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Slave-boson calculation of the Landau parameters of the one-band Hubbard model
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We present a microscopic slave-boson calculation of the three Landau parameters Fo, Fo, and F l of
the Hubbard model for any strength of the interaction U and any filling 5=1—n. The Landau parame-
ter Fl is then obtained by using the s-p approximation on the forward-scattering sum rule for the Lan-

dau parameters. General analytic expressions are given for the four Landau parameters and related ob-
servables. Simple asymptotic expressions for these quantities in four interesting regimes on the U, 5
manifold are presented. We also show the results of numerical calculations of these quantities for the
full range of U and 5 for a system with a flat density of states, which are then compared with the experi-
mental results for normal 'He. We find good agreement with the experimentally deduced Landau pa-
rameters for both the half-filled-band model and the 5-dependent model at reasonable values of U and 5.

I. IN'I'RODUCTION

In 1956 Landau' constructed an elegant semi-
phenomenological theory to describe the macroscopic
behavior of normal Fermi liquids in the low-temperature
limit. Landau s Fermi-liquid theory has been successfully
applied to the understanding of the thermodynamic and
transport properties of quantum liquids such as liquid
He, as well as to the description of their collective

modes. On the other hand, considerable efforts ' (for
the earlier work see Ref. 14) have been made to obtain a
reliable microscopic calculation of the effective interac-
tion, the scattering amplitude, and the Landau parame-
ters of an isotropic Fermi liquid. ' ' Such microscopic
calculations are beyond the scope of Landau's theory it-
self. But since the Landau parameters offer a means of
parametrizing normal Fermi liquids, a first-principles cal-
culation of these quantities would indeed by very useful.
Several attempts have been made along these lines.
However, these works have not proven very successful.
Better results were obtained in Vollhardt's calculation us-
ing Gutzwiller's method' in his "almost localized" ap-
proach. ' In the late 1960s the variational functional ap-
proach, based on the Jastrow wave function, was used by
Feenberg and his collaborators with some success corn-
pared with the earlier works using the Brueckner and
Gammel E-matrix approach, which led to poor results
for the effective interaction. However, later work by Ost-
gaad improved the estimates of the Landau parameters
along the E-matrix scheme. Babu and Brown's attempt
to compute the interaction function is interesting but it
does not give good quantitative results. de Chatel' cal-
culated explicitly the Fermi-liquid parameters of the An-
derson model for an infinite f-f Coulomb interaction,
and his calculations can be shown to be exact for Nd ~ 00

(to lowest order in 1/Nd, if Nz is the orbital degeneracy).

de Chatel's calculation has been extended to a finite f-f
Coulomb interaction and corrections for order 1/Nz
were studied by Li et al. '

One of the best candidates for a microscopic model cal-
culation of the Landau parameters in a strongly correlat-
ed fermion system is certainly the Hubbard model, which
in its simple form or through its extensions is believed to
contain the essence of the physics of strongly interacting
fermions such as liquid He, ' transition metals, and
heavy-fermion systems. In fact this model has been pro-
posed to describe both the strongly interacting Fermi
liquids (of which liquid He is the prototype) and the
metal-insulator transitions. ' The Hubbard model is also
considered to be relevant' to the high-temperature super-
conductors. ' It is widely believed that understanding
the controversial properties of the normal state of the cu-
prates, which behave sometimes very differently from a
Fermi liquid, ' is a key step towards explaining the mech-
anism of high-T, superconductivity itself. The current
debate on this subject, which centers on the existence and
the nature of the quasiparticles in the two-dimensional
(2D) Hubbard model, as well as the attempts to construct
a new quantum-liquid theory for these systems, ' ' have
brought the understanding of strongly correlated fermion
systems to the forefront of condensed matter physics.
We will restrict ourselves to presenting a microscopic cal-
culation of the Landau parameters, assuming that they
can be obtained from the various susceptibilities in the
usual manner.

The main problem in developing a microscopic theory
that goes beyond perturbation theory has been how to
construct a reliable and manageable many-body theory
that can deal with a strongly interacting quantum liquid
at high densities. Amongst the methods that have been
proposed (see, e.g., the review by Vollhardt'o),
Gutzwiller's approach is particularly appealing because
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of its simplicity and because it yields better results than
other approximations. Furthermore, Gutzwiller's ap-
proach covers almost the whole range of interactions and
band fillings. A great success of this method has been the
description of the Mott-Hubbard transition, although it
has been shown recently that the transition disappears
when Gutzwiller's wave function' is used on the Hub-
bard model without Gutzwiller's approximation.
Kotliar and Ruckenstein (KR) have developed a
functional-integral approach, the field-theory representa-
tion of the slave-boson (SB) technique, in which
Gutzwiller's results are reproduced at the static paramag-
netic saddle point. Their approach not only bridges two
fundamentally different methods, the variational method
and the functional-integral one, but also offers a sys-
tematic way to improve and extend Gutzwiller's results.
It also allows for the study of finite-temperature
effects.

In this paper we present a microscopic calculation of
the flrst four Landau parameters (FO,FO, F'„andFf) for
the Hubbard model using the spin-rotationally-invariant
version of KR's slave-boson approach. We have calculat-
ed all of the two-point dynamical correlation functions
and structure factors. The agreement between the
quantum Monte Carlo results and the slave-boson ap-
proach is impressive, considering that there are no ad-
justable parameters in this approach. ' ' With this
method, the calculation of Fo which amounts to invert-
ing a 2X2 submatrix of the fluctuation matrix S(k), is
much simpler than that of Fo, which involves the inver-
sion of a 5 X 5 submatrix S(k ). We will adopt the same
approach and notations previously used in Ref. 28. The
Landau parameters depend in general on the dimension
of the system. We will restrict ourselves mainly to the
hatband case. As will be seen below, there are no
difBculties in extending the calculation to d-dimensional
Hubbard lattices. The van Hove singularity in the 2D
case brings an extra difBculty into the calculations, but
there are ways to avoid it by using a t-matrix approach or
by adding next-nearest-neighbor hopping to displace the
singularity from half filling. The flatband case is especial-
ly appealing since it corresponds to the density of states
of a 2D liquid with a free-particle spectrum for the bare
particles. Furthermore, it is only in this case that simple
analytic expressions for the Landau parameters and relat-
ed observables may be obtained. In fact in the Gatband
case all of the Landau parameters can be expressed in
terms of a sealed interaction U/U„where U, corre-
sponds to the critical interaction for the Brinkrnan-Rice
transition at half filling. The dimension dependence of
the Landau parameters is only explicit in the expression
for U, . Otherwise the expressions for the Landau param-
eters themselves are explicitly indepe&dent of the dimen-
sion of the system, which is a scaling property of sorts.
In the case of Fo, our expression in the flatband case
reduces to a previously obtained result, " as expected.
While Fo can be obtained through the long-wavelength
limit of the full charge response, we have used instead a
much simpler self-consistent approach involving the cal-
culation of the compressibility. In the 2D case, our result
for the flatband case reproduces the one previously pub-

lished without introducing an ambiguous "average den-
sity of states" in the calculation. The second symmetric
Landau parameter F', comes directly from the saddle-
point value of the renormalized hopping factor of KR's
slave-boson theory. The last Landau parameter F', is ob-
tained through the use of the forward-scattering sum rule
and a cutoff procedure called the s-p approximation. All
of these calculations are based on the assumption that the
Fermi liquid is stable (which corresponds to the paramag-
netic phase of the slave-boson theory). The study of the
stability of the Fermi liquid involves a detailed study of
the phase diagram of the system, which is beyond the
scope of this work.

This paper is organized as follows. In Sec. II we
present the general microscopic calculation of the three
leading Landau parameters Fo, Eo, and F

&
for the Hub-

bard model. In Sec. III we discuss the isotropic Fermi
liquid in the normal phase. For the case of a hatband, we
give concise analytic expressions in which the four Lan-
dau parameters are expressed as functions of the scaled
interaction U/U, and of the doping factor 5. We then
present the analytic expressions for the important ther-
modynamic, transport, and collective-mode properties of
the correlated fermion system using Landau's well-known
formulas. Simplified expressions for the Landau parame-
ters and the observables in four special but interesting
limits are given in the Appendix. In Sec. IV we present
the numerical results for the Landau parameters in the
whole range of U/U, and 5 for the flatband. We then
compare these results with the experimentally deduced
Landau parameters for normal He by fitting the pressure
dependence of the physical properties' '" and of the criti-
cal temperature of superfluid He with appropriate values
of U/U, (and of 5 for the 5-dependent model). We then
discuss our results and conclude in Sec. V.

II. CALCULATION OF THE LANDAU PARAjMETERS
IN KR'S SLAVE-BOSON APPROACH

In the last section we have mentioned that, in some
sense, the model calculation of the Landau parameter Fo
(or Fo) amounts to the calculation of the dynamical
charge (or spin) correlation function. Since the dynami-
cal charge (spin) correlation function can usually be re-
duced to the random-phase approximation (RPA) form in
the long-wavelength limit, as proven by the slave-boson
approach, the value of Fo (Fo) follows directly. Con-
cise expressions have only been obtained for Fo in the
flatband case. Before proceeding to the detailed deriva-
tion of the Landau parameters, let us briefly recall
Kotliar and Ruckenstein's slave-boson theory and its ap-
proach to the calculation of the dynamical correlation
functions. We assume that the system has space-time in-
version symmetry, as is usually the case in quantum
liquids with no external magnetic fields. It has been
shown that there are only four independent two-point
(in the space-time manifold) correlation functions which
can be formed out of the occupation number operator
n, (r) for fermions of spin s at site i and at imaginary
time v.. The dynamical charge and spin correlation func-
tions as we11 as the other two independent correlation



50 SLAVE-BOSON CALCULATION OF THE LANDAU PARAMETERS. . . 17 839

For the nearest-neighbor Hubbard model, t; = t for-
neighboring sites, 0 elsewhere. For a quantum liquid, the
kinetic part of the Hamiltonian is simply A k /2nt in the
k representation. Unlike most other approaches, where
the complication caused by the Hubbard interaction term
is handled directly, Kotliar and Ruckenstein use a
difFerent point of view. They associate the repulsive Hub-
bard interaction with the suppression of the hopping pro-
cess. Following KR we rewrite the Hubbard Hamiltoni-
an in terms of the slave-boson operators e;, p;, and d; (for
empty, singly occupied, and doubly occupied sites) and of
the fermion operators f;:

H= g g f;~~;~ .z, ~ f, +Ugdtd;, (2)

where the renormalized hopping factor z is defined by

z =[(1—d; d;)~r p;p;] '~z(—e;p;+P;d;)

X [(1—e;te; )~w P, P;]—
The underbar denotes a 2X2 matrix in spin space, ~~ is
the unit matrix, P, is the time-reserved form of the opera-
tor p;. In order to stay within the physical subspace, the
following local constraints must be enforced:

e; e;+d; d;+tr(p; p;)=1, (4)

(P;tP;) t3+d;td;5 tt=f;tJ;t3. (5)

functions are quite complex, as there are as many as four
to eight creation and annihilation operators c (i,r) and
c (i,r) involved in the calculation of the expectation
value. At first sight it would hardly seem believable that
such complicated dynamical correlation functions may be
calculated simply, but in fact they can be readily obtained
from two-point boson propagators. Following these
lines, analytic expressions for those four independent
dynamical correlation functions have been obtained.
The reliability of the substitution of Fermi operators by
boson operators has been tested numerically. Numerical
results have also shown reasonable agreement with
Monte Carlo simulations ' (note that no adjustable
parameters are introduced in the slave-boson calcula-
tions). The crucial noninteracting limit is recovered in
the U~O limit. Particle-hole symmetry, as well as the
various symmetry relations between the dynamical corre-
lation functions, have also been proven to be satisfied.

Let us now turn to the microscopic calculation of the
first four Landau parameters for the Hubbard model. In
the usual notation,

H= g t; ct c +Urn;tn;& .

D;(r) =—n; (r)n; (r)~d, (r)d, (r), (6a)

E;(r)= [—1 —n; (r)][1—n; (r)]—+e; (r)e;(r), (6b)

and the single-occupancy operator by the state with spin
projection s along a quantization axis 2

P, (r)=—n, (r)[1—n, (r))

~Tr [(~r+W r)p, (r)p, (r)), (6c)

where ~ is the vector of Pauli matrixes. In order to calcu-
late the correlation functions one must go beyond mean-
field theory. The first usefu1 approximation is obtained
by calculating the effect of Gaussian fluctuations about
the mean field, which provides the leading corrections in
a loop expansion. The partition function is given by

D ', D boson exp ~L,~ ~
0

where p= 1/ktt T. We use the same letter to symbolize
both the Grassman variables and the corresponding fer-
mion operators in the functional integral. The efFective
Lagrangian will not be repeated here [see Ref. 24]. After
integrating the Grassman variables, which appear only
quadratically in the functional integral, one can expand
around the saddle point to second order in the boson
fields to obtain their fluctuation matrix S(k) about their
mean-field values. This introduces the 11-component
fluctuation vector of the boson fields P(k ), defined as the
deviation of the fields about their mean-field values:

f(k)=(5e, 5d, 5pp 5PO 5tt 5p, 5PI 5pz, 5P3, 5p3 5P3)

where the boson fields a and p,„arethe Lagrange multi-

pliers enforcing the local constraints (4) and (5). The ar-
gument k of the fluctuation matrix and the fluctuation
vector stands for (k, to„),where to„is a Matsubara boson
frequency. The calculation of the dynamical correlation
functions is then straightforward: it suffices to invert
S(k) and then take suitable linear combinations of the
matrix elements S~'(k). Since the spin and charge de-
grees of freedom are decoupled in the fluctuation matrix,
S(k ) is reduced to a block-diagonal (5 X5)g(2X2)3 ma-
trix. We need only invert a 2X2 and a 5X5 matrix to
obtain respectively the spin and charge dynamical corre-
lations.

In the spin-rotationally-invariant version of KR's
slave-boson theory, all 11 slave-boson saddle-point values
are expressed through two parameters, the dopant con-
centration 5 and the parameter x, defined as"

As mentioned before, the key point in the slave-boson ap-
proach is that, within the functional-integral formulation,
all of the dynamical correlation functions for the fermion
occupation numbers n; (r) may be approximated by the
two-point dynamical correlation functions of the slave-
boson fields. Indeed, it sufBces to replace doubly and
empty site-occupation projectors by their corresponding
boson projectors, i.e.,

x=e+d .

The saddle-point values of the fields are

d =(x —5)/2x,
e=(x +5)/2x,

p =1—(x +5 )/2x

(10a)

(lob)

(10c)
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U, 1cx= x po +
2 x +5

(10d)
trix t; - for the bare particles of both spins, calculated us-

ing

and

U,
Po= x

2

po po
2 2$

x +5 1 —5
1

2
(10e)

N(E)= —g2

L ~ Bhci,

In particular, at zero temperature the Fermi function be-
comes 8(z e —(p —Po)), so that

p=P=O. (10f) n = f deN(E) . (20}

The value of x is found through Vollhardt's optimization
equation, which corresponds to one of the saddle-point
equations:

(1—x )x /(x —5 )=U/U, , (11)
where

o
(12)U, 8

1 —5
corresponds to the critical interaction for the Brinkman-
Rice transition when 5=0. Here Ko is the difference be-
tween the average kinetic energy and the kinetic energy
at the Fermi level at half 611ing.

The fermion spectrum Ez is given by the expres-
sion

E„=E„=z[e„(5)—ej', '(5=0) ]—(p —Po)

:—z be& —(p, —Po), (13)

where F& is the kinetic energy of the bare particles and
c,&

' is the corresponding quantity at the Fermi level at

half filling. This fermion spectrum for the Hubbard mod-
el holds for any dopant concentration and for any
strength of the interaction. It is consistent with Meth-
feseel and Mattis's well-known exact result which states
that at half Qling the chemical potential is given by

Up(5=0, U)= —.
2

From the slave-boson approach we also have

po(5=0, U)= —.
U

(14)

Thus

Eg (5=0,U)=0,

which is in conformity with the convention that energy is
measured from the Fermi level at half filing. A useful
definition of the effective chemical potential is

p,i=(p —Po)/z

Thus the effective chemical potential is band-structure
dependent. Similarly, the average kinetic energy Ko is
also band-structure dependent. In the energy representa-
tion, Eq. (12) is given by the expression

}"erU„=—8 f dEeN(e) .
1 —$~

(21)

F
~
=3(1—y')'/(2y —y' —5'), (23)

where y =x . The corresponding forward-scattering am-
plitude is

A', =2( —1+y) /(1 —5 ) . (24)

Note that, in the slave-boson approach, the above formu-
las are general results, independent of the Aatband as-
sumption. The dependence of U, on dimension implies
that the solution of the optimization equation x and thus
the Landau parameters are generally dimension depen-
dent.

In the long-wavelength limit, the expression for the
dynamical spin susceptibility reduces to the RPA
form, ' so one can easily extract the Landau parameter

ZV„g~z az,Fo= 'a Pa+so z —~+
2po ~pl

Combining the slave-boson expression for mass
enhancement with the corresponding formula from the
Landau theory we find

F)
1/z =m /m =1+

3

Hereafter we will use the 3D formulas for the relations
between the Landau parameters and the normalized ob-
servables or scattering amplitudes. All the derivations of
the formulas can also be done for the 1D and 2D cases by
substituting the relations between the Landau parameters
and the normalized observables or scattering amplitudes
by those applicable in the 2D and 1D cases. Substituting
the saddle-point value of the renormalized hopping factor
z [Eq. (3)] in Eq. (22),

which, given the filling factor, can be determined through

n =—g f(E„)=—g f(z'he„—(p —Po) )
—2 =2

Bz
y+4potpz

Bp)
(25)

=—g fde5(E EEq)f(z—b, Eq (p Po)—)—2

= fde%(e)f(z E (p —Po)}, — (18)

where N( E ) is the density of states of a given hopping rna-

where NF is the renormalized density of states

Xz =Nz/z . In what follows, we use the subscript I' and
the superscript (0} to denote the value at the Fermi level
and the value at half filling, respectively. %lith this nota-
tion tF is the value of b,ez=ez —

eI, '(5=0) at the Fermi

level:



50 SLAVE-BOSON CALCULATION OF THE LANDAU PARAMETERS. . . 17 841

F pelf (p Po )/z

We also have the derivatives

at
ap,

=45vjpo(1 2—ri pox )

and

(26)

(27)

Substituting the boson fields, the hopping factor, and the
first and second derivatives of z with respect to the boson
fields, we obtain

(a—Po)/U, = —(y —3y+y5 +5 )/4(1 —5 ), (30)

't
p

2
=2~2rl po [x[1+2'po(1+25 )]—2(e —d )5],

(28)

where ri=l/(1 —5 ). Using (12) and (25), Fo can be
rewritten as

and

z =(—5 +2y —y )/(1 —5 ),
' 1/2

5(1—y)'
ap, y

(31)

(32)

NFU,
Fo=, «—&o)/U.

2p0

a" at—(1—5) z +
apl ap 1

2
a"t

apt

2+2y —y —5 (y +25 y —3y —35 y+35 )
52 )

5/2

(33)

zt
+4poz pefr/U~ ' .

Bp)
(29)

Thus the general expression for Fo can be rewritten as

NFU,
Fo = [16p,,sz 5(1—y ) /U, —y(3y —5 —y5 —y )

4(2y —y
~ —5~)

+z(35z —3y —35'y+25 y'+y )/y —5 (1—y )/(1 —5')] . (34)

NF5 Bz o 1 a~o

N ' B5 ' B5
(35)

We can now examine the Landau parameter Eo.
Vollhardt has shown' that the two Landau parameters
Fo and Fo obey the symmetry relation Fo( U) =Fo( —U)
at half filling. We will show that, in the slave-boson ap-
proach, this symmetry is retained at half filling at the
mean-field level. By inverting the 5 X5 submatrix of the
fiuctuation matrix S(k ) and by taking the long-
wavelength limit, the full charge correlation function can
be obtained and then reduced to a RPA form. The Lan-
dau parameter Fo follows directly from that RPA expres-
sion

ap,
B5

U,

2 y

By

B5

Po + 1+5
(y+5)~ (1—5 )

U yp2

(y+5)'

Bpo U,

B5 2 y+5

The derivatives ofPo andy =x are s

BPo 5 1 5 By= ——+— —1
B5 y 2 y2 B5

and

(37)

08)

This expression was derived in Ref. 28. N is an ambigu-
ous "average density of occupied states, " used as an in-
termediate step in the calculations, in order to avoid in-
verting the 5X5 submatrix of the fiuctuation matrix.
The derivatives are given by

By 2m 5
B5 y(2u —2+3y)

(39)

So far we have followed Ref. 28 in the derivation of the
expressions for the Landau parameters. Henceforth, we
rederive Fo in a simple, self-consistent way, without in-
troducing an ambiguous "average density of states. "The
compressibility of a Fermi liquid can be written as

and

a5 (1—5) +(1—5) 'a5+" a5
(36) 1+F0

Bn (rn /m )Nf
hence

(40)
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NI0= —1+
z Bn/ap

(41)

One thus needs to calculate Bn lap. Rewriting Bn /Bp as

terms of Bn/Bp as

=1— (Po—z b,ek)
Bp Bp

an 1 ~ afk, 1 afk,
(42)

az' apo an
" B5 B5 Bp

where fk =1/[1+exp(PEk }) is the Fermi distribu-
tion, the right-hand side of Eq. (42) can be expressed in

Inserting the above expression into (42), a self-consistent
equation for Bn /Bp then emerges, and its formal solution
1S

( 2/L —
) g Bfk/BEk

Bn k

Bp 1 —(Bp /B5)(2/L ) g Bf„/BE„+(Bz/B5)(2/L ) g (Bf„/BE„)he„
k k

(44)

At zero temperature the above expression simplifies con-
siderably, since we have then Bfk /BEk = —5(Ek ).
Within the range of temperature in which Landau's
theory is applicable to the normal He liquid, the Landau
parameters are almost temperature independent. We can
thus compute them at zero temperature, considerably
simplifying the calculation. Assuming that Luttinger's
theorem is valid, as is usually the case in a normal Fermi
liquid, we have

-2 afk 2=—g 5(Ek ) =Ide No(e)5(z e —(p —Po) )
k k k

=No(p, ,fr) Iz =N~lz, (45)

where No(s) is the bare-particle density of states.
Similarly, we find

and

Bfk =pIdekfk(Ek )[1—f„(Ek)]ekN(ek),
k

where Ek=z ek —(p —po). Hence, at T=O,

NFI' = —1+
z Bn/ap,

as '""as

2 NF—g 5(Ek )bek =p, rr
k

Z' (46)
1 BPo u.~ az'

U, as
+

U, as
Z2 (49)

For finite temperatures one simply has to replace (45) and
(46}by the integrals

—2 =pf dEkfk(Ek)[1 —fk(Ek)]N(ek)
k k

Clearly, this is the same result as Eq. (35) obtained from
the charge correlation function. Following the derivation
of the formula for Eo, the boson-Seld solutions are insert-
ed into Eqs. (36)—(39},leading to

a2
as

=25(1—y) ( —25 +2y+5 y —y )/[(1 —5 ) (25 —35 y+y )],

1 Po ( —1+y)(25 +25 —95y —5y+2y +35 y +y'+5 y —y —5 y )

U, an 4(1—5 ) (25 —35 y+y )
(51)

As in the general expression for Eo, one only needs to cal-
culate two parameters, N~U, and p,s/U„which are di-
mension and t;. dependent. In the next section we will
present formulas for these two parameters in the isotro-

pic liquid. There is no problem in calculating these two
parameters for any band structures or lattices. It suf5ces
to compute the density of states from the given band
structure, and to solve Eq. (26), which yields the efFective
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chemical potential. Then U, can be obtained from (12),
and NF is easily obtained since it is just equal to
No(v. r) /&'.

and

3(1—$)i~3[1—(1—5)3~2]
P3D =13O

F,3D
(54c)

IIL THR NORMAL ISOTROPIC QUANTUM LIQUIO
AND THE CASE OF THE FIMTBAND

m
&F,1D

+kF, 1D
with kF 1D=nm', (52a)

On a lattice, there are generally more Landau parame-
ters to take into account than for an isotropic system
because of the actual shape of the Fermi surface. As we
mentioned earlier, there are no intrinsic diSculties in
computing the response functions in the presence of a lat-
tice. The Landau parameters are then simply de5ned us-

ing the long-wavelength limit of these response functions
(reducing the rotation-group representation according to
the point-group representation of the lattice, i.e., a fur-
ther decomposition for the interactions between quasipar-
ticles).

However, we will restrict ourselves in this paper to iso-
tropic systems, particularly to the Hubbard model with a
free-particle-like spectrum for the bare particles, which is
relevant to the case of a normal Fermi liquid, e.g., to
liquid 3He. It was shown in the last section that one
needs to calculate two parameters, NF U, and p,r/U„ in
order to obtain a general analytic expression for the Lan-
dau parameters.

In order to calculate the Landau parameters for the
isotropic Hubbard liquid, we need the familiar results for
the density of states and the Fermi momentum, namely,

so=he„= g [k2—(kFo)2) .
2mL

(55)

Substituting Eqs. (52a)-(52c) and (55) into (12), we find

4M[3 —(1—5) ]
3m(1+5)

(56a)

4m
U.,2D= (56b)

and

12(3&) '
1 (1—5)

m(1+5) 3 5
(56c)

Combining (52a}-(52c)and (56a)-(52c), we obtain

NFU, lD= 4[3—(1—5) ]
3(1—5 }

NF U, I2D=4,

and

(57a)

(57b}

36
F cl3D

(1-&)' ' (1-(3)+ (57c}

as well as

Assuming that the bare particles have a free-particle-like
spectrum, we obtain

m
NF 2D

=—with kF 2D=(2n1r)'

m
NF 3D

= kF 3D with kF 3D=(3n n )'

(52b}

(52c)

3(1+5)[(1—fl) —1]
p'eff c I lD 8(2+5)2

I eff/Uc I2D

(58a)

(58b)

At T=O, the effective chemical potential can be written
and

Z2
=beg= = tkF(5) —[kF(5=0)]2] .

1

(53)

w.r/U, 3D=
(I+5)[(1—5) i —1]
24[-,' —(1—5) i /5]

(58c)

The effective chemical potential is given by

5(2—(3)

2(l 5}NF lD
(53a)

and

Pel;2D=, p
F,2D

3(1—5)' [1—(1—5) ]P r, 3D=
F,3D

(53b)

(53c)

5{2—5)~' '
2(1—S}N

Z2 5
P2D=~o z

NoF,2D

(54a)

(54b)

Substituting these results in (17) the chemical potential
emerges immediately as

N(E) =1/W, (59a)

Inserting the above expressions into the general expres-
sions for the Landau parameters (34) and (49), we find
that they can be expressed as functions of two variables, y
and 5. For a given scaled interaction u = U/U, and dop-
ing factor 5, y can be obtained by solving the optimiza-
tion equation. We will not present these lengthy analytic
expressions for the Landau parameters. The 2D case is
simple, as it reduces to the hatband case. We thus repro-
duce the results of Ref. 11,as shown below. There are no
diSculties in dealing with the more complex 3D and 1 D
cases since all the necessary ingredients are given in Eqs.
(34) for Ii o and (49) for Ii o, as well as in Eqs. (57a) —{58c}
for the parameters NF U, and p,r/Uc L

Let us now consider the case of a hatband. Assuming a
bandwidth equal to 2$'for the bare particles, the density
of states of the bare particles for both spin up and spin
down is simply
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the effective chemical potential

P,r= —W5z

the critical interaction

U, =48

the average kinetic energy

(59b)

(59c)

(1—y)(25 —55 y+2y +5 y +y' —y )

[(5 —2y+y )( —25 +35 y —y )]
Expression (60) is in exact agreement with the results of
Ref. 11. The corresponding scattering amplitudes are

(1—y)(y —3y +35 y —5 )

[(1—5')(y' —5') ]

(1—5 ),
2

and the kinetic energy at the Fermi level

s =Peri

(59d)

(59e)

(1—y)(25 —55 y+2y +5 y +y —y )

[(—1+5' )( —25 +35 y —2y +y 3) ]

Using the forward-scattering sum rule and the s-p ap-
proximation, i.e., taking a cutoff I &2, a tedious calcula-
tion yields

Inserting these results into the expressions for Fo and Fo,
we obtain the following expressions: (y —1)'( —105~+ 195'y —85'y' —25'y '+ 2y' —y ')

[(—1+52)(52—y2)( —252+35 y —2y +y')]

and

Fo= —1+(1—5 )(y —5 )/(2y —y —5 ) (60)

and

P~& =3(y —1)z( —105 +195~y —85 y —25 y +2y —y )/(165 —65 —485 y+95 y+85 y +485~yz

—85 y —255 y —8y + 105 y

+ 8y
5 52y 5 4y 6+y 7

) (65)

c„=co m* Fi2
with =1+

P?l 3

Since the effective mass is simply related to the Landau
parameter F'„wehave derived the four Landau parame-
ters. With these we may now calculate a number of im-
portant observable thermodynamic and transport proper-
ties, as well as the collective-mode properties. According
to Landau's theory of Fermi liquids, the specific heat at
low temperature is proportional to m '/m,

X, /X,'=(5' —2y+y')/(5' —y'} .

Landau's theory gives for the compressibility

m'/m &o
1+F0

(69)

Substituting the mass enhancement factor Eq. (66) and
the Landau parameter Fo into the preceding equation, we
obtain the following result for the normalized compressi-
bility:

(From now on we will use the superscript 0 to mark the
free Fermi-gas results. } The mass enhancement m '/m is
thus equal to the normalized specific heat C„/C„.We
thus immediately obtain the following expression for
these quantities:

( —25+35y —y )

(
—25 +352y —2y +y )

The Wilson ratio, defined as

(70)

C„/C„=m*/m=( —1+5 )/(5 —2y+y ) . (66)

The above expressions for the low-temperature specific
heat, the mass enhancement, and F& are valid for any
density of states, independently of the hatband assump-
tion. Similarly, we can obtain the formula for the nor-
malized spin susceptibility. In Landau's theory the static
magnetic susceptibility is expressed as

has played an interesting role in the study of Kondo and
heavy-fermion systems. It highlights some of the
behavior peculiar to these strongly interacting systems.
Given the expressions for m /m and y, /y„ the Wilson
ratio can be reexpressed in terms of the Landau parame-
ters as W„=1/( 1+Fo ). Thus we have

m '/m
I +F'0

Thus we have

(67} W„=(5—2y+y ) /[(1 —5 )(y —5 )] . (72)

Finally, using the Landau theory formula for the ratio be-
tween the first-sound velocity and the Fermi velocity
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(1+ F0 /3)
c 1 /UF —(C 1 IVF )0 (1+F) /3)

(73)

we can find the normalized ratio of the first-sound veloci-
ty

C)

(c))o
( —25'+352y —2y +y')

( —252+35 y —y')
(74)

Note that the dopant concentration only appears as 5 in
the optimization equation (11) and in the formulas we
have just derived for the Landau parameters and related
observables. Thus the particle-hole symmetry, which can
be expressed as an invariance under the transformation
5~—5, holds in the above expressions. Note also that in
all of the expressions for the Landau parameters and the
observables, the bandwidth W and the dimension d do
not appear explicitly. They only affect implicitly the
value of y (the solution of the optimization equation}
through U, . Thus in the case of the Hatband we have
some form of scaling: all of the Landau parameters and
observables are expressed simply through two explicit pa-
rameters, the filling factor 5 and the scaled interaction
u =U/U, .

Equations (60)—(74) reduce to the correct noninteract-
ing limit. When U~O, all Landau parameters vanish
and all the normalized observables are equal to 1 as ex-
pected. This limit can only be assured at the mean-field
level, the next-order correction in the loop expansion
having met enormous trouble ' when attempts were
made to recover the correct noninteracting limit.

The optimization equation in the opposite limit, the
strong-coupling limit U —+ ~, has only one physical solu-
tion, y = l5l. Inserting this result into our expressions for
the Landau parameters and the normalized observables,
we find

observables discussed earlier then simply reduce to the
well-known Gutzwiller results obtained in the investiga-
tion of the normal He liquid by the "almost localized ap-
proach" of Vollhardt

Fo =(2—u )u /(1 —u )

Fo= —u(2+u )/(1+u )

F', =3u /(1 —u ),
Ff = —3u /(3+u ),
Ao=(2 —u )u,
Ao= —u(2+u ),
A' =3u

1

(76a)

(76b)

(76c)

(76d}

(76e)

(76f)

(76g)

(76h}

m /m=1/(1 —u ),
K/K =(1—u)/(1+u),

1/2

(76i}

(76j)

ci /(ci )0= 1+u
1 u

(76k)

and

g, /g, =(1+u )/(1 —u ),

W„=(1+u)2 .

(761)

(76m)

In the above expressions, the scaled interaction u is re-
stricted to be less than 1. When u approaches 1 (i.e.,
U~ U, ), Fo, F'„the mass enhancement and the normal-
ized sound velocity diverge, and the normalized compres-
sibility vanishes. This corresponds to the Brinkman-Rice
localization transition. ' ' ' The other parameters take
the values

Fo~ —
—,', F) ~—

—,', JV, ~4, K/E ~0.F'~ 1 rl51 F'~ 1F' —'+ F'~—-3. —
0 2l51

' (77)

lr(1+l5l), A;

A', 3(1—l5l )/(1+ l5l ), A;

m'/m~(1+l5l)/2l5l, K/K ~—,', c, /(c, )o~~2;

y /y ~ oo; and P,~ oo (75)

The fact that the antisymmetric Landau parameters ap-
proach, in the strong-coupling limit, the critical values
for the stability of the Landau Fermi-liquid phase
[F", )—(2l+1}]suggests that the ferromagnetic phase
should become more stable than the Landau Fermi
liquid. When 5=0 the above limiting behavior might be
explained in term of Nagaoka's theorem. It is still an
open question if Nagaoka's theorem holds for the Hub-
bard model in the small-doping limit. The strong-
coupling results also show that at finite, even
infinitesimal, doping the Brinkman-Rice localization is
forbidden.

In the half-filled case (5=0) there is a simple physical
solution to the optimization equation, y =1—u, where
u = U/U, . The Landau parameters and the normalized

5 5
y =—— where /=&1 —1/u

2ug
(79}

Comparing these results with those obtained in the
strong-coupling limit, we find that the two limits 5~0
and U/U, ~ oo do not commute.

In order to obtain general expressions in terms of the
Hubbard model parameters U and 5 (we will use units
such that ks =fi=t =1 from now on), we have to solve
the optimization equation, which is a cubic equation.
The standard formulas for a cubic equation yield solu-
tions that are too complex to give useful explicit analytic
expressions for the Landau parameters and their by-
products, the observables. In the following special but in-
teresting cases ' we can calculate simple expressions
for the first four Landau parameters and their by-
products.

Case I: u & 1, 5«(1—u )3~ . Taking 5 as a small ex-
pansion parameter, we obtain

y =1—u+u5z/(1 —u )2+0(53) .

Case II: u ) 1, l5 l
« 1. We have
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Case III: u « 1, the ioeak c-oupling limit for any dopant
concentration 5. Taking u as a small expansion parame-
ter, we find

y= 1 —(1—5 )u+2u 5 (1—5 )+0(u ) . (80)

Case IV: u ))1, the strong co-upling limit at any filling
Taking 1/u as the small expansion parameter, we have

y =5(1+(1—5)/(2u ))+0 1

u

The results of these expansions for the four Landau pa-
rameters, the related scattering amplitudes, and the nor-
malized observables are presented in the Appendix.

IU. NUMERICAL STUDIES OF THE LANDAU
PARAME1KRS AND RELATED OBSERVABLES

AND COMPARISON %VII'H EXPERIMENTS
ON LIQUID 3He

In this section we present some numerical results for
the first four Landau parameters using their slave-boson
expressions. Given the Landau parameters, the numeri-
cal results of the transport and thermodynamic proper-
ties, as well as the behavior of the collective mode, can be
obtained through Landau's theory of Fermi liquids. The
numerical work that we present here is restricted to the
Hubbard model. As we mentioned in the previous sec-
tion, there is no diSculty in principle in extending these
calculations to other models of strongly correlated Fermi
systems. There is no restriction in the numerical calcula-
tions on the strength of the Hubbard interaction U and
the doping factor 5. We assume a flat density of states
for simplicity. It has been shown that the fiatband model
works fairly well for the normal He liquid. However,
numerical calculations can be worked out for any fer-
mionic spectrum using the results of the preceding sec-
tion.

The parameters of the system are the strength of the
Hubbard interaction U, the doping factor 5, the hopping
matrix t; for the lattice models, the dimension of the sys-
tem, and its temperature T. Extending Gutzwiller's vari-
ational approach to finite temperatures is one of the im-
portant pieces of progress brought on by KR's slave-
boson approach. Since we will compare our numerical
result with the experimental ones for normal He, we re-
strict our numerical work to the zero-temperature case.
The whole framework presented in this paper may be
used to consider finite-temperature effects for some other
fermion system where temperature effects may be crucial.
In the slave-boson formulation at the saddle point [Eqs.
(9)—(12)], the efFect of the dimension of the system ap-
pears only in the calculation of U, and of the effective
chemical potential through the density of states [Eqs. (12)
and (20)]. The kinetic part t;~ acts similarly. In fact, to-
gether they determine the fermionic spectrum and thus
the density of states of the bare particles. The hatband
formulation is appealing not only because of its simplici-
ty, but also because it corresponds to the interesting case
of a 2D fermion liquid. However, the effective mass is
then related to the Landau parameter F

&
through

m*/m=1+I", instead of Eq. (22). Furthermore, the
scattering amplitudes have different expressions in 2D
than in 3D. Anyway, the Aatband approximation has
been widely used for liquid He. It has been used in con-
junction with the Hubband model on a lattice' because it
is simple and can deal adequately with properties which
are not sensitive to the details of the density of states. If
the slave-boson approach is applied directly to the Hub-
bard model on a lattice to calculate the Landau parame-
ters at the mean-field level, we encounter difFiculties due
to the van Hove singularity at half filling. As discussed
in the Introduction this can be avoided by pushing the
calculations to higher orders, as in the t-matrix approach
in which the singularity is rounded, or by removing it
from the fillings of interest by including next-nearest-
neighbor hopping. Note that the Hubbard liquid and the
Hubbard lattice greatly differ on one important point.
The latter offers the possibility of a far richer magnetic
phase diagram. However, as mentioned earlier, we re-
strict ourselves to the study of the paramagnetic phase.

The numerical calculations proceeded as follows. For
a given value of the scaled interaction u = U/U, and of
the doping factor 5, we solve numerically the optimiza-
tion equation. We then insert the solution into Eqs. (23),
(60), (61), and (65), which yield the first four Landau pa-
rameters. Note that in the derivation of Eqs. (60)—(65)
we used the following approximations: the 6atband ap-
proximation, the sp approximation on the forward-
scattering sum rule, and the saddle-point approximation
on the Lagrangian. In order to calculate the Landau pa-
rameters for a general fermionic spectrum, the same algo-
rithm can be used, but it is complicated by the absence of
such simple relations as Eqs. (59a)—(59e). In this case we
must first use the bare-particle spectrum of the Hamil-
tonian in order to obtain the density of states (DOS) of
the bare particles. Using this DOS and Eq. (20), the
effective chemical potential p,~ can then be calculated for
a given 5. With this effective chemical potential and Us-

ing Eq. (21), we can then find the critical interaction U, .

In the finite-temperature case, the numerical calcula-
tions are more complicated, since the Fermi distribution
function f(E„)cannot be reduced to a theta function
8( Ez). Indeed, —the 8 function has the scaling property
8(~a ~x)=8(x ), which can be used to simplify the equa-
tions. At finite temperature, the renormalized hopping
factor must be calculated in a self-consistent way because
of its dependence on the saddle-point values of the fields;
in other words, it must be iterated until the saddle-point
values converge. Then by using the expressions derived
earlier relating the Landau parameters to the saddle-
point values and their derivatives, the Landau parameters
Fo, Fo, and F', can be found. Finally F& is obtained with
the forward-scattering sum rule and the s-p approxima-
tion.

As in the case of solid He, the original lattice-gas mod-
el' of He is based on the explicit assumption of a half-
filled lattice. The pressure dependence of the observables
was ascribed to the Hubbard interaction U. Within this
model a comprehensive investigation of the pressure
dependence of the two leading Landau parameters and
the normalized susceptibility and compressibility have
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100.0

80.0 -:

60.0 -:

(a)
0.0

-0.4 -:

(b) TABLE II. The values of U/U, and 5 for the 5-dependent
model. The notations and the fitting method were discussed in
the caption of Table I.

Pressure (bars) U/U, (G-T) 5(G-T) U/U, (W-T) 5 (W-T)".4o.o -: o-0.6 -:

20.0 -: —0.8 -:
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15.0 -: -0.40:

10.0 -: -0.60
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0.00
3.00
6.00
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12.00
15.00
18.00
21.00
24.00
27.00
30.00
33.00
34.36

0.740
0.805
0.835
0.850
0.865
0.875
0.885
0.890
0.895
0.900
0.905
0.910
0.915

0.0420
0.0325
0.0265
0.0210
0.0185
0.0165
0.0150
0.0135
0.0120
0.0110
0.0100
0.0095
0.0100

0.745
0.845
0.880
0.905
0.915
0.930
0.940
0.940
0.945
0.945
0.945
0.950
0.945

0.0340
0.0405
0.0345
0.0310
0.0270
0.0250
0.0235
0.0210
0.0195
0.0175
0.0160
0.0155
0.0140

FIG. 1. The four leading symmetric Landau parameters for
the half-filled Hubbard model, as a function of the scaled in-
teraction u = U/U, . The Landau parameters were calculated
using the saddle-point values of the slave-boson fields. The
squares and the triangles mark the experimental results (Ref. 37)
at respectively 0 and 27 bars. The Landau parameter F1 was
obtained using the s-p approximation in the forward-scattering
sum rule.

It was thus concluded that He is a strongly correlated
Fermi system, a so-called "almost localized liquid, " be-
cause the scaled interaction parameter u used in the
fitting procedure had to be set between 0.8 and 1.

Figures 1(a)—1(d) show the dependence of the first four
Landau parameters on u, assuming a half-filled band
(5=0). The solid triangles and squares correspond to the
values of the experimental data at 0 and 27 bars, respec-
tively. We find that the difference between the scaled

been calculated and compared with the experimental re-
sults for the normal He liquid. ' The Hubbard liquid,
on the other hand, has also been used in the investigation
of the pressure dependence of the superfluid transition.
Reasonably good agreement between experimental and
theoretical results was obtained for both normal and
superfluid He, when the experimental pressure depen-
dence of the mass enhancement was used to obtain the
pressure dependence of the scaled interaction u = UIU, .

100.0
(a)

-0.66
(b)

80.0 -:

60.0 -:

20.0 -:

-0.72
0~ -0.74

-0.76 -:

't1.0 10.0 20.0 30.0 40.0 '
t1.0 10.0 20.0 30.0 40.0

Pressure (bars) Pressure (bars)

Pressure (bars) U/U, (G-T) U/U, (W-T)

TABLE I. The values of U/U, used for the half-filled model.
The method of the least-square errors was used to fit the four
leading Landau parameters simultaneously. Hereafter, we use
the symbol T to denote our theoretical values; the symbols G
and W correspond to Greywall's (Ref. 38) and Wheatley's (Ref.
37) data, respectively.

20.0

16.0 -:

12.0 -:

8.0:
/

4.0 -:('

(c)
-0.40:
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-0.60 -:.
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0.00
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12.00
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27.00
30.00
33.00
34.36

0.710
0.772
0.805
0.827
0.842
0.855
0.865
0.872
0.877
0.885
0.890
0.895
0.897

0.725
0.782
0.812
0.832
0.847
0.860
0.867
0.875
0.882
0.887
0.892
0.897
0.900

"o.o 10.0 20.0 30.0 40.0 ' %.0 10.0 20.0 30.0 40.0
Pressure (bars) Pressure (bars)

FIG. 2. The experimental (full line) and theoretical (dashed
line) pressure dependence of the leading symmetric Landau pa-
rameters for the Hubbard model. Both the filling factor 5 and
the scaled interaction u are taken as free parameters in the
fitting procedure, in which the least-squares method is applied
simultaneously to the four leading Landau parameters. The ex-
Perimental data for Fo, Fo, and F1 are taken from Wheatley's
compilation (Ref. 37). The experimental and theoretical data
for Fl are obtained by using the forward-scattering sum rule
and the s-p approximation. (a), (b), (c), and (d) show the results
for Fo, Fo, F1, and F1, respectively.
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interactions corresponding to the experimental pressures
is small. In Table I we present values of u corresponding
to a fit with the experimental data. ' The fits were
made using the least-squares fitting procedure on the first
four Landau parameters simultaneously. One value of ~
was ascribed to each of the 13 pressures, covering the
whole pressure range before the melting pressure of He
is reached. In the half-filled-band model the e6ect of
pressure is attributed solely to the Hubbard interaction.
Table I shows that the theoretical results give the correct
tendency for the efkcts of pressure: the higher the pres-
sure, the larger the scaled interaction. The best-fit values
of u are close to the values previously used to fit the pres-
sure dependence of the superfluid transition tempera-
ture.

An improvement over the half-filled model, the so-
called compressible model, was proposed" in which the

' 0.0 10.0 20.0 30.0 40.0
Pressure (bars)

10.0 20.0 30.0 40.0
Pressure (bars)

FIG. 3. As in Fig. 2, but the experimental data are taken
from Greywall (Ref. 38). In his experiments, F1 was obtained
without the s-p approximation, which we use to obtain the
theoretical results.
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FIG. 4. The 3D diagram of the four leading Landau parame-
ters for the Hubbard model in the SB approach. The flatband
assumption is used. The Landau parameters are plotted as a
function of the scaled interaction U/U, and the doping factor
5. F1 was obtained with the s-p approximation. When the
values of F

&
became unstable ( & —3) or unphysical, they were

set to zero. Thus from this figure one can find the regime of va-

lidity of the SB calculation of F1 on the ( U/U„5) manifold.

FIG. 5. The pressure dependences of the experimental {full
lines) and theoretical (dashed lines) values of some observables.
The theoretical values were obtained from the 3D Fermi-liquid
theory formulas relating the Landau parameters (obtained from
the slave-boson approach) to the observables. We assumed a
flat density of states. Both the filling factor 5 and the scaled in-

teraction U/U, were taken as free parameters in the fitting pro-
cedure. The experimental data was taken from Wheatley's com-

pilation (Ref. 37). (a), (b), (c), (d), and (e) show, respectively, the
results for the mass enhancement factor, the normalized
compressibility, the normalized spin susceptibility, the Wilson
ratio, and the ratio between the first-sound velocity and the Fer-
mi velocity.
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TABLE III. The pressure dependence of the Landau parameter F1. The symbols T and T denote

the results for the half-filled and the 5-dependent models, respectively. Wilson's data, obtained through

the use of the s-p approximation in the forward-scattering sum rule, are listed in the column labeled W

(s-p ). Greywall's data are listed in the column labeled G. The symbol s-p indicates that the results were

obtained using the s-p approximation in the forward-scattering sum rule. The other symbols, as well as
the fitting procedure, were discussed in the caption of Table I.

Pressure
(bars)

0.00
3.00
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9.00
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15.00
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27.00
30.00
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34.36

W (s-p)

—0.67
—0.59
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—0.54
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—0.54
—0.55
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—0.58
—0.59
—0.60
—0.61
—0.62
—0.62
—0.63
—0.64
—0.64

—0.55
—0.73
—0.79
—0.86
—0.90
—0.95
—0.99
—0.99
—1.00
—0.99
—0.98
—1.01
—0.99

6 (s-p)

—0.41
—0.31
—0.27
—0.22
—0.20
—0.18
—0.15
—0.18
—0.20
—0.24
—0.27
—0.28
—0.32

—0.40
—0.47
—0.50
—0.53
—0.55
—0.57
—0.58
—0.59
—0.60
—0.61
—0.61
—0.62
—0.62

—0.43
—0.50
—0.53
—0.56
—0.57
—0.59
—0.60
—0.61
—0.61
—0.62
—0.63
—0.63
—0.64

filling factor itself becomes pressure dependent. Follow-
ing the same line of thought, we have fitted simultaneous-

ly the four Landau parameters to the experimental pres-
sures using both u and 5 as fitting parameters (which we
call the 5-dependent model}. The values of u and 5 used
to fit the pressure are presented in Table II. %e find that
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FIG. 6. As in Fig. 5, but Greywall's data (Ref. 38) are used
for the comparison instead of Wheatley's (Ref. 37).

the parameters behave as expected: the higher the pres-
sure, the stronger the scaled interaction, and/or the
smaller the doping factor. The values of u are still in the
strong-coupling regime. The filling factors have values of
the same order as those deduced from the experiments.
As mentioned by Vollhardt, %o16e and Anderson, " in
the incompressible model the localization transition
occurs precisely at half filling, whereas in the compressi-
ble model the Brinkman-Rice transition can no longer
occur. This, in turn, removes the strong pressure depen-
dence of the efFective mass and of the spin susceptibility
found in the case of an incompressible lattice and yields a
smooth increase with pressure, as qualitatively observed
in the experiments.

In Figs. 2(a) —2(d) we present the pressure dependence
of the four leading Landau parameters and compare them
with the data of Wheatley (Ff was deduced from the
forward-scattering sum rule using the s-p approximation}.
For each pressure the value of u and 5 is taken from the
fit in Table II. Excellent agreement with the experimen-
tal data is found for I'0, Fo, and F&. Good agreement is
also obtained at high pressures for F;.

Corresponding results for Grey wall's experimental
data are presented in Figs. 3(a}-3(d}.The agreement is
not as good as for Wheatley's results. In Greywall's ex-
periments, I'; was deduced from the coeScient of the
T ln(T) term of the specific heat in the low-temperature
range. Greywall's experimental measurements for the
normal He liquid thus show that the s-p approximation
on the forward-scattering sum rule does not seem to give
satisfactory results (see Table III). However, this cutofF
procedure has been widely adopted for the normal He
liquid in the literature.

Figures 4(a) —4(d) give the 3D diagrams for the four
leading Landau parameters as a function of u and d. Fig-
ure 4(d) shows that our calculation of F; is only sensible
in a restricted regime on the u and d manifold. F& was
set to zero on the figure when it corresponded to an un-
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stable system (F; & —3) or was unphysical.
Figures 5(a)—5(e) and 6(a)—6(e) compare our results for

the pressure dependence of some important normalized
observables with both sets of experimental data. ' The
agreement between our results and Wheatley*s is better
than with Greywall's. The reason for these differences
obviously stems from our use of the s-p approximation.
Figures 5(e) and 6(e) (the ratio between the first-sound ve-
locity and the Fermi velocity) show, however, excellent
agreement in both cases.

V. DISCUSSION AND CONCLUSION

We have presented in this paper a systematic investiga-
tion of the Landau parameters in the framework of
Kotliar and Ruckenstein's slave-boson approach. Kotliar
and Ruckenstein have shown that the saddle-point values
of the slave-boson fields reproduce Gutzwiller's results.
However, it is not trivial to show that the long-
wavelength and static limits of KR's spin and charge
dynamical correlation functions also reproduce part of
the results of Gutzwiller's approach for the Landau pa-
rameters. We have shown in this paper that, in the case
of the fiatband, both approaches agree on the values of FD
and F', . Also, FD can be obtained through either fiuctua-
tions or static quantities (such as Bn /Bp).

The more interesting aspect of the slave-boson ap-
proach, even at its mean-field level, is that it greatly ex-
tends the applicability of the Gutzwiller variational ap-
proach. One can apply this functional-integral approach
to a variety of models, including the extended Hubbard
model. It can also be used to study finite-temperature
efFects and can be applied to difFerent geometries of the
physical system under consideration (for example, any di-
mension, difFerent symmetries, arbitrary bare-particle
spectra, or finite system sizes).

The calculation of the spin and charge dynamical
correlation functions assumes a U(1)s gauge symmetry
of the action. It has been argued that the correct gauge
symmetry in KR's slave-boson scheme is U(1) . Since
the saddle-point values of slave-boson fields are not
afFected by whether one uses the U(1) or the U(1)~
representation, and our calculation of the Landau param-
eters gives the same results whether they are obtained
through limits of dynamical correlation functions or from
purely static quantities, we conclude that the static limit
of the dynamical and charge correlation functions should
be correct even in the U(1)e formalism.

KR's slave-boson scheme offers the possibility to con-
sider in a systematic way Suctuation effects, i.e., it may be
pushed to higher order in the loop expansion, beyond the
mean-field level. There have been successful works done
along these lines, ' ' ' but important difBculties were
encountered ' in the attempt to improve the mass
enhancement value, corresponding to the Landau param-
eter F', . These diSculties may be related to the high-
frequency aspects of the theory. Even if KR's approach
can treat finite-temperature effects, the temperature can-
not be pushed too high. One of the present authors has
shown that the classical limit of the specific heat cannot
be recovered in KR's slave-boson approach. This is not

surprising since the starting point of this scheme is the
Gutzwiller approach, which is a variational approach to
the ground-state properties.

Analytic mean-field expressions for the Landau param-
eters F0, FD, and F', were presented in this paper. All the
expressions for the Landau parameters and related ob-
servables have particle-hole symmetry, and reduce to the
correct noninteracting and strong-coupling limits. At
zero temperature all of the Landau parameters and corre-
sponding observables may be expressed simply as func-
tions of two variables: the scaled interaction u = U/U, .

and the doping factor 5. In the fiat-band case, detailed
analytic expressions for the first four Landau parameters
and corresponding observables were presented. Asymp-
totic expressions for these quantities were also given in
four regimes of interest on the u and 5 manifold.

Our numerical results show that reasonable agreement
may be obtained between the experimental results and
our theoretical results, for either the half-filled band of
the 5-dependent model, with realistic values of the Hub-
bard interaction and filling factors.

It is well known that little direct information is avail-
able for the Landau parameter F& for liquid He, espe-
cially at high pressures. On the theoretical side, the
direct calculation of F

&
is also dimcult. Previous calcula-

tions of this quantity showed poor agreement and were
quite sensitive to the method used. In Fig. 4(d) we give
the results of the hatband calculation of F;, based on the
forward-scattering sum rule and the s-p approximation as
a function of u and 5. One may argue about the validity
of the s-p approximation in some regime on the u and 5
manifold: it is anyway obvious that a more refined ap-
proach to the calculation of this quantity is called for.
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APPENDIX

In this appendix we give the expressions of the Landau
parameters, of the forward-scattering amplitudes, and of
the normalized observables for the four limiting cases
mentioned in Sec. III. In the expressions for y, the dop-
ing factor 5 should be taken as its absolute value ~5~,

since it appears only as 52 in the optimization equation.
Thus the expansion procedure mill not break particle-
hole symmetry.
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Case I: u & 1, 5« ( 1—g ) /

Foli=

Substituting the approximate value of y for case I and
the saddle-point values for the slave-boson fields, a
straightforward but lengthy calculation leads to the fol-
lowing results for the first three Landau parameters:

F'i = —1+ +, (Ala)
(1—u) (1+u )(1—u )

—u (2+u) + g 252

(1+u) (1+u) (1—u}

As we mentioned earlier, when u approaches 1, the Fermi
liquid approaches the Brinkman-Rice transition and it
tends to localize.

CaseII: u &1, [5( &&1

There is no correspondence between case II and the
Brinkman-Rice theory. One has to be careful in doing
the expansion in this case, since the filling 5 may appear
in the denominator. A tedious calculation leads to the
following Landau parameters:

3u 3u 5 (1+2u —u }

1 —u~ (1+u} (1—u)

The scattering amplitudes are given by
2

u)u+uq5z(
—7—2u+u )

1 —u

(Alc)

(Ald}
Fs i

3+1—1/u
I ~«

3(2u —2u —1)
4u (u —1)

(2u —1) (1+u }
25&u (u —1) 4u(1 —u )~

1 + 5&1—1/u

QADI

4 4u

(A2a)

(A2b}

(A2c)

and

Ag&= —(2+u)u+u 52 21+u
1—Q

(Ale)
and

3(4u —5)
4(u —2)

9(6—13u+4u )5
8v'1 —1/u (u —2) (2u —1)—1 —2u+ugs

~

3u2+3u 252 (A if}
(1—u)

Expressions {Ala} and (Alb) show that the symmetry
property Fo(UIU, )=Fo( —UIU, ) is only satisfied at
half filling.

The Landau parameter F', may be obtained by using
the cutofF l &2 in the forward scattering sum rule
g&( A', + A; }=0,where

A $"=F/" l[1+F$"/(21+1)]
in 30, which is equivalent to the s-p approximation.
The forward-scattering sum rule has been shown to be in
good agreement with experimental data for liquid He at
least at low pressures. We find

3u 9u (3—u )(3+2u+ u ) 5q Alg3+u~ (1—u} (1+u)(3+u )

The corresponding scattering amplitudes are

2u 5&1—1/u
0]II

A g«=1 —4u+45&u (u —1),
6

P 1 —1/u

and

25(6—13u+4u )

(2u —1)v'1 —1/u

(A2d}

(A2e)

(A2f)

(A2g)

(A2h)

The normalized observables are given by the following
expressions:

and
2

A~~ = —u +u y(3 u)
3+2u+u

(1+u )(1—u )
(A 1h) m II

&1—1/u u —1

25 4u
(A2i)

From the above values of the Landau parameters, we
can obtain the expressions for the following observables
in the first regime:

Xs 2Vu(g —1) 2u 1+
x! « u —1

(A2j)

m' 1 z z
—1 —2u+u

1 —u' (1+u)'(1—u)'

Xs 1+u 2u 5
1 —u (1—u)s

(A 1i)

(Alj)
and

K/K, I„= +
2u —1 2(2u —1) &1—1/u

W„/W„i«=4u —45&u (u —1),

(A21()

(A21)

1 —u 6u5
KIKoit +1+u (1—g~)~

( p
u (1+u)5

s I (1 )
and

(A 1k)

(All)

ci/(ci )o~«=

1/2
2u —1

Q 1

3Q5 u

4(g —1)~ 2u —1

Case III: u «1

' 1/2

(A2m)

c, /(c, )o~,=
' 1/2

1+u 3u 5

(1—u) +1—u
{Alm} Similarly, in the weak-coupling limit, we obtain the

Landau parameters
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and

Folrrr 2u+(3 —75 )u

Foi„r=—2u+(3+5 )u

F irrr=3(1 5 )

A31)

(A3c)

1+6
0 Iv

Fo ~rv= —1+

(A3a} following expressions:

(A4a)

(A41)

F'~ =(—1+95 )u

The corresponding scattering amplitudes are

(A3d) si 3(l 5)
] Irv

3(l —5 )

4u5
(A4c)

and

Ao~rrr=2u (1+75 )

Aoirrr= —2u —(1—5 )u

A r ~„r=3(1—5')u'

=1+u(1—5 ),

A r ~rrr=( —1+95 }u

The normalized observables are

(A3e)

(A3f}

(A3h}

(A3i)

a i
9(1+5)

Fl ~rv 3
4

&o~rv=

& r ~rv=

5'
1+5 4(1+5}u
—4u 2(1—25)
1+5 (1+5)
3(1—5) 3(1—5)5

1+5 u(1+5)
4u 2+5 1+65—65

(1+5) 1+5 4u(1+5)

(A4d)

(A4e)

(A4g)

(A4h)

=1+2u+2u (1—5 ),
Xs rrr

(A3j} m rv

1+5
25

1 —5'
4u5

(A4i)

and

E/Ir.'oirrr= 1 —2u+2(1+35 )u

W„/W„i„r=1+2u+(1—5 )u

(1—65)u
c, /(c r )olrrr

= 1+u +
2

(A3k)

(A31)

(A3m}

Xs 2u 1 —6+
5 25

2 —35
E/Eo ~rv

=—,
'—

o 4u 3( 1 5) ( 1 5)( 1 55)
1+5 (1+5) 4u(1+5)

(A4j)

(A4k)

CaseIV: u &)1

Finally, in the strong-coupling regime, taking 1/u as
an expansion parameter, tedious calculations lead to the

and

2 —35
c r /( c r }oI rv

=+2+
25/2

(A4m)
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