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Slave-boson study of the t-t '-J model: Phase diagram, spin susceptibility, and Hall resistivity
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We investigate the normal-state properties of high-T, cuprates in terms of the t-t -J model using a
spin-rotation-invariant slave-boson technique. The second-neighbor hopping t (0 is included in order
to reproduce the Fermi surfaces of LSCO (La2 „Sr„Cu04) and YBCO (YBa2Cu306+„) type. The mag-
netic phase diagram of the t-t -J model is derived within the saddle-point approximation, by taking into
account also incommensurate spiral order. Compared to the pure t-J model, Neel order is stabilized in
the low-doping region. In particular, for the case t' &0, which corresponds to the electron-doped sys-

tems, e.g., Nd2 „Ce,CuO4 (NCCO), the antiferromagnetic correlations are strongly enhanced near half-

filling. %'e include fluctuation corrections and calculate the dynamic (paramagnetic) spin susceptibility

y(q, co) going beyond the random-phase approximation. The instability line of the paraphase obtained
from y(q) is in agreement with the saddle-point phase diagram. The wave-vector dependence of g(q) re-

veals the commensurate (incommensurate) nature of spin fluctuations in YBCO (LSCO). Finally, the

doping dependence of the Hall resistivity R&(5) is calculated, where the results agree surprisingly well

with experiments on LSCO. For YBCO and NCCO, the t' term suffices to give the correct dependence
for RH(5).

One of the remarkable differences between
La& „Sr„CuO~ (LSCO) and YBa2Cu306+„(YBCO) types
of high-T, cuprates is the nature of spin excitations in the
metallic phase probed by inelastic neutron scattering'
and nuclear magnetic resonance/nuclear quadrupole res-
onance (NMR/NQR) relaxation experiments. In the
LSCO family, incommensurate peaks [around
(m(1+qo), n. ), (n., m(1+qo}), for qo(x), see Ref. 3] have
been reported in the dynamic structure factor S(q, co),
whereas, upon doping, S(q, ~) keeps its commensurate
maximum at (n., n. ) for the YBCO system. The physical
origin of the contrasting q depending of the spin fluctua-
tion spectrum is still under discussion. Millis and
Monien have argued that the spin dynamics and, in par-
ticular, the temperature dependence of spin susceptibility

y, (T) in LSCO are caused by a spin-density wave insta-
bility, whereas in the YBCO family they are due to in-

plane antiferromagnetic (AFM) fluctuations and a non-
Fermi-liquid spin singlet pairing of electrons in adjacent
planes. On the other hand, the magnetic properties are
intimately related to the energy-band dispersion of the
noninteracting system within a Fermi-liquid-based frame-
work, i.e., in this way the observed spin dynamics can be
attributed to different Fermi-surface (FS) geometry of
LSCO type and YBCO type, respectively. Along this
line, details of the spin fluctuation spectrum are studied
using a nearly antiferromagnetic Fermi-liquid approach
by Monthoux and Pines and within a large Coulomb-U
auxiliary boson scheme by Si et al. It is interesting to
note that a simple band-structure model of LSCO togeth-
er with marginal-Fermi-liquid self-energy corrections,
i.e., without strong AFM exchange enhancement as in
the models, ' can give an energy and momentum depen-
dence of the magnetic structure factor in parallel to Refs.
5 and 6. Therefore Littlewood et al. are lead to the con-
clusion that the peaks seen in neutron scattering derive

primarily from FS geometry. From a more microscopic
point of view, the important effect of FS shape on the
magnetic properties were confirmed by Kohno and co-
workers using a resonating valence band (RVB) slave-
boson mean-field approach to the extended t-J model.
Furthermore, Ito, Takenaka, and Uchida have recently
reported that the charge transport in the Cu02 plane is
determined by dominant spin scattering, i.e., the spin dy-
namics are manifest in the extraordinary transport prop-
erties of the high-T, cuprates as well.

II. MODEL AND METHODOLOGY

Encouraged by these findings it is the aim of this paper
to study magnetic and transport phenomena on an equal
footing in terms of probably the most simple effective
one-band model describing both different correlation and
band-structure effects, the so-called t-t'-J model:

/~t t' J r g Viacja r g ciacj
(i j &, o «i, i» ~

+Jg S;S—
&ij&

%, , J acts in a projected Hilbert space without double
occupancy, where V;.

' '=c,g'(1 —n, } is the electron an-

nihilation (creation) o~perator, S;= ,'g Z; r c, —

n; =n,.&+n,-&, and n, =V; c, . J measures the AFM ex-

change interaction, t and t' denote hopping processes be-
tween nearest-neighbor (NN pairs: (i,j ) ) and next-
nearest-neighbor (NNN pairs: ((i,j )) ) sites on a square
lattice. Compared to the original t-J model the t' term
incorporates several important effects near half-filling.
Starting from a rather complex two-band model for the
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Cu02 planes, quantum cluster calculations' have re-
vealed that the relative large direct transfer between NN
oxygen sites (t~~ t~~ l2) leads to a sizable NNN hopping
t' in the context of an effective one-band description.
More recently the t' term has been introduced to repro-
duce the FS geometry observed in angle-resolved photo-
emission spectroscopy experiments (in the noninteracting
limit). '" ' Fitting the quasiparticle dispersion relation

Ez= —2t(cosk„ +cosk ) —4t' cosk„ cosk„, (2)

involved in (1), to experimental and band-theory results
yields t in the order of 0.3 eV and, e.g., for the case of
YBCO, t'= —0.4t. ' ' Moreover, Tohyama and Mae-
kawa' have emphasized that a t-t'-J model with t' & 0
can be used to describe the electron-doped systems, e.g.,
Ndz „Ce„CuO~ (NCCO). In this case one has to shift
the momentum k~k+(n, n. ), ' i.e., within a band-filling
scenario one obtains a hole pocket like FS centered at the
(m', m } point which shrinks with increasing doping. ' Fi-
nally, as pointed out by Lee, ' in a local AFM environ-
ment a hole can propagate coherently only on the same
sublattice without disturbing spins. Therefore the t' term
coupling the same sublattice becomes crucial for the
low-lying magnetic excitations. This clearly is a correla-
tion effect related to the NNN hopping processes.

To proceed we apply to %, , z a [SU(2)U(l)] spin-
rotation-invariant slave-boson (SB) scheme' based on the
SB approach developed for the Hubbard model by
Kotliar and Ruckenstein' and Li, Wolfe, and Hirsch-
feld. ' Our SB technique' provides an adequate descrip-
tion of spin and charge degrees of freedom by introducing
auxiliary boson fields e t' and matrix operators p

' (with
scalar po' ' and vector components p't'), representing
empty and single occupied sites, respectively. Then the
electronic (annihilation) operators are given in terms of
bosonic (z ) and pseudofermionic (f; ) operators:
c; = g z; g; (here p and o denote spin indices), where

the z factors' ' yield a correlation-induced band renor-
malization. The interaction term is bosonized via
n; =2Trp;p; and S, =Trp;zp;. Now the partition func-
tion can be expressed as a coherent-state path integral

and

S,~= —Tr;,~ ~ ln[ —6, '.(~,r')], (6)

X5J5(r r')—+t(z zj )pp. ,.~(1—51 ),
respectively. In contrast to the Hubbard model, ' the ra-
dial gauge could be used to remove all phases of the Bose
fields, i.e., the 4;~(~) (a= 1, . . . , 10) become real. ' In
(3) five dynamic I.agrange-multiplier fields (A,I", A,Ig,
A,I2'} have been introduced to eliminate the unphysical
states in the extended Hilbert space (local constraints).
Let us emphasize that a spin-rotation-invariant bosoniza-
tion of the t t' Jm-o-del is necessary to guarantee that (i)
the spin-algebra is satisfied and (ii} the SB Hamiltonian
W, z yields the same matrix elements as {1)in the physi-
cal subspace.

The evaluation of (3) proceeds via the saddle-paint ex-
pansion, where at the first level of approximation we look
for an extremum of the bosonized action S,s with respect
to the boson fields and the Lagrange multipliers using the
ansatz m; ~ n; =(cosQR, ,sinQR, , O) for the local magne-
tization xn; =—2S;= —2p;Op;. Following earlier analyses
of spiral states for the Hubbard model the unit vec-
tor n; is chosen as a local spin quantization axis pointing
in opposite directions on difFerent sublattices. Thereby,
the "order parameter" wave vector Q is introduced to de-
scribe several magnetic ordered states: paramagnetic
(PM), ferromagnetic (FM) (Q=O), AFM [Q=(m, n )], and
incommensurate (1,1)-spiral [Q= ( Q, Q }], ( 1,m. )-spiral
[Q=(Q, n }]and (0, 1)-spiral [Q =(O, Q)] states.

IH. RESULTS

A. Magnetic phase diagram

Comparing the free energies of several (homogeneous)
symmetry broken states, we obtain the SB phase diagram
of the t t' Jmod-el -shown as a function of hole doping
{5=1—n) in Fig. 1. In the numerical work, we take
J/t=0. 4, which seems to be a realistic parameter for the

Z= f2)[4',4]e (3)

over bosonic fields

(4)

where the bosonic and fermionic parts of the effective ac-
tion eP,s.=Pz+Ks are given by
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' FIG. I. Restricted ground-state phase diagram of the teo-

dimensiona1 t-t'-J model at J/t=0. 4.
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exchange interaction in both LSCO and YBCO (Refs. 12,
13, and 17) (within a strong-coupling expansion of the
Hubbard model this corresponds to U/t=10). We can
distinguish two regimes in the phase diagram. In the pa-
rameter regime

~

t'/t
~
50.2, Fig. 1 resembles the ground-

state phase diagram of the t-J model obtained recently by
us. ' Especially we found large regions with incommens-
urate spiral magnetic order. However, compared to the
pure t-J model, the t' term stabilizes Neel order in a finite
5 region near half-filling. The increasing stability of
AFM configurations can be intuitively understood be-
cause the t' term moves electrons without disturbing the
Neel-like background. ' For larger ratios ~t'/t~ we have
a completely different situation. In this parameter regime
only commensurate states (AFM, FM, PM) occur, where
for t'(t,'= —1.4t we obtain the AFM state for all 5.
Note the rather large differences to the value of t,' ob-
tained within a semiclassical (I/N) expansion. By
varying the exchange coupling J the phase boundaries in
the t'/t —5 plane are not much affected, e.g., for J/t = 1

and t'/t = —0.4, the transitions AFM~~(1, 1)-spiral and
(1,1)-spiral~FM take place at 5=0.17 and 0.6, respec-
tively. We would like to point out here that the main
qualitatiue features of our SB phase diagram confirm re-
cent studies of magnetic long-range order in the t-t'-J
model 2~'26

Figure 2 displays the variation of the "extremal" wave
vector as a function of doping at t'/t =+0.16 and
t'/t = —0.4. Usually the value t'/t = —0. 16 ( —0.4) is
chosen to fit the band structure of the LSCO (YBCO)
family. ""' In Fig. 2 a negative value of 5 denotes the
case of electron doping. The behavior of Q„refiects a
series of transitions AFM~~(1, 1)-spiral~~(1, 0)-
spiral~+PM. The corresponding (sublattice) magnetiza-
tion abruptly changes at the (1,1)-spiral~~(1, 0)-spiral
first-order transition. From Fig. 2 the asymmetry be-
tween hole (t'(0) and electron doping (t') 0) becomes
evident. In contrast to recent Hartree-Fock results for
the Hubbard model we found the AFM phase near

-0.2

PHA$E
S ERAT

-0.6
0.05

I

0.1

6
0.15

(a)

half-filling for both electron-doped and hole-doped cases
(provided t'%0) .In the absence of t' hopping, for arbi-
trarily small doping, the AFM is found to be unstable
against the (l, l)-spiral phase (cf. Fig. 1). Obviously, the
AFM correlations are strongly enhanced by a positive t '

term, which is also in qualitative agreement with exact
diagonalization studies of the t-t'-J model' and confirms
the experimental findings from the electron-doped system
NCCO. Note that the stability region of the AFM
phase agrees surprisingly well with the combined phase
diagram for La2 Sr Cu04 and Nd2 Sr„Cu04 obtained
from neutron scattering and muon spin relaxation mea-
surements, respectively. For the YBCO parameter
t'/t = —0.4, the AFM disappears around 5=0.1 whereas
in the phase diagram of YBCO, determined by neutron
diffraction, this transition takes place at about x=0.4
oxygen content. However, there exists strong evidence
that at least up to x=0.2 no holes are transferred from
Cu(1) to Cu(2) planes (cf. the discussion of Fig. 6 below).

As we have already noted, the phase diagram presented
in Fig. 1 results from the relative stability of various
homogeneous states. However, there are arguments for
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FIG. 2. The x component of the SB spiral wave vector Q
away from half-filling for the negative values t'/t = —0. 16
(solid line) and t'/t = —0.4 (long-dashed line), i.e., hole doping
(5&0), and for the positive one t'/t=0. 16 (dashed line), i.e.,
electron doping (6 (0).

FIG. 3. The phase diagram of the t-t'-J model is calculated in

the t'/t —6 plane at J/t=0. 4 including phase separated states
(a). The two-phase region consists of AFM and (1,1)-spiral
states. Phase separation boundary (sohd curve) for the pure t-J
model in the J-6 plane (b). We include the transition lines of
Ref. 34 (dashed), Ref. 36 (dotted}, and Ref. 35 (dotted-dashed).
The triangles are the Lanczos results of Ref. 32. For further ex-

planation see text.
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the existence of inhomogeneous, e.g., phase-separated
states in the t-J and related models. ' Using very
different methods, it was realized by several groups,
that at large J/t the ground state of the t J-model
separates into an AFM (hole-poor) and hole-rich region.
Unfortunately, in the physically interesting regime of
small exchange coupling (J/t-0. 2 to 0.4) and low-
doping level this point is still controversial. To gain more
insight about the phenomenon of phase separation in t-J-
type models of strongly correlated electrons it seems to
be important to investigate the effect of an additional
NNN hopping term t' as well. Therefore we study the
free energy as a function of hole density 5, where a (con-
cave) convex curvature indicates local thermodynamic
(in)stability [which implies a (negative) positive iso-
thermal compressibility a]. Then the domain of the two-
phase regime is determined performing a Maxwell con-
struction for the anomalous increase of the chemical po-
tential p with doping. The results of our analysis of
thermodynamic stability are depicted in Figs. 3(a) and
3(b} for the t-t'-J and t-J models, respectively. The dot-
ted lines of zero inverse compressibility show that also for
It'/tI )0 there is a finite range of 5 over which the (1,1)-
spiral is locally unstable. Similar results were recently
obtained by Psaltakis and Papanicolaou. It is impor-
tant to stress that the AFM state is locally stable for both
signs of t'. In addition, we demonstrate, based on the
Maxwell construction, that near half-filling the AFM
state remains also globally stable against phase separation
[cf. Fig. 3(a), where the two-phase region is bounded by
the solid lines]. At larger values of It'/tI)0. 5, the
phase-separated region is due to the first-order nature of
the transition AFM~~(1, 1)-spiral (dashed curve). At
t'—=0, i.e., for the pure t-J model, the boundary of phase
separation is given in the J-5 plane by the solid curve
shown in Fig. 3(b). Obviously, the homogeneous magnet-
ic phases are always unstable close to half-filling (provid-
ed J/t )0). This is in qualitative agreement with results
obtained from exact diagonalization studies as well as
from semiclassical or renormalization-group calcula-
tions. Also plotted in Fig. 3(b) are the results of the
high-temperature expansion method, where phase sepa-
ration may occur only above a critical exchange
J/t = 1.2 as 5~0, contrary to all the other approaches.

C (q) = ['E(q)+ 3'K(0)]+ J(q)
(1+5)' 2

25
%'(q) = gi(q)(1+5)

2

(10)

x.(q) =—
, [Xi(q)—Xo(q)72(q ]1+5

g (ek+ ek+q}"6(k)G (k +q),2

k

(12)

J ( q )=J(cosq„+cosq ), and

'K(q)= —g ek qe[p —2e„5/(I+5)] .2

Note that the Green propagators involved in (11) are
dressed due to SB band renormalization, i.e.,

6 (k)= [i to„—2sk5/( I+5)+p]
where p, =p —

A, o'

' is the chemical potential. For the case
t'=0 (t-J model), a detailed numerical evaluation of the
paramagnetic spin susceptibility for arbitrary frequencies,
wave vectors, and band fillings were performed by Deeg
et al. Here we discuss the static susceptibility of the t-
t -J model. Then the instability line of the paramagnetic
phase towards magnetic ordered states can be obtained
analyzing the divergence (pole structure) of y, (q, 0} as
function of q, 5, J/t, and t'/t. As shown in Fig. 4 for
difFerent ratios t'/t, the saddle-point phase boundary
PM~~(lp. )/(O, n )-spiral (cf. Fig. 1) coincides with a diver-
gence of g, ((O, n ),0) proving the consistency of both ap-
proaches. Obviously, the deviation of y, (q) from the
standard random-phase approximation (RPA) form

g, =2po(A' ')99 (cf. Refs. 37 and 38). From this we can
derive the following expression for the dynamic spin sus-
ceptibility y, (q =(q, iso )) of the t-t'-J model:

Xo(q}
x, (q) =

1+C(q)go(q)+%'(q)

where

B. Spin susceptibility

In a next step we include quadratic terms (Gaussian
fluctuations) in a fluctuation expansion (4; =4 +54; )

of the collective action

30

20

10

0

[ I

I
I

slI

So,„„=S+g 54 ( q)S tt(q)5@tt(q)—
q;a, P

around the PM saddle-point solution
paramagnetic spin susceptibility defined by
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(8)
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[or alternatively in functional integral representation by
g, =4@&(5@9(—q)5@9(q) ) ], can be expressed in terms of
the inverse fluctuation propagator matrix as

FIG. 4. Doping dependence of the static spin susceptibility
y((0, m), 0) near the PM-(0, w) spiral phase transition for
J/t=0. 4 and different ratios t'/t.
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y, (q, co) =go(q, co)/[ I+J (q)yo(q, co)] is necessary to
reproduce the phase boundaries in the SB phase diagram.
To elucidate the inhuence of t' on the detailed q depen-
dence of the (generalized) polarization propagators g„(q),
in Fig. 5 we have plotted g„(q) along the direction
I -M-X-I in the square lattice Brillouin zone. For com-
parison with the results of Benard, Chen, and Tremblay
and Tanamoto, Kohno, and Fukuyama we show g„(q)
for 5=0.1, where in fact our theory yields magnetically
ordered ground states (cf. Fig. 1). go(q) resembles the
behavior of go(q) used in previous RPA-like theories for
the t-J (Ref. 8) and Hubbard models, "' i.e., we observe
(in)commensurate peak structures which can be attribut-
ed to FS effects (Kohn anomalies, cf. the discussion in
Ref. 38). In the spinon-holon theorys the variation of
y, (q) with respect to q is mainly governed by that of
yo(q) and it is tempting to relate the structure of y, (q)
around (m, n) to the magnetic peaks seen in neutron
scattering data, i.e., the sharp incommensurate peaks for
LSCO and the rather broad maximum for YBCO. Al-
though to be fully consistent one has to calculate y, (q)
also for the magnetically ordered phases, the behavior of
the paramagnetic susceptibility can be taken as an indica-
tion that spiral states are good approximate candidates
for the ground state of the t-t'-J model near half-filling.

The point we would like to emphasize here is the
predominant role of g, (q) and $2(q) with increasing ratio
~t'/t~. The higher-order Lindhard functions g, (q) and

gz(q) differ in their q, co dependence significantly from the
ordinary Lindhard function. Recent work for the one-
dimensional (1D) Hubbard model shows the importance
of these extended Lindhard functions for a consistent
treatment of the dynamical charge correlations as well.

C. Hall resistivity

Finally, we turn to the calculation of the Hall resistivi-
o xyz /o xx o'yy ' Adopting the hypothesis of Trug"

man, most of the normal-state properties can be ex-
plained by the dressing of quasiparticles due to magnetic
interactions and the subsequent modification of their
dispersion relation. Then, using the relaxation time ap-
proximation, the transport coeScients u &

and o & are
obtained by the standard Brillouin-zone integrals, where
FS and correlation effects are involved via the renormal-
ized SB quasiparticle band. With increasing It'/t~, the
correlation-induced band narrowing is weakened. Let us
emphasize that in our approach the SB quasiparticle
band is determined in a self-consistent way. This is in
sharp contrast to the (I=O) SB mean field scheme of Chi
and Nagi, ' which results, in fact, in the simple re-
placement

sk~Zz= —2t5[(cosk„+cosk )+2(t'/t)cosk„cosk, j

of the noninteracting band dispersion.
Figure 6 shows the theoretical Hall resistivity as func-

tion of carrier density in comparison to the experimental
data for hole-doped systems LSCO (Ref. 42) and YBCO
(Ref. 43) and for electron-doped compound NCCO.
For LSCO, the carrier density 5 in the Cu02 planes is
definitively equal to the chemical composition x of Sr.
The NCCO system behaves quite similar, apart from the
different sign of the carriers introduced by the substitu-
tion of Nd with Ce. For YBCO, it seems to be more
diScult to extract the number of holes from the experi-

I
I r

t

Xo
X&
X2--

FIG. 5. Response functions g„(q) along the highly sym-

metric directions of the Brillouin zone at doping level 5=0.1.

0.2 0.4
+6

FIG. 6. Hall resistivity RH vs doping 6 for different values
t'/t. Our SB results for t'/t=0 (solid), t'/t = —0.4 (dashed),
and t'/t=0. 16 (dotted) are compared with experiments on
LSCO (Ref. 42), NCCO (Refs. 44 and 45) (at 80 K), and YBCO
(Ref. 43} (at 100 K), respectively. The energy unit t is fixed to
0.3 eV and J/t=0. 4.



50 SLAVE-BOSON STUDY OF THE M'-J MODEL: PHASE. . . 17 879

mental data. In order to compare our theoretical mod-
el with experiments on oxygen-doped YBCO, we use
the relation 5=(x —0.2)/2 between transferred holes
and oxygen content, in agreement also with recent sug-
gestions by Rossat-Mignod et al.

As can be seen from Fig. 6, the SB results are extreme-
ly sensitive to the choice of the NNN hopping parameter
t' F.or an exchange interaction strength J/t=0 4,. a
good agreement with experiments on LSCO and YBCO
can be obtained using the (reasonable) parameter values
t'It=0 (Ref. 47) and t'It = —0.4, respectively. For
NCCO, the experimentally observed rapid decrease of the
negative Hall coefficient Rrr(5) is clearly seen with de-
creasing 5 [at electron doping level 5= —0.08, we have

~= —10.7 compared to the experimental value
Rrt*t'= —8.2 (Ref. 44) (in units of 10 cm /e)]. It is
worth emphasizing that the low-temperature theoretical
Hall resistivity is consistent with the experimental data
for the hole (LSCO, YBCO) as well as for the electron-
doped (NCCO) systems, including the sign change occur-
ing at a very similar value, respectively. The temperature
dependence of 8& will be presented together with a more
detailed discussion of the correlation effects on the quasi-
particle dispersion (Fermi surface) in a forthcoming pa-
per 48

IV. SUMMARY

We have used a spin-rotation-invariant SB approach to
investigate magnetic and transport properties of the 2D
t-t'-J model. Our main results are the following.

(i} We present a detailed magnetic ground-state phase
diagram of the 2D t-t'-J model, including incommensu-
rate magnetic structures and phase separated states. At
finite t', a main feature of the phase diagram, we would
like to emphasize, is the existence of an AFM state away
from half-filling, which is locally and also globally stable

against phase separation. This result agrees with the ex-
perimentally observed persistence of finite range AFM
order in the weakly doped LSCO and YBCO compounds.
In contrast, for the simple t-J model we observe no AFM
long-range order at any finite doping due to phase separa-
tion.

(ii) The next-nearest-neighbor hopping process (t') in-
corporates important correlation and band-structure
effects near half-filling. In particular, the t' term can be
used to reproduce the Fermi surfaces of LSCO, YBCO,
and NCCO (in the noninteracting limit). Also the NNN
hopping provides a possible origin for the experimentally
observed asymmetry in the persistence of AFM long-
range order of hole and electron-doped systems.

(iii) Including (Gaussian} Quctuations beyond the
paramagnetic saddle-point approximation, we have de-
rived a concise expression for the spin susceptibility
y, (q, co) of the t t' Jm-od-el, which does not have the stan-
dard RPA form. For ~t'It~ &0, higher-order Lindhard
functions are of increasing importance. The instability
line obtained from a divergence of y, (q, O) is in agree-
ment with the PM~~spiral-state phase boundary in the
saddle-point phase diagram. The wave-vector depen-
dence of g, (q, O) reveals the different nature of spin fluc-

tuations reported by neutron-scattering experiments for
LSCO and YBCO, respectively.

(iv) The doping dependence of the Hall resistivity
shows the importance of both Fermi surface and correla-
tion effects. Our slave-boson results for RH(5) agree even

quantitatively with experiments on LSCO, YBCO, and
NCCO.
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