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Gauge-invariant response functions of fermions coupled to a gauge field
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We study a model of fermions interacting with a gauge field and calculate gauge-invariant two-particle
Green s functions or response functions. The leading singular contributions from the self-energy correc-
tion are found to be canceled by those from the vertex correction for small q and Q. As a result, the
remaining contributions are not singular enough to change the leading-order results of the random-phase
approximation. It is also shown that the gauge-field propagator is not renormalized up to two-loop or-
der. We examine the resulting gauge-invariant two-particle Green s functions for small q and 0, but for
all ratios of 0/vFq, and we conclude that they can be described by Fermi-liquid forms without a diverg-

ing effective mass.

I. INTRODUCTION

The problem of two-dimensional fermions coupled to a
gauge field has been a recent subject of intensive research.
This problem appears as a low-energy effective model of
two different strongly correlated electronic systems, i.e.,
electrons in the fractional quantum Hall (FQH) regime
and the high-temperature superconductors (HTSC), both
of which have been considered as one of the most impor-
tant problems in modern condensed-matter physics.

As the first example, this problem arises in a theory of
the half-filled Landau level' (HFLL) in connection
with the composite fermion theory of the FQH effect.
A composite fermion is generated by attaching an even
number of flux quanta to an electron. The transforma-
tion from the electron to the composite fermion can be
realized by introducing an appropriate Chem-Simons
gauge field. ' Especially, at the filling fraction v= —,',
composite fermions see effectively zero magnetic field at
the mean-field level' because of the cancellation be-
tween the average of the Chem-Simons gauge field (from
the attached magnetic-flux quanta) and the external mag-
netic field. Thus, at the mean-field level, the system can
be described as a Fermi liquid of composite fermions.
The fluctuation of the gauge field beyond the mean-field
level has been studied within the random-phase approxi-
mation (RPA), '3 which explains qualitative features of
the recent experiments.

The other source comes from the recent gauge theory
of the normal state of high-temperature superconduc-
tors. ' ' The gauge field arises as a fluctuation of the
spin chirality' above the uniform resonating-valence-
bond mean-field state of the t-J model, which is supposed
to be an effective model of HTSC. The origin of the
gauge-field fluctuation can be traced back to the con-
straint that the doubly occupied sites are not allowed be-
cause of the strong on-site Coulomb repulsion. ' ' It has
been suggested that the gauge-field fluctuations play im-
portant roles in explaining anomalous transport proper-
ties of the normal state of HTSC. ' ' '

Besides these real examples, the problem of fermions
interacting with a gauge field has been studied as a poten-

tial example of non-Fermi liquids. ' In contrast to
the usual long-ranged interactions such as the Coulomb
interaction, the transverse part of the gauge field cannot
be screened because the gauge invariance requires the
gauge field to be massless in the absence of symmetry
breaking. ' ' Thus, one can expect that the long-range
interaction due to the transverse part of the gauge field

gives rise to non-Fermi-liquid-like behaviors. In fact,
some singular behaviors appear in the lowest-order self-

energy correction of fermions by the gauge-field fluctua-
tion. ' ' The singular self-energy correction makes
perturbative calculation unreliable at low energies. This
motivated several nonperturbative calculations of one-
particle Green's function of fermions, which show highly
non-Fermj-ljqujd-like behavjors. ' It turns out
that, even in the lowest order, the singular self-energy
correction makes the effective mass of the fermion diver-
gent so that the usual single-particle picture breaks
down.

However, recent experiments on the electrons in the
half-filled Landau level showed essentially Fermi-liquid-
like behaviors "and also measured finite effective mass
of composite fermions. ' Therefore, we are in a situation
that experiments apparently contradict the insight we got
from the one-particle Green's function of the fermions.
However, the one-particle Green's function for the fer-
mions is not gauge invariant. The singular self-energy
correction in the one-particle Greens function (which
leads to divergent effective mass') may be an artifact of
the gauge choice rather than a property of physical quasi-
particles. Since it is not a gauge-invariant quantity, the
one-particle Green's function for the fermions cannot be
directly measured in experiments. It is possible that
some singularities in the gauge-dependent one-particle
Green's function simply do not appear in gauge-invariant
correlation functions. One purpose of this paper is to ex-
amine some gauge-invariant response functions in order
to determine whether the singular behaviors in the one-
particle Green's function appear in gauge-invariant
correlation functions or not.

The importance of the gauge invariance in calculating
correlation functions can be also seen in the following ex-
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ample. The leading-order corrections (two-loop order) to
the transverse polarization function (or current-current
correlation function) are given by the diagrams in Fig. 1.
Note that the sum of contributions from Figs. 1(a)—1(d)
is not gauge invariant because they contain only self-
energy corrections but do not contain the vertex correc-
tion. For concreteness, let us consider the case of g =2 in
the model given by Eq. (8), which corresponds to the case
of HTSC and the short-range interaction between fer-

mions in HFLL. %e also consider Q && vFq and q && kI;
limits. In this case, it can be shown that the correction to
the transverse polarization function due to the self-energy
corrections [given by Figs. 1(a)—l(d)] has the following
form:

5 ImII'„(q, 0)=
2 y Fq kFq

while the contribution from the free fermions is given by

(c)

fPl VF Q
ImII„(q, 0)=-

2K VFq

~here 1 denotes the direction which is perpendicular to
q. One can see that the correction 5ImII&& would be
more singular than the free-fermion contribution ImII»
if q, 0—+0 limit was taken with fixed 0/Uzq ( 1. This re-
sult suggests that the perturbative expansion breaks down
at low energies and the Fermi-liquid criterion are violat-
ed. Thus, the gauge-dependent correction (which comes
from the self-energy correction) to the transverse polar-
ization function provides a similar picture as that from
the singular one-particle Green's function.

Nevertheless, the perturbative corrections to the corre-
lation functions should be calculated in a gauge-invariant
way, thus one has to include the contributions from the
vertex correction. The contribution to the transverse po-
larization function 5 ImII

& &
coming from the vertex

correction contains a singular term, which exactly can-
cels the singular contribution from the self-energy correc-
tion. Thus, the remnant terms in 51mllt& provide the
lowest-order corrections to the transverse polarization
function and have the following form:

5 lmll', , +5 lmlI» = foal VF Q (yQ/y)0
kF

FIG. 1. The diagrams that correspond to the [(1/N}0]th-
order contributions to II» in the 1/%expansion.

+5 (yII/y)
kF'q

where a and b are dimensionless constants. One can see
that the corrections calculated in a gauge-invariant way
are always much less than the free-fermion contribution
as far as Q«vFq and q «kF limits are concerned.
Therefore, the perturbative expansion works quite we11 in
this regime, at least up to the leading-order gauge-field
corrections, and there is no need to go beyond the pertur-
bation theory at this order. The validity of the perturba-
tive expansion also indicates that the transverse polariza-
tion function is well described by the Fermi-liquid theory
in the region of Q«VFq and q «kF. This provides a
very difFerent picture from that obtained through the
gauge-dependent one-particle Green's function.

In this paper, we examine several gauge-invariant two-
particle Green's functions or response functions in the
limit of low frequency and long wavelength. It is shown
that all the leading singular contributions from the self-
energy correction are canceled by the contributions from
the vertex correction in systematic perturbation theories
(which guarantee the gauge invariance in each order of
the perturbative expansion). This cancellation is essen-
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tially due to the Ward identity. It is found that singular
corrections to the two-particle Green's function do not
appear for all ratios of Q/vzq as far as the limit of low
frequency and long wavelength limit is concerned. This
kind of cancellation was also discussed by Ioffe and Kal-
meyer for a static gauge field. Recently, Khveshchenko
and Stamp performed nonperturbative calculations of
one-particle and two-particle Green's functions using the
so-called eikonal approximation. Even though they ob-
tained a highly singular one-particle Greens function,
the singularity does not show up in two-particle Green's
functions for small q and Q in this approximation.

We also show explicitly that the gauge-field propagator
is not renormalized by the fluctuations beyond RPA up
to the two-loop order. Nonrenormalization of the
gauge-field propagator was first discussed by Polchinski
in the framework of a self-consistent approach. In this
approach, it is assumed that the dispersion relation of fer-
mions is given by co~/~ (g&=k /2m —p) and that of
the gauge field is given by Q ~iq3, which are the results
of one-loop corrections. Ignoring vertex correction by as-
suming the existence of a Migdal-type theorem, he
showed that the assumed one-particle Green's function is
self-consistent, and the polarization function is given by
the same form as that of free fermions
ImII»= —(rnuz/2m)(Q/u„q) for Q&y'r y ~ q3r . As a
result, the gauge-field propagator is not renormalized be-
cause the dispersion relation of the gauge field is given by

mvF 02

ImII»(q, Q) =— 1 —a
2'lT Up/

rnvF (pQ/g)2/(1+q)

y kF

Ivan (yQ/y)3r~~+ l~—b
kFq

(4)

while for Q »vFq,

Q~iq . However, we would like to remark that his re-
sult is quite different from those obtained in this paper.
One can check that the polarization function in the self-
consistent approach has a different form compared to
that of Fermi liquid for Q) y' y q . However, in
our perturbative calculation, the cancellation of anoma-
lous terms from self-energy and vertex corrections leads
to the result that the polarization functions have Fermi-
liquid forms for all q and Q as far as both are small.

We have made several explicit calculations of two-
particle Green's functions. In particular, we consider a
model given by Eq. (8) with u(q) = Vo/q
[v(r) ~ Vv/r", 1&ri&2], which corresponds to the in-

teraction between fermions in the problem of HFLL. We
will present the nonanalytic contributions (due to the
gauge-field fluctuations) to the two-particle Green's func-
tions. The transverse polarization function II&I(q, Q) up
to two-loop order is found to have the following form.
For Q«UFq, we get

ImII„(q, Q}=—
' 1/(1+g)

1+g 1 (3—g)/(1+ g)F Q'3 "'~"+v' 1+emu
g+(5+q) sin[2n/(1+g)] m y r"+~' '.y.

2

Q(2g+3)/(g+ 1)

(5)

where a, b, c are positive dimensionless constants.
The density-density correlation function Ilov(q, Q) is also calculated. We have a formula valid for any ratio of Q/vzq

as long as Q and q are small [see Eq. (70)], but here we just discuss limiting cases. For Q « vzq, we have

( Q)
rn Q

1
1+rI 1 V Q(3 —g)/(1+ g)

(3—g)/(1+ g)

2n vzq 4m(5+r)) cos[(ri —1)/(ri+1)n] kern y r"+v'
UFQ

(6)

On the other hand, for Q &&UFq,

Imlioo(q, Q)=- 1+g 1 1

g+(5+q) sin[(2n )/(1+q)] k~

(3—g) /(1+ g) U~ll
Q(3—g) /(1+ g)

4/(1+ q) Q

(7)

I

However, the subleading contributions are in general
nonanalytic due to the long-range nature of the gauge in-
teraction. The nonanalytic subleading terms may have
some experimental consequences. For example, the
NMR relaxation rate 1/TI in the problem of HTSC can
be determined from 1100(q,Q). At low temperatures, we
have

1 . 1~ lim ——Qlmllvo(q, Q},
T, T n T QNote that Imll»(q~O, Q)=(Q /u~q )Imiioo(q~O, Q)

is satisfied as it should be. Equations (4)—(7) are the main
results of this paper.

From the above gauge-invariant correlation functions,
one can see the following.

(1}The corrections are irrelevant in the small q and Q
limit regardless of the way q and Q approach zero (for ex-
ample, q ~0 limit may be taken first or Q~O first, etc.}.
Therefore, nonperturbative calculations are not necessary.

where IIOO plays the role of spin susceptibility in HTSC.
Equation (6} implies the following nonanalytic correction
to the free-fermion result (only contributions from small

q are considered): 1/T, T ~ 1 —AT' +"'r"+"', where A is
a constant and the first term is the result of Fermi liquid.
Notice that this result is in disagreement with a result
based on a renormalization-group approach obtained in
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Ref. 26, even near q = 1. For HTSC g =2 and
1/T, T ~1—AT . Note that the nonanalytic correc-
tion is very small so that the Fermi-liquid form is
preserved.

(2) q~O limit of the transverse polarization function
indicates that the transport scattering rate 1 „(which
determines the dc conductivity) scales as I „~Q~~" +~' at
low frequencies [see Eq. (45) for more details]. This re-
sult can also be obtained from the coefficient of the term
which is proportional to q in Im1100(q, Q), and the rela-
tion ImII„(q~O, Q)=(Q /uzq )Imlloo(q~O, Q). This
result exactly agrees with those obtained by different ap-
proaches. ' ' Note that I „&Q for 1 & g & 2.

(3) From Eq. (4), one can see that the gauge-field
corrections are smaller than the result of free fermions
along the curve Q ~ q '+", which is the dispersion relation
of the gauge field. Therefore, the gauge-field propagator
is not renormalized. As mentioned above, nonrenormali-
zation of the gauge-field propagator was first discussed in
Ref. 28 within a self-consistent argument.

(4) For ri 2, the gauge-field corrections to the polar-
ization functions are less singular than the result of the
free ferrnions for 0 & vzq. In particular, the edge of the
particle-hole continuum in ImII» and ImIIoo still occurs
at Q=V+q, where vz is finite and shifted from the bare
Fermi velocity as in the usual Fermi-liquid theory. We
conclude that the two-particle Green's functions are con-
sistent with those of a Fermi liquid with a finite effective
mass. However, a combination of a divergent mass and
divergent Fermi-liquid parameters cannot be ruled out.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the model and review some one-
particle properties. In Sec. III, the transverse polariza-
tion function for q~O case is calculated. The cancella-
tion of anomalous terms (coming from the self-energy
and the vertex correction) up to [(1/N) ]th order is ex-
plicitly shown (where N is the number of species of fer-
mions). We also discuss the optical conductivity using
the information of the calculated transverse polarization
function. In Sec. IV, we calculate the transverse polar-
ization function for the finite q «k~ case. It is also ar-
gued that the gauge-field propagator is not renorrnalized
up to two-loop order. In Sec. V, the density-density
correlation function is calculated up to two-loop order
for finite q «kz. In Sec. VI, the results are compared to
the conventional Fermi-liquid theory and their implica-
tion is discussed. We conclude this paper in Sec. VII.

n' O

0 11»+a u(q)q
(10)

Here p, v=0, 1, and 1 represents the direction that is per-
pendicular to q. IIOO and II» are given by the one-loop
diagrams in Figs. 2(a) and 2(b) respectively. In the limit
of co«v~q, one can find that" '

Pt /CO/

2K UFq

o 2n /co/ q'
kF q 24~1

='V +Xoq
q

L =g*(Bo —iao —p)g — g'(8; —ia; ) g+iaonf
1

2

+ Jd~r'[V Xa(r)]u(r —r')[VXa(r')] .
2

Here u(q)= Vo/q " [u(r) ~ Vo/r~, 1(&(2],m is the
bare mass of the fermion, and nf is the average density of
fermions. We choose the Coulomb gauge V a=O. Note
that this model is incomplete for the problem of HFLL
because of the absence of the Chem-Simons term. How-
ever, one may expect that it contains possible low-energy
singular behaviors because the most singular contribution
to the one-particle properties comes from the transverse
part of the gauge field. In the problem of HFLL,
a= 1/(2mg) and /=2, which is the number of fiux quan-
ta attached to the electron. ' For the case of HTSC, one
can take Ex=0. ' '

After integrating out fermions and including gauge-
field fiuctuations up to one-loop order (RPA), the
effective Lagrangian density of the gauge field is given

b 1 12 13

a„' (q, co)D„„(q,ice)a„(q,co),1 d q dc'
2 (2~)' 2~

where

II. THE MODEL
AND THE ONE-PARTICLE PROPERTIES

The model is motivated by the above-mentioned two
strongly correlated electronic systems. It is constructed
such that it includes the most important infrared singular
behaviors of the one-particle Green's function. In this
paper, we consider the zero temperature limit and use the
Euclidean space formalism. The mode in the Euclidean
space is given by

Z= D D Dae

where

FIG. 2. The one-loop diagrams for II00 (a) and for II» (b).
The solid line is the bare electron propagator and the wavy line
represents the gauge-field propagator. These are the leading-
order diagrams of IIO0 and II» in the 1/X expansion.
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where

= —italo) l'"'+')'sgn(ro), (13)

4m sin[2m/(1+&)]y(v
—i)/(q+i)y2/()+v) '

and Go '(k, ice) =iso g), (g„—=k~/2m —p). The self-
energy as a function of real frequency Q (in the Min-
kowski space) can be obtained from the analytic con-
tinuation of X(k, iso), i.e., X(k, Q)=X(k, j~~Q+i'fi).
Note that lImX(k Q}l"IQJ'/('+")» lQl for sufficiently
sm»1 Q «

I
Q I

«&'"+" '" ". Therefore, the quasiparti-
cle (the dressed fermion) is not well defined.

This can be also seen from the spectral function of fer-
mions. The spectral function can be obtained from
the imaginary part of the retarded Green's func-
tion: A (k, Q) = —( 1 ln )ImGa (k, Q) = —(1/n )ImG(k, iso

~Q+i5), where G '(k, iso)=GO '(k, iso) —X(k, iso). In
the low-frequency limit,

1 A2lQl /"+"'sgn(Q)
A(k, Q)=-

lQl2/(i+g) g )2+(g lQl2/(1+v))2

Therefore, the gauge-field propagator can be expressed as

m

2' VF

(12)

D, ,
' =y +[go+a v(q)]q

=rl l+x",
q

where y=yo+a Vo for ri =2 and y=a2Vo for A%2.
Since the longitudinal part of the gauge field is

screened, the transverse part of the gauge field dominates
the physics. The one-loop self-energy correction due to
the transverse part of the gauge field is calculated as" '

(Fig. 3)
2

d q dv kXq
(2~)2 2n m

X Go(k+q, ico+ iv}D»(q, iv)

and

for k sufficiently close to kz. From kz/m '
=Be),/Bk

l k k, the effective mass diverges as
F

m' lk —k, l

"-"" (16)

This suggests that at least some modifications to the con-
ventional Fermi-liquid theory are necessary as far as the
one-particle Green's function is concerned.

There have been also some nonperturbative calcula-
tions of the one-particle Green's function, ' which
were motivated by the singular perturbative correction at
low energies. The results look very difFerent from that
obtained by the lowest-order perturbative calculation and
even exponentially decaying one-particle Green's func-
tion is found in the so-called eikonal limit.

From these results, one may doubt the validity of the
quasiparticle picture although a modified Fermi-liquid
description is proposed for the case of the HFLL. ' How-
ever, one should also remember that the one-particle
Green s function is not gauge invariant. This can be easi-

ly seen in the path integral representation of the one-
particle Green's function' ' of a fermion interacting
witl)( a gauge field, i.e., each path acquires a phase factor

i dt'a(r, t') dr/dt'.
e o ', which is manifestly not gauge invariant.
Therefore, it is very important to examine gauge-
invariant quantities. As the first example, we will calcu-
late the polarization function for q~O case in the next
section.

A2=A, sin [n/2[(ri —1)/(g+ 1)]J .

Note that the maximum of A(k, Q) appears at
Q-(g), /A, , )"+")/. However, the width of the broad
peak is also order bQ-(g), /A, , )"+")/. Therefore, the
Landau criterion for the existence of quasiparticles
(b,Q «Q) is marginally violated.

If we assumed that there is a well-defined Fermi wave
vector kz = (4n nf )' and tried to fit the result to the usu-

al quasiparticle picture, the energy spectrum of the quasi-
particle would be'

lk —k I"'"'"

where

(14) III. TRANSVERSE POLARIZATION FUNCTION
FOR q ~0 AND OPTICAL CONDUCTIV1TY

A, , =A, cos[n /2[(g —1)/(g+1)]]

FIG. 3. The diagram that corresponds to the one-loop
correction to the fermion self-energy. The solid line is the bare
electron propagator and the wavy line represents the gauge-Beld
propagator.

Let us consider a large N generalized model of Eq. (8),
where N is the number of species of fermions. In this
model, each fermion bubble carries a factor of N and
each gauge-field line gives a factor of 1/N. Thus, for ex-
ample, IIOO and II» obtained in the previous section
should be multiplied by N.

In this section, we consider only the q~0 case of the
transverse polarization function: II»(q~O, iv}. Howev-

er, the relevant diagrams are the same even for the qAO
case. The leading-order contribution is II», which is pro-
portional to N. The relevant diagrams in the next order
(i.e., [(1/N)0]th order) are given by Figs. 1(a)—1(g). For
convenience let us define the following quantities: II&&'=

1(a) + 1(b) and II/) = 1(c) + 1(d}. The formal expres-



KIM, FURUSAKI, %'EN, AND LEE

sions of these quantities for the q ~0 case are given by

(, )

y
dk dco k —(kq)

(2m. ) 2m.

and

X[GO(k, iso)] Go(k, icg+iv)

dk des k —(kq)
(2~)2 2~

X [Go(k, ico+iv)] Go(k, iso) .

These two equations can be rewritten as

dk des k —(kq)' X(k, iso)

(2n') 2n m lV

(18)
FIG. 4. The diagram that corresponds to the lowest-order

vertex correction I o(k, q, ico, iv) or I &(k, q, iso, iv).

parts give us

H()) II(p) y
dk dao k —(kq)

(2m. )2 2m. m

X [[Go(k,iso)] —Go(k, ia))GO(k, ico+iv)],

(19a)

1 k den k —(kq) X(kico+iv)
(2n) 2m lV

X [[Go(k,ico+iv)] Go(k—,ico+iv)GO(k, ice) j .

(19b)

If we add (19a) and (19b), the first terms in each polariza-
tion bubble are canceled by each other and the remaining

X(kiddo, ) X—(kiev, +iv)
lV

XGO(k, ice)GO(k, ia)+iv) . (20)

From the above expression, it can be easily seen that the
contributions from Figs. 1(b) and 1(d) are automatically
canceled because the self-energy corrections in these dia-
grams are just the same constants.

Next we consider the diagram given in Fig. 1(e}. Here
we have to include the vertex correction for the q ~0
case (Fig. 4),

I,(k, q —+0;ice,iv) = 6f q Gfv

(2~)2 2m

k, +q) k —(k q')

XG0(k+q', ico+iv')Go(k+q', ico+iv'+iv)D»(q', iv') .

Then III)'(q-O, iv) can be written as

(21)

~(3) y
dk da)

(2.)2 2m

=II""+rr"",11 11

where

k I,(k, q~O;ice, iv)Go(k, i')Go(k, ico+iv)
m

(22}

2,~ 2n""=—I '" '"'q'
G (k )G (k +

(2m. ) 2m m

X Go(k+q', ico+iv')Go(k+q', ico+iv'+iv)D))(q', iv'),d q' dv' k —(k.q')

(2m) 2m.
(23)

and

Idk des (k. ) k. . I dq' dv' q)k) k —(k.q')
(2m) 2~ (2m) 2~ m m

XGO(k+q', ico+iv')Go(k+q l'&0+iv+iv)D))(q iv ) . (24)

Here we would like to point out that II»'" is more singular than H»' '. This can be easily seen from the fact that II&&'
'

can be obtained by replacing k, /m =[k —(k.q} ]im in the integrand of Eq. (23} by q', k)/m. Using
q', =qI)sine&q+q~cos8&q and gz+~=gz+uzq~)+q f/2m, one can do the integrals over qI) and q' in Eq. (24). Since the
contribution from the q~cos8/q term becomes an odd function of q~, this term vanishes. By a formal manipulation, one
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can replace q t)
by q') /kF so that the q', factor becomes effectively (q'j /kF )sin8),q. Since the integrand is dominated by

lvl -(y/y ) lq) l

'+" scaling given by the pole of the gauge-Seld propagator, replacing k, by q', gives rise to an additional
factor, which is proportional to lvl /"+"'. Therefore, II(),' ' should be less singular than II())"by the factor lvl

/"+v) in
the-low frequency limit.

Note that II'11'" can be rewritten as

II) )' = — I 0(k, q~O;i co, i v )Go(k, ico)GO(k, i co+i v),d k dco k —(k.q)
(2n) 2m m

where I 0 is the scalar vertex,

I 0(k, q;ico, iv)=
2 Go(k+q', ico+iv'}Go(k+q'+q, ico+iv'+iv)D»(q', iv'} .

d~q' dv' k —{k q'}~

(2n)2 2n. m2

From the relation,

(25)

(26}

X(k,i co) —X(k, i co+i v) = [Go(k+ q', i co+i v') Go—(k+ q', i co+i v'+i v) )D» (q', i v')d q' dv' k —(k q')

(2n) 2n' m

d q' dv' k —{kq')
ivGO(k+q', i co+i v')Go(k+q', i co+i v'+iv)D» (q', i v'),

(2~)2 2w m2
(27)

we get the following identity:

X(k,ico) X(k—,ico+iv) ~ (k 0 . .
) (2g)

EV

This is nothing but the Ward identity. From Eqs. (20),
(25), and (28), we have

I

found to be

VF 1 1

y 2n sin[2n/(1+g)] v
' 2/(1+g)

x l"l& s,.(.)
II("+rr")+II""=0.11 11 11 (29)

Now the remaining piece is just II'11' '. Fallowing the
procedures of integration mentioned above, in the low-
frequency limit, we get

II(3,2)
11

1+g
4m (5+ri)sin[(3 —ri)n /(1+ ri) ]

(3—q)/(1+ q)
lvl(3

—v)/()+v)
m y4/( 1+Y])

(30)

Here it is worthwhile to compare this result with
II'11'+ II'11' and II1,'", i.e., the results before cancellation.
By a straightforward calculation, one can get

(31}11(1)+11(2) ) mU2glvl (g ))/(v+))
11 1) (3+ )

F

In order to calculate II'„'", the vertex correction should
be calculated. The vertex correction I 0(k,q~O;ico, iv) is

I

lco+vly

x

' 2/(1+g)

sgn(co+ v) . (32)

Using Eqs. (25) and (32), II/, '" can be calculated as

mV
(3 1) F 1+q

2n sin[2n/(1+g)] 3+ri

(,),(„„)„(„„)IVI
'" """"'.

Note that, as mentioned above, II11'+II11' and II11"are
more singular than II',3' ' by lvl

/"+"' in the low-
frequency limit. The important point is that these singu-
lar terms are canceled by each other due to the %Pard
identity.

Now let us look at the diagrams of Figs 1(f) and l(g).
Let II'„'= l(f) and II(),) =1(g). The formal expressions of
these diagrams for q —+0 case are given by

and

(g) J d q dv d k dco d k dco k' k"—(k' q')(k" q')
(2n. )2 2m (2m. )~ 2~ (2m. )~ 2m' m

X Go(k', i co')Go(k', i co'+i v)GO(k' q', i co' i—v' )Go(k—",i co")Go(k",i co"+i v)GO(k" q', i co" i—v')—(34)

f d q' dv' d k' dco' d k" dco" k' k"—(k'.q')(k" q')
(2n. )' 2~ (2~)' 2~ (2n. )' m

X Go(k', i co')Go(k', i co'+i v)Go(k' q', i co' i v—')Go(k"—,i co" )Go(k",i co"+i v )Go(k"+q', i co"+iv'+i v ) . (35)
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By changing variables as q'~ —q', v'~ —v' —v, and using D»( —q', —iv') =D»(q', i v'), we get
2

(4) (5) 1 d P dV , , , d k ddt 1 kq'II„+II»'= — D „(q',i v')D „(q',i v'+i v ) Gp(k iso )Gp(k i ro+i v )
2 (2rr}2 2m. (2~)2 2m. m, m

X [Gp(k+q', irp+i v'+iv)+Gp(k —q', imp iv—')] '

where 0&q. is the angle between k and q'. In the low-

frequency limit, we get

2 3e mUF
g —2g/(1+ q)

nv (g —1)/(q+1) 2/()+g)

UF (3—n)/(1+v)n("+ rr")= —c ~(3 q)/()+q)
11 11 1 4/(1+ ~)x

where c1 is a constant. One can also show that

NlU
g(4) ~

F
~

—(~—1)/(~+ 1)
11 0 (g 1)/(q+ 1) 2/(1+ q)y x

7

rr(5)=.
NlU -(~—1)/(q+1)

(q —1)/(~+i) 2/(1+~) ~V~

(37)

(38)

where o.„„represents the conductivity without vertex
correction.

Now we are going to show that the right answer given

by Eq. (41) is consistent with a modified Drude formula
if we assuine that the transport scattering rate (which is
the inverse of the transport time r,„) of the fermion is

given by

I (Q) ~ (1/N)( 1/mk )[p(3
—rl) (/)+g)/+4/( )+9)]Q4/(1+v/)

(3—g)/(1+ g)F
~
v~

(3 7))/(1+ q)
4/(1+ g)

Nn kF (3—7))/(1+ g)F
~(3 7))/((+g)

2 ~ 2 4/(1+g) (39)

up to [(1/N ) ]th order, where c2 is constant.
In order to calculate the optical conductivity, we have

to consider the bubble diagrams with two external lines
that represent the coupling to the external vector poten-
tial A„while the internal gauge-field lines are due to a„.
There are additional diagrams generated by 1)/ (2„A"f
vertex. All the additional diagrams except one [shown in
Fig. 5(a)] vanish due to the symmetry of the integrand. A
typical diagram that vanishes is shown in Fig. 5(b). It
turns out that the diagram represented by Fig. 5(a) gives
an imaginary part, which is higher order in frequency
compared to ~v~( "'/"+"' so that it is irrelevant in the
low-frequency limit. Now we can use the imaginary part
of the transverse polarization function in the Minkowski
space II»(q~O, Q}=II»(q—+O, iv~Q+i5} to calculate
the real part of the optical conductivity

ImII11( Q )
Reo (Q) = —e2 0

From Eq. (39), Reer(Q) is given by

where c0 is a constant. That is, there is also a cancella-
tion between the singular parts of II11' and II11'.

Gathering all the previous informations and using
II»(q~0, i v) =Nn /m, we can conclude that

First of all, for later convenience, let us calculate the
inverse of the transport time ~„ofthe fermion' using the
imaginary part of the self-energy X(k,Q). For this pur-
pose, we can just include the factor 1 —cos8=2 sin2(8/2)
in the integrand of the expression for ImX(k, Q), where 8
is the angle between the wave vector of the fermion and
that of the gauge field. ' Using the fact that
sin(8/2)=q/2kF and q —(yQ/y)' "+"' inside the in-

tegral, ' we get
(3—g) /(1+ g)

~4/(1+ q) (43)0 ~ ~k +4/(1+q)
tr F

Therefore, we will essentially show that our result of the
optical conductivity is consistent with the identification
of I „=1/~„or ~„=r,, in a modified Drude formula.

The Drude formula that is appropriate to the large-X

(3—q) /(1+ g)
Reo (Q) Q

—2[(g—))/(v+1)] (41)
2 4/(1+ g)

If there were no cancellation, the result would look quite
diferent. For example, if we did not consider the vertex
correction, the result from II'11'+ II11' would be

FIG. 5. (a) The nonvanishing diagram generated by g a„A"g
vertex. (b) A typical vanishing diagram generated by p a„A")ij
vertex.
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generalized model is given by

rt
m

Reer(Q)= Nne

Nne2 I tr
Reer(Q) =

m Q2

In the large-N limit, if we assume I „=1/~„~ 1/N,

(44)

(45}

(i)
)t

d k dco k (k q) X(k
(2ir } 2~ m

L

X [Go(k, ico)] Go(k+q, ico+iv),
P

d k dco k —(kq) X(k+ + )
(2ir) 2n.
X [6()(k+q, ico+iv)] G()(k, ico) .

(46)

This is the same result as that of Eq. (41). The result of
Eq. (42) can be reproduced in the same way if we assume
that

Using the similar method as that used in Sec. III, one can
obtain

2
11(()+11(&) f d k du k —(k q) G

(2n) 2' m

which is essentially the imaginary part of the self-energy
X(k, Q). Therefore, the optical conductivity is consistent
with the choice of 1/rt, rather than just the naive scatter-
ing rate (given by the self-energy} as the transport scatter-
ing rate. Since the singular contribution, which gives Eq.
(42}, is canceled by the vertex correction, we can again
say that the leading singular behaviors of one-particle
properties do not show up in the optical conductivity.

For finite temperature, one can replace 0 by T in I „.
Note that the dc limit of the optical conductivity
Reo (Q~O) =(Nne /m)1/I „cannot be obtained by the
1/N expansion. However, one can infer the dc limit by
assuming that the full Reer(Q) is given by Eq. (44) [with
r„=r„(T)], which is consistent with the result of the
large-N limit of the optical conductivity. If I „~T
was used, one would get Reer(T) ~ T ~"+v). ' On the
other hand, one would get Re(r „„(T) ~ T r"+") if
I „~T "+"'was used. In Ref. 19, the authors conclud-
ed that the resistivity of the system is proportional to
T r for the short-range interaction (ri=2) and this is
consistent with the latter case. Therefore, our result i.s in
disagreement with their conclusion about the resistivity.

X Go(k+ q, ico+ iv)

X(k, i co) —X(k+q, ico+ i v)
iv UFq

—cos8(,q

Next we should consider the vertex correction (Fig. 4} for
finite q:

I',(k, q;ico, iv) = A (k, q, q')B(k, q, q')
d3q' dv'

(2m)2 2ir

where

X G()(k+ q', ico+ iv'}

X Go(k+ q'+q, ico+ iv'+ iv)

XDii(q', iv'), (48}

ki+qi+qi/2 k1+q1

B=—[(k+q'/2) (k+q+q'/2)1

—(k+q'/2} q'(k+q+q'/2) q'] .

(49}

For q «kF and ~k~ =kF, the following approximation
can be made:

IV. TRANSVERSE POLARIZATION FUNCTION
FOR FINITE q &&kz AND NONRENORMALIZATION

OF THE GAUGE-FIELD PROPAGATOR

It is not easy to find the polarization function for arbi-
trary q and v. However, some simplifications can be
made for the q &(kz case. In this section, we calculate
II„(q,iv) for finite q « kF up to two-loop order. We set
N =1 first, and discuss the extension to the large-N case
later.

First of all, II11' and II11' for finite q have the following
form

(3) f d k dco

(2~)2 2m'

k1
I'i(k, q;ico, iv}

m

where

X Go(k, i co)GO(k+ q, i co+i v)

=II""+II""
11 11

k2 —(k q')3

m

Using this approximation, one can show that

(50}

(51)

3 I 0(k, q;(co, iv)GO(k, ico)GO(k+q, ico+iv),(3 3) d k dco k —(k.q)
(2n. ) 2n. m 3

II(i' = —
z Go(k, i co)GO(k+q, (co+(v)(3 4) d k de

(2n'}~ 2n' (5&-)

r

X
d2q' dv'

(2ir)' 2~ m~
k —(k.q')2

Go(k+q', ico+iv')Go(k+q'+q, ico+iv'+iv}D)i(q', iv') .
m
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First, let us calculate the scalar vertex part I o(k, q;iso, i v). We use gz+ =gz+ UFq
I~

+q'i/2m andk+q' k

gz+ .+ --gz+U~qI~+vFq cos8&q+(qqi/m )sin8&q+q'i/2m (where
q~~

=q'cos8&~ and qi =q'sin8&~. ) to perforin the in-
tegral in Eq. (26). Using the fact that the important region of q' is the order of v'~"+"' && 1 so that q'/k =q'/k~ && 1,
we conclude that q

I~

/kF = (q i /kF ) and we can approximate the gauge-field propagator as
23, 27, 28 I I

D~&(q', iv')= I/(ylv'I/Iq, 'I+ylq,'I"). After performing the q~~ integral, we get

dqz
I o(k, q;ice, iv) = i—vF f [sgn(co+v') —sgn(co+v+v')]

Now the v' integral gives

1

l v UFq cos8kq (qq', /m )sin8gq y lv'/qg
I +glqi I"

I 0(k, q;iso, iv) =— kF Iqpl
dqi

y m F v+ivpq cos8gq+i(qq, '/m)sin8„q

X In 1+, sgn(co) —ln 1+, i sgn(co+v)
1~+vI y (54)

By changing variables, one can get the following formula:

I 0(k, q; ice, iv) =—VF 1 1

y 2 +ivFq cos8k

2/(1+ g)

X. (q/m)sin8&~

UFq cos8) q
l V

1/(1+g) 'I~ly, „( )
x

Io)+vly
' 2/(1+g)

(q/m )sin8&~F co+%,
VFq cosHkq l V

1/(1+ g)
Ice+ vly

x
sgn(co+ v) (55)

Here I'(co, x ) is defined as

VF
X(k, co) = i-

r
sgn(ro)F(co, O) .

Collecting these results, it can be shown that
P

G (k, i ~)G (k+ q, joi+j v)
(2n) 2m m

Z(~,x)=f '
dylyl

"ln(1+ y
' ")

1+xy
(56)

whe«y, =kp(p/lrolr)' "+"'. It can be easily shown that the q~O limit of Eq. (55) is given by Eq. (32). Qn the other
hand, the self-energy can be written as

2/(1+ r])

lVF 1
X [1(co) I(co+v )], —

y vFq cos8gq l v
(5&)

where
2/(1+ yl)

sgn(co)

X ' F Q)q

—E(co,O)
' .

(q /m )sin8&

vFq cos6lkq l v

1/(1+ g)
co y
x

The integrals in Eq. (58) can be evaluated as the follow-
ing. Using f d k/(2m) =(m/2m) fdgzf d8&q/2m', one

can perform the gz integral easily. The angular integral
over 8kq can be done by contour integration, which re-
quires long algebraic manipulations. The remaining m in-
tegral and the y integral in I(oo) of Eq. (59) can be evalu-
ated by scaling the integration variables and expanding
the integrand in some limits. More details of the calcula-
tion will be demonstrated in the later evaluation of the
density-density correlation function [see the discussions
about Eqs. (68)—(70) in Sec. V] which can be more easily
calculated. First, for Ivl «uFq,
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11())+11(»+«3,» 'F
I vl (y I vl /X }'"""'

11 11 11 C3
kVFq kFq

while, in the other limit
l vl »uFq, we get

II("+II("+II""
11 11 11

m vF quF q (y/~)2/((+v1)
~c4

r
(61)

where c is a dimensionless constant.
For Q&vFq, there is no contribution to ImH» from

the free-fermion bubble because the regime is outside the
particle-hole continuum. Therefore, any nonzero contri-
bution to ImH» for Q»UFq entirely comes from the
gauge-field correction. Note that the first term in Eq. (65)
dominates for

Q & (
3 )()+q)/(2g+3)(~/ ))/(2q+3) (2V+2)/(2g+3)

mvF

where c3 and c4 are dimensionless constants.
The calculation of II(),' ' can be also done by the simi-

lar method used in the evaluation of II11' '. First, for
lvl «uFq, we get

2 3
(34) m "F
11

y VFq

(ylvl/~)2/()+v) (ylvl/~)3/()+g)
X c5 +C6

kF2 k„q

On the other hand, the second term becomes more im-
portant for

«Q &(mv3)()+V)/(2g+3)( / ))/(2V+3) (2v+2)/(2V+3)
UFq mvF

so that

V
4 (2—g)/(1+g)

ImH11 ~
3/(1+ g) g3g/(1+ g)

in this regime. As we approach the line given by 0=UFq,

ImII11 becomes

whereas, in the other limit lvl » VFq,

(62) (2—g) /(1+ g)
V(4+ )/(1+g) 3 (2—g)/(1+ g)

3/(1+ g)

II""=—
11

1+g 1

4Q(5+g} sin[4' /(1+g)]
VF (3 g)/(1+q)

l
vl(3 —v)/()+v)

m 4/(1+ g)

m vF
2 3

VFq
2

C7
y m'(q/y)'"'+v'lvl'"'+" ' (63}

where c5, c6, and c7 are dimensionless constants.
From the above results, it can be shown that

lil'1'1'+ll')1'+ll'„' 'l & lII'„' 'l for relevant limits. There-
fore, the imaginary part of the transverse polarization
function II»(q, Q} (in the Minkowski space) up to two-
loop order is given by the following formulas. For
0«UFq, we get

mvF 02

ImII»(q, Q) =— 1 —a
2% UFq

mvF (yQ/&}2/()+v)

y kF

ImII11(q, Q) =— 1+g 1

g+(5+q) sin[2n/(1+g)]
VF (3—n)/(1+m)

~(3—yj)/(1+ g)
~4/(1+ g)

' 1/(1+q)

X 1+cmvF3 X' r

&(2~+3)/(~+1) {65}

mvF (yQ/&)3/(1+v)—b
kF2q

(64)

where a and b are dimensionless constants. Note that the
correction is small as far as 1&q~2 is concerned. On
the other hand, for Q »UFq, we have

as a function of q.
In the case of Q «VFq, the free-fermion bubble gives

ImII»= (muF—/2n )(Q/uFq). Note that

ImII11(q, Q) =—mVF Q
2

1—a
277 VF

mvF (yQ/~)2/(1+el)

r kF'

for Q &(g/y)q'+" and

ImII 11

muF Q mvF (yQ/&)3/()+n)
1 —b

277 VFq y kFq

for (y/y)q'+"&Q«VFq. It is gratifying to note that,
along the line Q=VFq, the correction to ImII» given by
the above expression agrees in its q dependence with that
obtained by approaching from 0 »UFq given in the last
paragraph. In any case, the corrections are small com-
pared to the free-fermion result for 1 & g & 2.

Using the result of II» for lvl «VFq, we can discuss
the issue of the renormalization of the gauge-field propa-
gator. Recall that the dispersion relation of the gauge
field obtained from the one-loop correction is given by
lvl —{y/y )q '+","' which is below the line of

l vl =VFq

for sufficiently small q. Along the line of
lvl -(g/y }q'+",one can easily see that the correction to
II» is smaller by (muF/y)(q/kF)'. Therefore, the
gauge-field propagator is not renormalized up to two-
loop order. As mentioned in the Introduction, nonrenor-
malization of the gauge-field propagator was first dis-
cussed by Polchinski within a self-consistent argument
and without vertex correction. In Ref. 19, the authors
discussed the relevance of I' '(a„) and I' '(a„), which
are coefficients of the a and a terms in the expansion of
the efFective action of the gauge field. They concluded
that I' '(a„) and I ' '(a„) are irrelevant so that the gauge
field is not renormalized. Since the two-loop diagrams we
considered are generated from I' )(a„),our calculation is
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consistent with their conclusion. By analogy, we expect
that II 1 1 and H'„' are irrelevant for the renormalization
of the gauge field because these are generated fromI' '(a„). We also directly evaluated I' '(a„) and
confirmed the argument of Ref. 19. Therefore, one can
expect that the gauge field is not renormalized up
[(1/N) ]th order in the 1/N expansion. That is, the
RPA calculation gives the leading contributions in the
low-energy limit.

V. DENS11'Y-DENSI'l'Y CORRELATION FUNCTION
FOR FINITE q « k+

The polarization function for the density channel
Ilpp(q, Q) can be also calculated in a similar way as used
in Sec. IV. In this section, we consider the two-loop
corrections given by Figs. 1(a)—l(e) and the finite q « kF
case. The sum of the contributions from the self-energy
corrections given by Figs. 1(a)—1(d) can be written as

f d k /(2m') = (m /2m )f d gz f d 8&q/2m, 'one can easily

perform the gz integral, which generates the additional
factor vpq cosL91,q l v in the denominator of the in-

tegrand of Eq. (68). Recalling that I(co) also has an angle
dependence 01, , one can perform the angular integral
over (91,q by contour integration, which requires long alge-
braic manipulations. After rescaling the ~ integral by a
new variable x and the y integral in I(co) [see Eqs. (56)
and (59)] by newly defined y, we get

ri~~~'+11~~2 =, , f dx f dyyln 1+2kF ~v~, , xp
~y VFq 3'

(1+a )3/1+a +y

( 1 +a2 )
3 /2

11pp 2
G p ( k c' co )G p (k +q, i co + i v )

k dco

(2m. )2 2m.

X(k, ico) —X(k+q, ico+ iv)
l V VFg COSOiIq

(66}

where a=v/uFq and p=(1/kF)(~v~y/y)' "+"'. In the
small frequency v limit, the parameter integrals can be
done, yielding

X Gp(k+q, i co+i v) .

Using Eqs. (55) and (57), it can be shown that
2II"'+II'"=—f, G, (k, i~)

(2~)2 2n'
lVp

X Gp(k+q, i co+i v)
~'y

(67)

X
1

[I(co) I(co+v) ],—
VFg COSHgq l V

(68}

where I(co) is given by Eq. (59). Using
I

while the contribution given by Fig. 1(e}, which comes
from the vertex correction, can be also written as

Ilpp = — I'p(k, q;ico, iv)Gp(k, ico)
d k dco

(2g )2 2n

3
g(1)+ II(2)

kP
—2 (1+ 2)3/2

1+g 1 1 1

4~2(5+ri) sin[4m/(I+ri)] kFy uFq
4/(1+ g)

y a
x ( 1 +a2)5/2

(70)

where a, is an undetermined constant. This formula is
valid for all ratios of q and v, as long as both are small.
Note that the first term gives only an analytic contribu-
tion, which also arises in the usual Fermi-liquid theory.
Similar methods can be used to produce a somewhat
more complicated formula valid for all a for the trans-
verse polarization function II» [for example, Eqs. (52)
and (58}can be evaluated by a similar method].

After dropping the analytic contribution, we combine
the free-fermion contribution and perform analytic con-
tinuation to get, for Q &&vrq,

(3—yi)/(1+ yi)

( Q)
m Q

1
1+2) 1 1 'V Q(3—g) /(1+ g)

2~ uFq 4m(5+2}) cos[(2)—1)~/(q+1)] kFm VFg
(71)

and for Q))vFq,

1+q 1 1
Imllpp(q, Q }=—

8+(5+ri) sin[2m/(1+7))] kF

(3—
Ti ) /(1+ Ti) Vgg

X ~(3—g)/(1+ Tl)

4/(1+ Ti) 0
i.

(72)

Note that ImII»(q —+O, Q)=(Q /uFq )ImIIpp(q~0, Q)

is satisfied. Therefore, both of Imii i ~ (q ~O, Q )

imll~(q~O, Q) give the same answer for the optical
conductivity given by Eq. (41}.

VI. COMPARISON TO THE FERMI-LIQUID THEORY

In Sec. III, it was shown that the resulting conductivity
is consistent with a modified Drude formula. In this sec-
tion, we try to fit this result to the Fermi-liquid theory
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2Nne
m' 1 i—Qr(m/m')

(73)

or

framework to extract information about the Fermi-liquid
parameters and examine whether the gauge field induces
some singular or divergent parameters. In the Fermi-
liquid theory, the conductivity for N species of fermions
is given by '

Iles(q, Q)=-
27T

1 — 8(x —1)&x'—1

+i,8(1—x')
1 —x

(77)

effective mass m' and fs, is the angular average of the
Fermi-liquid interaction parameter fP, . In two dimen-

sions, for the small-q limit,

)
Nne ~r

2

m Q'+I' (74)
where x =Q/Upq. In Euclidean space, the above formula
can be reduced to

Reo (Q) = Nne2 I tr

m Q2
(75)

Comparing the above result with Eq. (41},which is a re-
sult of the 1/N expansion, we can again identify I „with
I/rt, given in Eq. (43). Therefore, we can conclude that
I „=I' (m'/m) scales as Q /"+"' after including 1/N
corrections due to the gauge-field Quctuations.

In the following we will directly compare our perturba-
tive result for II00 with the density-density correlation
function in the Fermi-liquid theory. Our goal is to find
out whether the perturbative result can be consistent
with a Fermi-liquid theory made up of quasiparticles
with a divergent effective mass m' as suggested, for ex-
ample, by Eq. (16). First we consider the limit
Q=O, q ~0, where it is well known that the Fermi-liquid
theory predicts

II('g(q~O, Q =0)
Iles(q~O, Q =0}=

1+fs, Iles(q~O, Q=0)
(76}

where Iles= —J [d P/(2n) ](np —
np z)/[Q (e—

—
eP z}] is the free-fermion response function with an

I

where I'„=I„(m /m}, I' =1/r is the scattering rate,
and v. is the scattering time. Here m* is the effective
mass of the fermion. Using the fact that I „~1/N in the
large-N limit, we get

Iles(q, iv) =-
27r V 1+a

(78)

where a=v/ugq. Since Ilss(q~O, Q=O) ~m*, the fact
that Iles(q —+O, Q =0) is not enhanced implies that fs, is
a finite constant. However, this does not imply that the
leading-order term in the perturbative expansion offo, is
finite. In fact, it is clear from an expansion of Eq. (76)
that if the leading-order correction to m is singular, then
the contribution to fz, at the same order should be also
singular since II00 has no singular correction in the
lowest-order perturbation theory.

Next we consider the full q, Q dependence of II00 for
small q and Q. We are motivated by the belief that, in
the Fermi-liquid theory, Imllos(q, Q) should exhibit the
edge of the particle-hole continuum along the line
Q=ugq Howeve. r, when QAO, a simple formula such as
Eq. (76) does not exist for Iles(q, Q). In particular,
Iles(q, Q) in general depends on the higher moment angu-
lar average of the Landau functions, and not just fz, .
Nevertheless, the Fermi-liquid theory makes a precise
prediction for lloyd(q, Q) for all q, Q in terms of m' and
the interaction parameter fPP. . This is given by the quan-
tum Boltzmann equation for the quasiparticle distribu-
tion function n =n +5n in the Fermi-liquid theory,
where n is the distribution function for the free-fermion

system with an effective mass m ',

[Q—
(eP+z/z

—
eP z/z)]5n —

(nP+z/z
—

nP z/z) U(q, Q)+ J z fPP 5nP (q, Q) =0 .
(2n )

(79)

Here eP is the quasiparticle energy, U(q, Q) is the exter-
nal potential, and f ~ is the Fermi-liquid interaction pa-
rameter. The linear response of 5n& to the external po-
tential can be calculated form Eq. (79) (to first order in

d p5nP(q, Q)= cP+ z cPfPP cP. U(q, Q),
)2 P PP P

n'
p+q/2 n p —q/2

P
p+q/p ep —q/p)

(80)

The change in the density of the fermions
5p(q, Q) =fd p/(2n)5n (q, Q) i.s given by

5p(q, Q)
U(q, Q)

2 0 0
p np np —q

(2m} Q —(e' —e' ~)

dp8p
)4 P PP P

(81)

where the ellipses represent the higher-order terms in

fPP. The second term is just the diagram given in Fig.
1(e), but with a frequency-independent interaction f

Let us now examine what happens to the edge in the
particle-hole continuum according to our perturbative re-
sults. The gauge interaction may induce nonzero Fermi-
liquid interaction function f ~ and a change in the Fermi
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velocity 5u~. From Eqs. (78) and (81), a change in the Fermi velocity 5uF and the appearance of the Fermi-liquid in-

teraction parameter induce the following change in the density-density correlation function:

6VF

VF

-n*+ "'
2nuF (1+a )

If we assume a power-law behavior for f ~
—1/~p —p'~, with A, & 1 (i.e., finite fo, ), one can show that the second term

in Eq. (82) cannot produce the singular term (1+a )
~ near a = —1. To prove this argument, let us perform the in-

tegration over ~p~ and ~p ~
in the small-q limit, yielding

f d'P d'P' 4kF q cos8~cos8& j'
c f c .= d8 d8

(2m) (2m) (Q —u~q cos8~)(Q —u~q cos8 ~ )
(83)

where 8~ (8,q) is the angle between p and q (p' and q). In order to obtain the leading singularity near Q=uFq, the

above expression can be further simplified,

4k

(2ir) (2n ) u~ [(Q/uFq —1)+—,'8 ][(Q/u~q —1)+—,'8 ]
(84)

For f&&. ~1/~8~ —
8~q~ with A, &1, the above integral

can be estimated through a scaling argument. We find

d pd p 1

(2~)4 P PP P (Q/u 1)(2+x)/2
VFq

(85)

5F=f u~(~p~ k~)5n-
(2n. )

(2 )4 PP P P

kFdp )=f —uF(5v )
(2m. )

kFd P dP+- f, 5v 5v, .
(2~)4 i't'

(86)

It is then clear that f,=$5(p —p') is equivalent to
PP

uF~uF+gkFI(2n. ) . The same result can also be ob-

which is less divergent than (1+a )
~ terin that leads

to (Q/uzq —1) ~ divergence. Thus, there is no cancel-
lation between the first and the second terms in Eq. (82).
If 5vF diverges at small frequencies, we can conclude that
5IIuo will diverge in the limit v~0 with v/uFq fixed,
which contradicts our two-loop result from Eq. (71) that
shows no such divergent term. Similar results also hold
for the transverse current-current response function.

The argument above assumes a power-law behavior for

flu o- I/~8~ —8&.q~ . As A, —+I, another possibility needs
to be considered, namely, f, ~5(p —p'). This satisfies

PP
the condition that fo, is finite. From Eq. (84) it is clear
that this will lead to a term of order (1+a ) ~, which
may cancel the first term in Eq. (82). However, in this
case, we shall argue that, at least at zero temperature,f,=(5(p —p') is equivalent to a shift in the Fermi ve-

PP
locity by u~~uF+gkF/(2m) At zero t.emperature the
excitation can be described by a distortion of the Fermi
surface in the direction p by an amount 5v = Jd ~p~5n~.

P
The original Landau's expression of the free-energy den-
sity takes the form

tained by performing an integral over ~p~ in Eq. (79),
which leads to

(Q —uFq cos8)5v

kFd p'—
q cos8 U(q, Q)+ f=,5v, =0 (87)

(2n. )

in the small-q limit. Thus we see that, at zero tempera-
ture, all response functions to an external perturbation
can be described by a Landau theory with a nondivergent
efFective mass in the small-q limit. However, it is also
possible that the same response function can be described
by a Landau-Fermi-liquid theory of which both e8'ective
mass and fez have divergent perturbative corrections.

An examination of Eq. (70) shows that after analytic
continuation, the factor (1+a ) diverges at Q=uFq,
even though its coefficient vanishes for Q~O. In the fol-
lowing we attempt an interpretation of the result. We
can write our perturbative result Eq. (70) as, near
Q=VFq,

8 ImIIto(q, Q)
Imll 00(q, Q ) =1m 1100(q,Q ) +ao

5 ImIIOO(q, Q)
+70

where II~iu is given by Eq. (77) with m '~m, and

a2

kP

l+q 1 1 I
VO 8~2(5+i)) cos[2m. /(1+i))] k~y uFq

4/(1+ g)

where a 2 is a constant. The existence of the
8 ImIIOO(q, Q)/BQ term in Eq. (88) signifies that there is a
finite nonsingular [see ao in Eq. (89)] shift in uz, which
also arises in the usual Fermi-liquid theory. To interpret
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+ ImIIoo(q, 0—I )], (90)

if 1 =+2yo. We recall that Imiloo(q, Q) has a discon-
tinuity at Q=vFq, corresponding to the edge of the
particle-hole continuum. Equation (90) has the natural
interpretation of a smearing of the discontinuity at a
shifted (due to a shift in U~) edge of the particle-hole con-
tinuum by the amount I . Setting vFq ~ 0, we find that

I ~ g1+(3—g)/(2+2') (91)

Note that for g & 3, I & 0 so that the above picture is a
self-consistent one. We also note that I is proportional to
the square root of the coupling constant or I/N, and is
therefore nonanalytic. We are not certain if any further
physical meaning can be ascribed to the energy scale I .

VII. CONCLUSION

In this paper we studied properties of gauge-invariant
correlation functions in a two-dimensional fermion sys-
tem coupled to a gauge field. We find the physical pic-
ture emerged from those gauge-invariant correlation
functions to be very difFerent from those obtained from
gauge-dependent one-particle Green's function. The
corrections to the Fermi-liquid two-particle correlation
functions are found to be nondivergent and subleading to
the Fermi-liquid contributions up to the two-loop order,
and there is no need to go beyond the perturbation theory
at this order.

However, it is still possible that singular corrections to
the gauge-invariant two-particle correlation functions
may appear in some special cases, such as q =2kF. Also,

the second-derivative term, we note that Eq. (88) is con-
sistent with (apart from the term proportional to ao)

Imlloo(q, 0)=
—,
' [Imiloo(q, 0+I )

since we do not have quasiparticles to serve as the under-

pinning of the Fermi-liquid-like behavior for II00 and II»,
it is possible that singularity shows up in some other
response functions. Nevertheless, the perturbative result
should serve as a test for any theory such as
renormalization-group analysis, which attempts to go
beyond perturbation theory.

Finally, we would like to comment on the implication
of our results to the HTSC. Even though our results sug-
gest that the two-particle Green's functions of fermions
are Fermi-liquid-like for small q and 0, it does not mean
that the gauge-field formulation of the t Jm-odel (in rela-
tion to the normal-sate properties of HTSC) leads to the
Fermi-liquid interpretation of the normal state of HTSC.
In the problem of the t-J model, there are bosons as well
as fermions that are interacting with a gauge field. ' In
fact, the presence of fermions and bosons in this problem
came from the non-double-occupancy constraint on the
electrons. It has been also regarded as a way of describ-
ing the spin-charge separation induced by the strong
correlation efFects. In the papers of Nagaosa and Lee, '

they clearly demonstrated that the anomalous transport
properties are due to the bosons. That is, the presence of
the bosons plays an important role in the non-Fermi-
liquid behaviors of the normal state of HTSC. However,
in this paper we considered only the fermions interacting
with a gauge field.
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