a; fermions. Since there are
doubly occupied sites in a; we cannot use the equivalent
of Eq. (60) to simplify the final result, but have to start
&om the full operator expression and keep the n;~ and
(1 —n; ) terms

(0)) m,. = 1 i z i 2 — ) O —n; )n, n +g -O —n;~s ) —n;n-~an, +n)n. , , -
a ai,cr i,8,cr

+
I U I

(tl 1 —a;+& a;+g,~ (3 5ni+s, cr 5ni+8', a + 4ni+s, crni+6', a)
N

+6a,.+& n; a;+s, (1 —n;+s, ——n;+s~, ) —Ga,.+& a, a;,~a;+s ~( —n;+s, ~ —n;+s, ~)

t t
i+8 cr i+8' n + a- a. a +~ a.+~ j ~1 n.+~ —n-+
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The expectation value now has to be evaluated in the
ground state of the original Hubbard model. Harris and
Lange do not distinguish between a,. and c; opera-
tors in the first-order result. This is allowed since all the
corrections due to the n; and (1 n;—) terms in the first-
order expression above are of second order. However, it is
well known that the kinetic energy in the Hubbard model
is substantial for finite t/U at half filling [see Eqs. (38)
and (45)j and the Harris-Lange first-order term does not
vanish, as was also pointed out in Ref. 9. This problem
does not occur for the expression in terms of Hubbard
operators Eq. (63). It is explicitly electron-hole symmet-
ric and the first- and the second-order term vanish at half
filling, and both bands have a weight 1. The t/U term
in Eq. (61) also vanishes since the kinetic energy of the

c, fermions is zero at half filling. In first order the total
kinetic energy in Eq. (61) is replaced by the difference
of the kinetic energy of holes and doubly occupied sites.
Note that Eq. (63) is spin-rotationally invariant.

A quantity closer to the XAS experiments is the low-
energy electron-addition (IPES) weight. Since the total
PES intensity is the number of electrons per site n, one
finds

(0),IPES (0)

In one dimension the expectation values can again be
solved explicitly. From Eq. (61), Eq. (64), and the Ogata-
Shiba wave function one obtains, for the IPES weight
of the LHB,

) m, .'o ' = 2z+ sin(vrz)(0),IPES,1D 4t

( t 5 sin(2az) ( sin(2~z) sin (vrz) l+6 + 21n2 1 —z
qU) 2vr q 27r )

(65)

The first-order term is just the kinetic energy of spin-
less fermions and is obtained by occupying the one-
particle levels with one electron each up to the spinless-
fermion Fermi wave vector k~ = (1 —z)m. The above
formula is valid for t ) 0. For negative t the first-order
term will still give a positive contribution to the weight
since the expectation value of the kinetic energy will stay
negative. In this case the plus sign in the first-order term
has to be replaced by a minus sign.

The above results show that in the IPES weight in the
LHB at U = oo grows twice as fast as the doping and
this rapid building up of weight is enhanced by t. ' '

The factor 2 is easily understood by counting the avail-
able states. At half filling and U = oo there are two
Hubbard bands separated by U and there is exactly one
particle per site. The total electron-addition weight is
equal to the number of unoccupied states and equals N .
Similarly, the LHB has a weight equal to the number
of particles and equals N . Suppose one removes one
particle by means of doping as shown in Fig. 9. Now
the number of possible ways to reach the UHB, i.e., to
form a double occupation, is N —1 and the UHB loses
weight. At the same time there are two low-energy addi-
tion states since at the site of the removed spin one can
add either an up or a down spin without creating a dou-
bly occupied site. For every removed particle we recover
two low-energy addition states.

In fact, the above interpretation can be made already
using a fully unrestricted Hartree-Fock approximation for
large U (see, for instance, Refs. 56 and 57), which con-
verges to the atomic limit at U —+ oo, where the doped
holes gain potential energy if they localize on one partic-
ular site. This means that for every doped hole one state
(in contrast to weight) moves down &om the UHB to the
LHB and there are two low-energy addition states, as in
Fig. 9. However, for t g 0 the occupation numbers will
start to differ &om zero or one and the hole states, having

PES = p IPES

FIG. 9. The one-particle spectrum at U = oo for a ground
state with one hole in the half-filled band. For every hole
introduced two low-energy electron-addition states appear.

an energy = U(n; -), lie in general somewhere inside the

gap; for finite dopings the two bands will tend to merge
into one single continuum. Because of this non-integer
occupation numbers the total energy spread (UHB and
LHB) will be underestimated in the unrestricted Hartree-
Fock approximation, except for large U and close to half
filling.

That the effect is enhanced by the hopping t cannot
be understood by a simple counting argument. It is due
to interference effects between the ground and the final
state. This is illustrated in the simplest way by a two-site
Hubbard model with one electron in the ground state (see
also Ref. 7). Labeling the sites by 1 and 2, the ground
state is the bonding molecular orbital, which for t ) 0
takes the form ~0, N = 1) = 1/i/2(ai

&
+ at2 &) ~Q, 0), with

~0, 0) being the physical vacuum. Adding a second elec-
tron one can reach two low-energy states, a singlet and
a triplet. The triplet has energy 0 and its weight is 3/4,
independently of the value of t. The singlet wave func-
tion to first order in t is ~S, K = 2) = ~A) + t/U~B),
where ~A) = 1/v2(ati ~at2~ + at2 tati ~)~0, 0) and ~B) =
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1/~2(ai &ait& + an't &a2t &) ~0, 0). The weight of this singlet
state is 1/4(1+ 4t/U) and it is enhanced by the hopping.
The (positive) sign of the first-order contribution to the
weight is the product of the + sign of the B component
in the final state and the + sign in the ground state.
Since the kinetic energy is directly related to these signs
one gets the enhancement of the spectral weight as given
by Eq. (61). That the interference between the initial
and final states favors the low-energy states is a general
phenomenon in valence and core-level spectra of (mixed-
valence) compounds where both interactions and hopping
are important. Lehner et al. gave a qualitative pic-
ture of the physical processes leading to the first-order
enhancement of the weight in the LHB.

If one neglects the difference between a; and c;
fermions (as is usually done), the weight in the t Jor-
strong-coupling model is completely determined by the
constraint on double occupancy. The weight is now ob-
tained &om counting the available states as in Fig. 9 and
is independent of J (or t), i.e., the kinetic contribution is
completely missing.

In Fig. 10 we schematically draw the electron-addition
weight of the LHB as a function of the doping. For t = 0
the weight is exactly twice the number of removed parti-
cles and this ratio (i.e. , the slope of the curve) increases
to values between 3 and 4 for small doping z and U of
the order of the bandwidth. So every removed particle
gives rise to 3—4 times as much phase space for adding
particles at low energy.

The large-U sum rule in one dimension is compared
with numerical estimates of the weight in Fig. 11(a) (see
also Ref. 11 for more details). Only the kinetic contribu-
tion to the weight is plotted, i.e., the linear term 2x
(state-counting part) is subtracted from curves like the
one shown in Fig. 10. For comparison the first-order
spinless fermion term is shown for U = 5. As can be
seen the expectation values in Eq. (63) are close to the
results for infinite system obtained &om the Ogata-Shiba
wave function for the strong-coupling model, even for
intermediate-U values. The second-order term enhances
the weight for occupation numbers near half filling and
corrects the weight overestimated in first order for smaf1
fillings. As seen in Fig. 11(a), for U of the order of the

m . = a; . , H, a- (66)

m,"..'. = a... , 0,a, . (67)
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bandwidth (U = 5), the second-order term overestimates
the extra kinetic weight by not more than 30%.

Figure 11(b) shows representative results for two di-
mensions as obtained from the i/10 x i/10 cluster with
periodic boundaries which was also used for the optical
conductivity in Sec. IV. The kinks occurring for N = 2
and 6 electrons are a finite-size effect and reBect the one-
particle level structure. We found that the first-order ki-
netic energy term is well described using spinless fermions
in two dimensions. As shown in a previous paper, i the
results are very similar to the 1D case and the agreement
is even quantitative if one scales the hopping inversely
proportionally to the square root of the dimension. No-
tice that the perturbation results show the same finite-
size kinks as the integrated spectra.

Expressions for the energy position and width of the
two Hubbard bands can be obtained in a similar way.
They are related to the first and second moments of the
individual bands. The (local) first moments of the LHB
and UHB are defined as

0
0

(n=1)
1

(n=O)

FIG. 10. Schematic drawing of the increase of the
low-energy electron-addition spectral weight (or zeroth mo-
ment of the inverse-photoemission intensity in the lower Hub-
bard band) as a function of the doping a away from half filling
due to the hopping t. The lower dashed line would follow for a
semiconductor and the upper dotted line is the hmit of no in-
tensity in the upper band for the almost empty (almost filled)
band.

0 p ia. . . s

0.0 0.2

V=20

0.4 0.6 0.8
X

1.0

FIG. 11. Kinetic part of the low-energy electron-addition
weight as a function of the doping z in (a) one and (b) two
dimensions (t = 1). The second-order result Eq. (65) [line
in (a)] is compared with numerical results (filled dots) for
the one-particle spectrum of a ten-site ring. As a check the
second-order weight is also calculated from Eq. (63) (stars)
using the numerical ground state of the ten-site Hubbard ring
and the ~10 x ~10 cluster, respectively. The dashed line in
(a) shows the first-order contribution for U = 5, while the
triangles in (b) are the perturbation results to first order only.
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Using II = V+T()+O(t /U) and [a; . U, Vj = Ua,
we find to lowest order, for the energy difFerence between
the UHB and LHB,

EUHB ELHB
gm,{~)

i &o'

Pm,(o)

Em. .., o
(~)

2, qCJ

Pm, .(o)

X)CT i,a
2xt 1

(t —c)(1+z) N, ~- " '+ ' )
+O(t /U)

In one dimension spinless fermions give

EUHB, 1D ELHB, 1D

4xt= U+ sin(7(x) + O(t /U). (69)

This quantity is plotted in Fig. 12(a). The interband sep-
aration increases &om U at half filling to U+ 2t in the
(almost) empty band case. The n -+ 0 limit can be un-
derstood in the following way. Suppose there is just one
electron with energy —2t. Then, if we add an electron to
the LHB it will be independent of the first and will have
an energy between —2t and 2t. As a result the total Gnal-
state energy lies between —4t and 0. To reach the UHB
the particle has to form a bound state with the first elec-
tron. This may be realized only if the first particle loses
its kinetic energy since the dispersion of the bound state
is only of order t /U. Consequently, the total UHB en-

ergy is U and the band separation U + 2t. For finite
densities there is a finite probability that the doubly oc-
cupied site has a singly occupied site as a neighbor. The
UHB dispersion becomes of order t and the band sep-

Oc5
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aration decreases to U at half filling (see also Ref. 55).
One can expect that for hole doping the distance between
the bands increases further beyond the term t due to
second-order contributions t2/U. This occurs because
away from half filling the (N + 1) states of the LHB and
the (N —1) states of the UHB states hybridize, as in the
above two-site example. An increasing distance is indeed
observed as a function of doping in the XAS and EELS
spectra. '

In a similar way one finds, for the width of the UHB,

FIG. 12. (a) Energy separation of the two Hubbard bands
and (b) the width of the lower and the upper band (b) in one

dimension, as a function of the density n = 1 —x.

(g@UHB)2

(2)m,
i,a

(0)
i,o"U

()

(o)

(E i, tt", U )

= zt +t' ) (czt-(t —n )czz, -) —t ) (c, -c'+z, -)
i,b, b', cr;blab' i,b, ~

+ O(t /U)

and, for the LHB,
2

LHB 2 2(tts ) = zt + —c,~z n;c;zz - + 2(c, z n; c;zz — —c zz c, -c, c;zz -))
i,b, b', o;blab'(, ) (c, -c;z.z-) i +Cl(t /U)(1+x N " * '

)

Following the reasoning above, one expects that the
width of the UHB to order t vanishes as n —+ 0 and that
the width of the LHB becomes equal to the free-particle
bandwidth. Estimating the expectation values above for

n —+ 0 one finds this result independently of the dimen-
sion. At half filling the expectation values in Eqs. (70)
and (71) vanish since they are related to c; fermions and
the site indices are different. Now the bandwidth of each
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of the Hubbard bands is equal to that of flee particles
(U = 0) and there is no overall band narrowing to order

This is consistent with the results of Brinkman and
Rice, who found that the edge to edge distance of the
LHB is reduced, but at the same time there is a piling-up
of weight close to the edge such that the second moment
is unaffected.

The expectation values consist again of kinetic-energy
and three-site hopping terms. As before one can use the
Ogata-Shiba wave function to evaluate the above equa-
tions in one dimension,

(b,E"" )' = 2t' 1+ (1 —n)

n n (~) (74)

The moments are most conveniently evaluated in real
space using the Fourier decomposition of ak . Using Eq.
(55), the first four moments ares4

dependence of the spectra more accurately than the per-
turbation theory for intermediate or even large values of
U.

Consider two poles (labeled 1 and 2) with the corre-
sponding weights m1(2) k and energies e1(2) k They

are related to the nth moment (n = 0, ..., 3) of the @-

dependent one-particle spectrum by

~ 2

(~@LHB)2 2t2 1 ( )
(2 —YL)

2 7l.

2ln2+ 1 ( sin(2mn)

2 —n ( 2m'

+6 (t'/U).

(72)

sin xn
)I

(73)

()
k, o.

()
k,a

m'2)
k, cr

m'"
k, n

Un- + ek,

U n- + 2Uekn- + ek,2 2

U'n- + U' (2n- + n')e„-+ B;
+3Ue„-n- + e„-, (75)

where n =(1/N ) P-,. (n; -), e& is the one-particle dis-
persion defined by Eq. (30), and

Equations (72) and (73) are plotted in Fig. 12(b).
Because we &equently used the fact that there are no

doubly occupied c, sites, the above formulas do not
seem to be electron-hole symmetric. But in fact they
are. This can be demonstrated explicitly by writing the
expressions in terms of the original a; operators, like in
Eq. (63), which gives rise to extra n; and 1 n; terms. —

B& — ) ((1 —n;, )a, ~a;+g,~(l —n;~g, )

t.&j,~a—; yai+b, n&a+b, a)

+e& ((n; —n, +g ~) —(a, a~+& a; —a;+g )
2n, —(a—, a,. a;+~, -a;+g )). (76)

VI. TVEO-POLE APPROACH
AND MOMENTUM DEPENDENCE

OF THE ONE-PARTICLE SPECTRUM

In this section a comparison is made between the
perturbation theory and the non-perturbative two-pole
ansatz for the one-particle spectrum. In this latter ap-
proach the aim is to find the best possible approxima-
tion to the k dependent one-particle spectrum using two
h functions, with their energies and weights dependent
on k. Making this ansatz, the best approximation is
achieved if the 6rst four moments of the spectral den-
sity are conserved, as postulated by Roth in 1969.52 Since
then this approach to the one-particle spectrum has been
studied by many authors ' and became a general
method to treat approximately the spectral density in
an interacting system without a small parameter.
For the Hubbard model this approach can be viewed as
an improved Hubbard I approximation. It is also closely
related to the n»clerical Lanczos technique and is equiva-
lent to the first two steps of the corresponding continued
fraction. Because the method makes use of the first cou-
ple of moments it is closely related to the perturbation
theory described above and we will clarify the similarities
between both approaches. As we will see below the two-
pole approach has the advantage that it describes the k

1
l(2),k, o 2 [ + k + Pk, cr

U —&k+ k 2+4Un~ ek—

U(1 —n, )+ pg —si g-
7

1,k, cr
2,k,u l,k, cr

2,k, cr 1,k,cr '

(77)

and P» = [n- (1 —n-)] Bg, with n
(1/N ) P,-(n; -). If one sets B& ——0 in the above, the
derived equations are identical to those obtained in the

Here we assumed that the expectation values are site
independent. The term proportional to t is local, i.e.,
k independent. It is similar to the Grst-order term in
Eq. (63) and describes the difference of the kinetic en-
ergies of holes and doubly occupied sites. The second
term for a large part determines the k dependence of the
pole energies. The Grst two expectation values of the sec-
ond term combine to a nearest-neighbor spin correlation
function, showing that the dispersion of the peaks is di-
rectly inBuenced by the spin order. The last expectation
value involves the hopping of a double occupancy and is
small for large and intermediate U. This latter term is
of importance for the negative-U Hubbard model.

The solution of the above equations is
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Hubbard I approximation. As Hubbard showed, this
approximation becomes exact in the limits U = 0 and
U m oo. However, concerning the weights of the UHB
and the I.HB the approximation is very poor for finite
t and predicts a decrease of the weight of the I.HB for
fillings smaller than n = 1. In the Hubbard I aproxima-
tion the dispersion is completely determined by ~k and
both bands have a more or less similar shape cos k in
one dimension for all fillings. On the contrary, numeri-
cal calculations show that the first moments of the UHB
and the LHB have a much richer behavior as a function
of U and the filling n. ' The k-independent part of
8& corrects the weights of the bands as compared to
the Hubbard I approximation and shifts the bands.
The k-dependent part is essential for the "dispersion" of
the energies of the two peaks.

Using again the Ogata-Shiba wave function, one finds
in one dimension, for large U,

cr ~ g Ci crCi+1, cr

+~„~ (S;.S,+, + —,'n;n;+, )—'I a

sin em n=t ——(-' —ln 2)
vr 4

sill (7('n) 4
x n — , . (78)

~

~

The two-pole approach can now be compared with the
perturbation approach. Repeating the calculation in
Sec. V for the k-dependent spectrum, one finds (see also
Ref. 7)

) 2t 1 &- t~ +
U ~ ) (( & ~) i rr i+~~( ni+&~) ni era yai+boni'+bn)

26I-
n —(n;;naa;-)+ (a; a+a a;-a+a )+ (c, a,. a+a-a+a )) y D(t /(r )

2t 1 --
t 2~g

1 —n + —~ ) (-c;-c;aa-) — " n —(nn;aa-- ) + (,c-I cl a c; -c;+a )) ~o(t /U a)a

and the energy average is

—n, )aJ a,+s -(1 —n, +/, ) —n, a, a,+s n;~s ) + O(-t /U) (80)

Summing over the spin index ent and incoherent contributions (if we can talk about
Fermi-liquid quasiparticles at all).

The expectation values occurring in the k-independent
part of B& can be calculated &om the Green's func-

tions. This then leads to a set of self-consistent equations.
For the k-dependent part, however, this is not possible.
Therefore this term is often treated by a Hartree decou-

pling, or even totally neglected, using the argument that
its physical consequences are insignificant. ' It is clear
from Eq. (81), however, that this term is crucial for the

correct k dependence of the two poles. One finds that
the average band dispersion around half filling is deter-
mined by the nearest-neighbor spin correlation function.
Mehlig et al. have shown that the decoupling proposed
by Roth gives a good approximation of these expec-
tation values and describes the large doping-dependent
changes of the dispersion close to half filling.

The same two-pole approach can also be worked out
in real space. This means that the entire spectrum is

approximated by only two poles instead of two per k

value. The resulting expressions are directly obtained

26I-
(1 —n+ (S; S,+g + -'n;n;+g))

t

EI HB
k

+ ) (c,. c;+s -) + O(t /U). (81)
a i,b, cr

Taylor expansion of the two-pole expression Eq. (77)
for small (t/U) leads to the same result. Therefore the
two approaches are identical to first order in t/U The.
second-order weight, however, was shown to depend on
next-nearest-neighbor expectation values [see Eq. (61)j.
In the two-pole approach only nearest-neighbor terms ap-
pear. Therefore the two poles in the two-pole approach
represent the two Hubbard bands only to first order in
t/U Although this .approach is nonperturbative, one can
no longer strictly identify the two poles with the two Hub-
bard bands for intermediate t/U and for noninteger fill-

ing. It is clear from the above that; the lower pole in the
two-pole approach should not be interpreted as a quasi-
particle, but as the average of the one-particle spectrum
over the I HB. As such it stands for both the coher-
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from Eqs. (75) and (76) by replacing odd powers of e&

by 0 and e& by zt, respectively. In this k-independent
case the comparison with the two Hubbard bands is much
worse and shows that the two-pole ansatz is meaningful
only close to half filling. For small electron densities
the two poles will try to describe the width of the LHB
instead of the distance between the two Hubbard bands.
Therefore, for n —+ 0 one finds that the upper pole has a
weight 1/2 and lies in the LHB. On the contrary, the k-
dependent two-pole approach gives the correct behavior
for n -+ 0. The weight of the upper pole now vanishes
in this limit. Therefore the k-dependent approach is su-

perior even if one wants to describe only k-integrated
properties.

In one dimension for large U one finds

ELHB,1D
A:

—4t cos k
1 —n+

~

——ln2
~2 —n )

( z sin (zn)I
X A zz )

+ sin(em) + G(t /U), (82)

4tcosk t'
z sin (z'n) l+ n — 1 —2ln2 n

+D(t /U ), (83)

which is consistent with Eqs. (31) and (65). In the above
expressions the "average dispersion" is proportional to
e&, E&

' Ae&+const. We would like to stress that
this quantity is just the average over the LHB,~ in con-
trast to the quasiparticle states at low energy, which de-
scribe the coherent propagation at large U. The dis-
persion coefficient A is displayed in Fig. 13. One finds
a crossover for a filling n —0.86, where the dispersion
changes its sign. Consequently, at half filling the k = 0
point has a lower average binding energy than the k = m

point From Eq. (81) it follows that this dispersion van-
ishes at half filling for a Neel ordering of the spins, which
is consistent with the retraceable-path approach. In-
stead, for a random or ferromagnetic spin order the dis-
persion is not reversed, independently of the dimension.

Before showing the results for the two-pole ap-
proach, we will focus on the features seen in numerical
simulations. 2' The numerically obtained excitation
spectra show various interesting features. At half filling
for finite U the minimum excitation energy lies at vr/2,
the U = 0 Fermi point. The lowest binding energy peak
between k = 0 and k = vr/2 shows very little dispersion
for large U, while the part between vr/2 and 7r is strongly
k dependent. The width of the band is small at k = 0
and k = vr and large at k = vr/2. For just one hole in, say,
a ten-site cluster (corresponding to 10% doping) this
behavior changes drastically. Weight appears in the low-
energy electron-addition spectrum for aIl k ) k~ points
and the spectrum shows a large, Luttinger-like, Fermi

1.0

0.5

0.0

-0.- .5
0.0 0.2 0.4 0.6 0.8

n
1.0

FIG. 13. Dispersion coefficient A of the Srst moment of the
lower Hubbard band in one dimension (El", ——Ass + const)
as a function of the density n.

surface. 6 The weight for these k points grows steadily as
the doping is increased. For k points inside the Luttinger
volume there is almost no low-energy electron-addition
weight for any filling. The "dispersion" changes to the
usual cosine form with a bandwidth which increases when
the doping is increased. Note that the two-pole approach
must be compared with the weighted average over the
spectra. This average energy also changes quickly with
doping. In the 1D cluster of ten sites used for numerical
evaluation we observed the change &om a reversed be-
havior at half filling via practically Hat dispersion for one
hole added to the normal cos k band for more than one
hole. The transferred weight &om the UHB to the LHB
is distributed over atl k points with k & k~, not just over
the ones at k~. A similar behavior of the k-dependent
spectra is found in the t-J model and the above features
are qualitatively similar in two dimensions.

In Fig. 14 the k-dependent energy of the lower pole
is shown for three different fillings. The two-pole re-
sults are calculated using Eqs. (77) and (78). As pointed
out above, the rather Hat dispersion close to half fill-
ing changes into a broader band with increasing doping
(note the difFerent scale for n = 0.6). The numerical data
points are weighted energy averages over the LHB only,
obtained by splitting the one-particle spectra into the
UHB and the LHB by hand. For n = 0.6 the LHB shows
the normal cosine dispersion with a reduced "width" with
respect to the free dispersion at n = 0 (see also Fig. 13).
The two-pole result reproduces the numerical data very
well, even for U = 5. For n = 0.9 both the numerical
energy average and the lower pole become almost disper-
sionless. For smaller-U values the two-pole approach is
not sufBciently accurate to follow the fast changes in the
spectra compared to the half-filled case. Finally, for very
large values of U the picture has changed drastically at
half filling and the dispersion is a reversed cosine, with
the lowest energy at k = vr [see Eq. (81)]. However,
with decreasing U the energy of the k = 0 pole decreases
and the k = vr/2 pole has the highest kinetic energy or
the lowest binding energy. The numerical and two-pole
results are in good agreement, apart from the "kink" at
vr/2, which is not reproduced by the two-pole ansatz (this
might be a finite-size e8'ect). The results show that the
two-pole approach describes the k dependence much bet-
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FIG. 14. Momentum-dependent average energy of the
lower Hubbard band Ei, for U = 5, 10, and 20 (t = 1), st
half filling (lower), for 10'%%uo doping (middle) and 40'%%uo doping
(upper part). Symbols sre numerical data for a ten-site clus-
ter and lines represent the results of the two-pole approach
combined with the Ogata-Shiba wave function (Ref. 35).

ter for smaller-U values than first-order perturbation the-
ory. Deviations Rom the Grst-order cosine behavior are
appreciable and even qualitative difFerences occur already
for U = 10. It is apparent that a double unit-cell mean-
Beld antiferromagnetic dispersion does not describe the
spectra at half filing.

It is clear from Eq. (81) that the above features are
a direct consequence of the spin order. At half filing
Brinkman and Rice showed that for a Neel ground state
the spectrum becomes completely k independent. This is,
however, an artifact of the static spin order. If quantum
spin fiuctuations are included as in the Ogata-Shiba wave
function, the spectra become strongly k dependent and
the above features are obtained.

The behavior of the k-dependent weight is displayed in
Fig. 15. In Fig. 15(a) the weight of the lower pole at half
filing is plotted. Since this consists purely of electron-
removal states it is equal to the occupation number nI, . A
comparison with Fig. 2 shows that the two-pole approach
is again superior over Brst-order perturbation theory and
reproduces quite well the k dependence of nI, down to
U = 5 at half Blling. Note that we used the large-U
Ogata-Shiba wave function to calculate the pole weights.

The momentum-dependent increase of the weight in
the LHB, displayed in Fig. 15(b), is more sensitive to the
hole dynamics at finite U. The slight asymmetry in k is
due to the Bnite momentum of the one-hole ground state
of the cluster. The numerical data represent the weight
of the LHB at ha1f filing subtracted &om the weight as
obtained for the one-hole ground state. In case of the
two-pole approach we took the difFerence between the

weight of the lower pole for n = 0.9 and n = 1. For
large U the weight increase distributes over all k values.
However, for smaller-U values the weight is mainly dis-
tributed over k states larger than but sti11 close to kF.
Again one Bnds that the two-b-function ansatz is not able
to follow the fast changes in the spectra around half 611-

ing. %e note, however, that these fast changes for the
small cluster could be (partly) due to the finite size.

The two-pole approach completely neglects the width

of the k-dependent spectra since the entire LHB has col-

lapsed into a single b peak for each value of k. In the Ap-

pendix we give the expression for the k-dependent second
moment which determines the width. The k-dependent
width of the LHB in one dimension is plotted in Fig. 16.

1.5
0.9

—1.0
OJ

0.5

0.0
0

I"IG. 16. Momentum dependence of the width of the lower

band AEi, //2t2 in one dimension, for various fillings n

FIG. 15. (a) k-dependent weight of the lower Hubbard

band m&.0 (equal to ni, ) at half filling (n = 1) and (b) k de-

pendence of the weight transfer from the upper to the lower
band m&.0(n = 0.9) —mz. o(n = 1) in one dimension. Symbols
stand for numerical data for a ten-site cluster for three values
of U (t = 1). Lines are the two-pole approach combined with
the Ogata-Shiba wave function (Ref. 35).
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At half filling the width is proportional to cos(2k) and the
maximal width is found at k = m/2. Here the width is
AE = /61n2 —9$(3)/4x /2t2, which is about 1.2 times
as large as the k-integrated free-particle bandwidth.
The double period is lost away &om half filling and the
width increases compared to the half-6lled case. The k-
dependent spectra are still broad for densities n as small
as 0.3. So even in the low-density case the incoherent
spectral intensity is spread over a considerable energy
range. Clearly the two-pole approach reproduces not
more than just the average behavior of the energy in
the Hubbard bands and does not account for the many-
body efFects, which lead to the broadening of the initial
one-particle states.

VII. SUMMARY AND CONCLUSIONS

In summary, following the paper by Harris and Lange,
we used the transformation &om Hubbard to the strong-
coupling model to derive expressions for various sum
rules of the individual Hubbard bands. In one dimen-
sion the spin-charge decoupling for U = oo enabled us
to evaluate explicitly all quantities. The crucial point is
that in order to get a good description of the spectra of
the Hubbard model one should not only transform the
Hamiltonian, but also all the relevant operators at the
same time, such as the current operator for the optical
spectrum and the creation operator for the one-particle
spectrum. That also the operators become different is
generally neglected or simply not realized. As we have
shown this leads to large, in general 6rst-order, correc-
tions.

The above transformation is useful not only for the
spectra, but also for evaluating static expectation values
in the Hubbard model. In particular, when a nontriv-
ial quantity in the Hubbard case becomes trivial in the
strong-coupling model, this transformation produces ex-

plicit expressions. Examples are the k-dependent occu-
pation number at half 6lling and the amount of doubly
occupied sites (potential energy).

For the optical spectrum sum rules were derived for
the conductivity of the LHB and the UHB. The trans-
formation of the total sum rule, the kinetic energy in the
Hubbard model, leads to a 6rst-order correction which is
equal to the expectation value of the three-site hopping
(including the nearest-neighbor spin expectation values).
This correction term is dominant around half filling,
where the kinetic energy of the Hubbard model is siz-
able due to the admixture of doubly occupied sites. The
LHB and the UHB were shown to probe difFerent parts
of the three-site hopping correction. The UHB intensity
is determined by the spin correlation function and the
weight is therefore a direct measure of the (short-range)
spin order. The weight of the LHB is enhanced by the
three-site hopping to next neighbors of distance ~2 and
2. Apart &om this there is a kinetic transfer of weight
&om the UHB to the LHB involving the next-nearest-
neighbor hopping at distance 2.

In one dimension the Ogata-Shiba wave function en-
abled us to obtain explicit expressions for the weights.
Since in 1D the spin correlations are not weakened by

the holes, the decrease of the weight in the UHB with
doping is given by counting the number of bonds be-
tween nearest-neighbor spins and is reduced further by
the kinetic term W~ = (1 —3x)W~(n = 1). This weight
reduction is six times faster than expected for a sim-

ple semiconductor. In higher dimensions the spin order
around the hole will become less antiferromagnetic, lead-
ing to an even faster disappearance of the UHB. In one
dimension we have shown that the weight of the LHB is
equal to the weight of the zero-&equency Drude peak to
order ts/U2. This manifestation of spin-charge separa-
tion influences the entire LHB, but not the UHB. The
excitations to the UHB, involving doubly occupied sites,
is qualitatively independent of the dimension.

For the one-particle spectrum we derived expressions
for the weight of the LHB and the UHB to second order.
The zeroth-order term is easily understood by counting
the available states for electron addition. The 6rst- and
second-order terms are both of a kinetic origin and both
enhance the weight of the LHB close to half 6lling. These
kinetic contributions are due to the constructive inter-
ference between the ground state and low-energy final
states. We derived expressions of the weights for both the
Hubbard and the strong-coupling model ground state.
All expressions are explicitly electron-hole symmetric and
vanish at half 611ing. The energy separation between the
two bands to order t is U at half filling and increases to
U+ zt for n -+ 0, where z is the number of neighbors.
The width of the bands to order t is equal to the free-
particle width at half filling. Away &om half filling the
UHB narrows and its width goes to zero for n ~ 0. The
LHB becomes broader with increasing z.

The k dependence of the spectral moments of the in-
dividual bands is studied using both perturbation theory
and the related two-pole ansatz. A comparison of both
methods shows that the two poles can be identi6ed with
the two Hubbard bands only to first order in t/U The.
general result is that the k dependence of the spectra
around half 6lling is determined for a large part by the
spin order. For very large U the average energy of the
LHB has a normal cosine dispersion for paramagnetic
or ferromagnetic spin correlations, but has a reversed
—cos(k) dispersion close to half filling and for nearest-
neighbor spin correlations smaller than —1/4 (Neel or-
der). For intermediate U the two-pole approach gives
a much better description of the fast density-dependent
changes around half filling in the k-dependent spectra
than the perturbation theory. However, the often ne-

glected k-dependent terms in the two-pole approach are
essential to get the correct behavior. The expressions for
the k-dependent second moment show that the spectra
are very incoherent and that the incoherent width for cer-
tain k values is often larger than the total k-integrated
width of the LHB.

The distribution of weight over the two Hubbard
bands, in both the one-particle and the optical spec-
tra, is qualitatively independent of the dimension and
whether or not there is spin-charge separation. This is
a manifestation of the fact that the sum rules are deter-
mined locally and depend on nearest- and next-nearest-
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neighbor expectation values only. On the contrary, the
current operator in the optical spectrum probes only the
charge part and therefore the conductivity in the LHB
is completely difFerent in one dimension as compared to
two dimensions. In both spectroscopies the features ob-
served are strongly infIuenced by the local spin correla-
tions. The three-site hopping contributions are crucial
to understand the observed strong doping-dependent in-
tensity changes and demonstrate the importance of these
processes in the Hubbard model. In the t-J model only
the backward hopping Si - S;+b of the three-site hop-
ping is kept in the Hamiltonian. For the optical spectrum
the neglect of the next-neighbor hopping processes in the
Hamiltonian results also in the neglect of the respective
contributions of these processes to the weights of the LHB
and the UHB. Therefore, the t-J model does not repre-
sent the spectral properties of the Hubbard model for
intermediate or even large U. Furthermore, we note that
also the transport properties of the strong-coupling and
the t-J model are quite different and the superconduct-
ing order parameter exhibits a different k dependence of
the gap in both models. s

Because of the local character of the sum rules the
agreement between the perturbation expressions for the
infinite system and the numerical finite-size cluster re-
sults is quite good for large U. For U of the order of the
bandwidth the perturbation expressions still describe the
qualitative changes, but quantitatively errors of roughly
30% occur due to the neglect of higher-order terms.

The oxygen 18 electron-energy-loss experiments as well
as the measured optical conductivity show an anoma-
lously fast decrease of the intensity of the UHB with
doping. We have shown that this effect is a natural con-
sequence of the strong correlations in these materials and
can be understood easily starting &om an ionic picture
with two Hubbard bands. As such the observation of fast
weight changes is a fingerprint of systems with a (Hub-
bard) gap caused by electron correlations. We stress that,
although this weight transfer is observed in both experi-
rnents, the interpretation in both cases is quite different.
In the optical spectrum the nearest-neighbor spin. order
is involved, while in the one-particle case the lowest-order
effect is understood by counting the available degrees of
freedom to add a particle to a particular site. Of course
this phenomenon is not restricted to the cuprate mate-

rials, but similar effects have already been observed in
hole-doped La2Ni04 (Ref. 6) and are expected in. any
compound with an effective on-site repulsion bigger than
or of the order of the band width. This is expected to be
the case in some realistic situations, where the multiband
models do not necessarily map onto the one-band Hub-
bard model and one is left with a more complex model as.
for instance, in the late transition-metal oxides. In fact,
even more dramatic transfers of the spectral weight might
be present in such models due to the competition be-
tween the kinetic and magnetic energies at finite doping
which promotes magnetically ordered states other than
those found in the undoped Mott-Hubbard insulators.
Also, if one introduces orbital degeneracy in the Hub-
bard model, the effects are much more dramatic. In this
case the total intensity of the Hubbard bands is propor-
tional to 2X d, where d is the orbital degeneracy. If
one removes only one electron by doping, starting from
a particular integer filling with n electrons per unit cell,
then there are 2d —(n —1) ways to put one electron in
the LHB in inverse photoemission, which is (in general)
larger than the factor 2 in the single-band model.
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APPENDIX
The simplest estimation of the width of the LHB is

provided by the k-dependent second moment

m(" =
k;0

In lowest order it is simplified to

(2) X iA: (R, —R~)
k;0 g

x ci;o To To, ct . +0t U. A2

Using Eq. (9) this is related to the two- and three-site
correlation functions as

2

zn. = zt (2 —nI — ) c,zb n;c;zb —2(c zb n; -c;+b , —c,zb c, c; c;+b -))
i,b, b', cr;blab'
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i,b, cr i,b, b', cr;blab'

t2

i,b, b', cr;blab'

ik. (b' —b)e 1 ——n+ —nini+bni+b + ~2 —ni+b j ni ni+b ~ + c,-+b ci c,,~c,+b,~

n;l+
l

1 ——~;b-b;b. b +;zb —;zb; C;Zb, — b+b; ) (A3)
2r

At half filling (n = 1) all summations vanish, except the last one. Therefore the k-dependent part of the second
moment is proportional to cos(2It:). The last term now contains nearest-neighbor and next-nearest-neighbor correlation

functions. For an antiferromagnetic spin order the second moment becomes k independent.
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The above equation can. again be solved in 10 by means of the Ogata-Shiba wave function. In this case we need
also the next-nearest-neighbor spin-spin correlation function for the Heisenberg chain, which has been obtained by
Takahashi. The 6nal result in one dimension is

m& 0' ——2t (2 —n) —2t (1 + 2 ln 2) n(2),iD 2 sin(2z. n) sin (z n) 2 sin(em)—4t cos(k) 1 —(1 —21n2) n, —
7 27r 7r2 7r

sin (urn) sin (2vrn)+2t cos(2k) 2 —3n + (1 —2 ln 2) 3n —2 ~2 (2~)2

f9 ') s sin (xn) sin (2z.n) sin(2zn) sin (urn)—n +2
(2z.) 2z.

Here ((z) is the Riemann zeta function. The width of the LHB is now defined as

sin(2m')

j2'

(A4)

(2),zD

(~ELHB,1D)2 k;0
(o), iD

mA, .o

(~)»)
(0),ZD

I ~S0' j
where the first moment was calculated before [Eq. (82)] and the zeroth moment is equal to 2 —n to lowest order.
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