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We discuss the potential impact of ¹caling algorithms on self-consistent density-functional calcula-
tions. ¹caling algorithms can increase numerical efficiency in two qualitatively different ways: First,
by eliminating the 0(N ) scaling of numerical diagonalizations or orthogonalizations, and second,
through the transferability of localized electronic-structure information between chemically related, but

globally different systems. We argue that the second aspect is potentially of great practical importance
to self-consistent density-functional calculations. We describe how the transferability of electronic-
structure information can be exploited and give numerical examples.

I. INTRODUCTION

In a variety of disciplines, ranging from solid state
physics to materials science to biochemistry, there is
great need for a quantum-mechanically correct under-
standing of systems consisting of many (i.e., considerably
more than 100) inequivalent atoms. Density functional
theory' (DFT') in the local-density approximation (LDA)
is the most promising candidate to provide the theoreti-
cal framework for accurate and reliable electronic-
structure calculations on very large systems. In conven-
tional LDA-DFT algorithms involving full or iterative di-
agonalizations, electronic structure is obtained in terms
of one-particle states that generally extend throughout
the system under consideration. The numerical effort to
compute such extended states scales as N . (N is the
number of occupied electronic states. ) This unfavorable
scaling behavior (the "N bottleneck" ) is one of the nu-
merical obstacles that must ultimately be overcome be-
fore DFT calculations will be routinely applied to large
systems.

During the past few years, a number of algorithms
has been proposed that obtain the equivalent information
of a diagonalization step, but display linear scaling of the
numerical effort with N. Until now, these ¹caling
methods have predominantly been applied to non-self-
consistent (NSC) or fixed-potential Hamiltonians [tight-
binding models (TB), local basis density functional
(LBDF),' etc.] and proven to be useful in this context,
enabhng calculations on systems of unprecedented
size. '

One would like to realize analogous gains in efficiency
for fully self-consistent DFT calculations. For instance,
it can be shown that for localized basis sets and in the
limit of large N, all computational steps of a DFT algo-
rithm except for the numerical diagonalization can scale
as 0 (N) or 0(N lnN). Hence, replacement of the 0 (N )
diagonalization with an ¹caling algorithm makes the
entire DFT algorithm scale roughly as 0(N) instead of
0(N ). Unfortunately, this does not necessarily mean
that in practice a large gain in efficiency must result. The
problem is that the above consideration refers to asymp-
totic scaling only, i.e., to the limit of N~ 00. For typical

Pnite values of N treatable today, DFT calculations are
often dominated by the nearly N-scaling nondiagonaliza-
tion parts and not by the diagonalization. Thus, a mere
replacement of the numerical diagonalization with more
efficient procedures is not likely to result in a large
overall speedup.

On the other hand, the overall CPU time of any self-
consistent DFT calculation is roughly proportional to the
number of self-consistent iterations. We show that suit-
ably formulated ¹caling algorithms can reduce the
number of self-consistent iterations if the transferability
of localized electronic-structure information is exploited.
We discuss similarities and differences of this "chemical"
transferability with uses of transferability already in De l'

algorithms. Using ¹caling algorithms specifically
adapted for the purpose of "chemical" transferability, we
obtain a significant gain in numerical efficiency even for
relatively small systems. The computational speedup is
mostly due to a dramatic reduction of the self-consistency
cycle, rather than linear scaling per se. Thus, ¹caling
algorithms can allow for efficiency gains totally unrelated
to scaling.

II. CRITERIA FOR THE USE
OF N-SCALING ALGORITHMS WITH DFT

It is evident that the introduction of linear scaling into
DFT algorithms will make sense only if a significant gain
in numerical efficiency results for interesting problems
run on available computers. However, the maximal
efficiency gain obtainable from linear scaling is much
smaller in self-consistent DFl' calculations than in NSC
calculations. This is because in self-consistent DFT, a
large fraction of the computational work is associated
with computational steps other than diagonalization,
such as construction of the charge density, solving
Poisson's equation for the Hartree potential, and integra-
tions to determine Hamiltonian matrix elements. This
nondiagonalization work can scale as 0(N) or 0(N 1nN).
For localized basis sets and large N, the number of
nonzero matrix elements is 0(N) because very distant
basis functions have zero overlap. The solution of
Poisson's equation to determine the Hartree potential
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from the charge density is O(N InN) if fast Fourier trans-
forms are used. Nevertheless, the prefactor of this
almost-linearly scab.ng nondiagonalization workload is
normally so large that the O(% ) scaling of the diagonali-
zation begins to dominate only at relatively large X. For
instance, in the linear combination of atomic orbitals
(LCAO) algorithm by Feibelman' in the parallelized ver-
sion by Sears and Schultz' that we used for the present
work, the efFort associated with diagonalization becomes
significant only for systems of several hundred atoms.
Several hundred atoms are close to the limit of what can
conveniently be treated on the largest computers avail-
able today. Thus, just replacing the diagonalization by
an X-scaling algorithm is not likely to attack a significant
(and often even dominant) part of the total computational
work of a typical DFT algorithm. The situation is radi-
cally different in NSC applications whose nondiagonali-
zation workload is much smaller. Here, systems corre-
sponding to thousands of atoms can conveniently be run
on computers generally available and replacing the diago-
nalization by an ¹caling algorithm can bring about
revolutionary efficiency gains, as have been documented
in the literature. '

Another issue that should be addressed in a discussion
of ¹caling algorithms in DFT is accuracy. This is very

complex, since the accuracy requirements in DFT algo-
rithms are as varied as the problems to which they are be-
ing applied. In this paper, we address accuracy only
within self-consistent minimial basis I.CAO-DFT and
nonorthogonal TB. The main focus, however, is on the
question of efficiency. This leads us naturally to the con-
cept of chemical transferability and nonorthogonal local-
ized occupied orbitals, as described in the following sec-
tions. In Sec. V, we argue that without basing the solu-
tion on nonorthogonal localized occupied orbitals, accu-
racy and strong localization cannot be simultaneously
achieved. Strong localization is necessary to have practi-
cal transferability. The numerical results presented in
Sec. V suggest that reasonable to high accuracy is obtain-
able with nonorthogonal orbitals.

III. TRANSFERABILITY
AND N-SCALING ALGORITHMS

Transferability of electronic-structure information
enters the methodology of ¹caling algorithms in a very
natural way. To demonstrate this, we recall that N-

scaling methods are based on the fact that electronic
structure is locally determined. ' This means that the
structure of the electron system on a given atom is mostly
determined by the properties of this atom and its immedi-
ate neighbors. In general, the in6uence of more distant
atoms vanishes more or less rapidly with increasing dis-
tance. Thus, the electronic structure at a given place in a
large system is mainly determined by the properties of a
local environment whose radius is typically several in-
teratornic distances. This insight is central to important
chemical concepts such as bonding and valence.

Given the fact that electronic structure is locally deter-
mined in a physical sense, it should also be locally com-
putable. To compute the electronic structure in a small

part of a large system, it should be sufficient to use infor-
mation only from a certain environment of this subsys-
tern, rather than information taken from the entire sys-

tem, if the system is large. Splitting up a large system
into small overlapping subsystems, and treating each sub-

system in this way, one directly arrives at an X-scaling
electronic-structure algorithm. The various ~Y-scaling a1-

gorithms proposed so far give prescriptions as to how
electronic structure can be parametrized locally, and how

the local computation of electronic structure is to be car-
ried out.

Now it is easy to see why the localized electronie-
structure information obtained from X-scaling methods
should also be transferable. Assume that in two large
systems A and B (which may be very different globally),
two subsystems (like certain functional groups of a large
molecule) and their respective local environments are
similar. Then the localized electronic-structure informa-
tion computed for these two subsystems should display a
corresponding degree of similarity. Thus, having carried
out an X-scaling calculation on system A, it should be
possible to transfer the electronic-structure information
of the matching subsystem to the "first guess" of local-
ized electronic-structure information with which a calcu-
lation on system B is initialized. "Recycling"' electronic-
structure information in this way, a reduction of the
number of self-consistent iterations should result from
the improved quality of the start values.

It should be noted that the idea of transferring infor-
mation from previous calculations to the start values of
other calculations is not new at all, and is routinely being
used (in one form or another) in many existing DFT
schemes. For instance, Car-Parrinello-like algorithms"
owe much of their efficiency to the complete reutilization
of the electronic-structure information as preconverged
start values for each new molecular dynamics time step.
In the Car-Parrinello situation, the transfer occurs be-

tween incrementally diferent geometries of the same sys-

tern. In the present context, however, we aim at an

equally efficient transfer of electronic-structure informa-
tion between globally diferent (but locally similar) sys-

tems. Another example for existing implementations of
the transferability concept is the transfer of charge densi-

ty and/or potential parameters from calculations on iso-
lated atoms (or other simple systems) to more complicat-
ed situations. By contrast, we go beyond that by also
transferring the information that specifies the occupied
subspace, in the form of occupied localized orbitals. (In
calculations using numerical diagonalizations, this infor-
mation is contained in the self-consistent extended eigen-
states which are not transferable due to their sensitivity
to boundary conditions. ) Furthermore, the information
that we transfer includes a large part of the interactions
between atoms such as bonding and induced polariza-
tions. Thus, the number of self-consistent iterations to
converge can be significanily reduced. In the example
calculations presented in Sec. V, the cycle of self-

consistent iterations is elEminated by suitab1e transfer of
results from calculations on smaller systems. This holds
the promise of a benefit of X-scaling algorithms that is

specific to self-consistent calculations and has not really
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been exploited yet. More importantly, it also addresses

the workload problem that we discussed in Sec. II. Even

in situations where the diagonalization workload of a
DFT calculation is small in comparison with the nondi-

agonalization workload, eKciency can be gained through
the introduction of X-scaling methods if transferability
enables a reduction in self-consistent iterations. This as-

pect is of relevance to the potential usefulness of N-

scaling algorithms in the context of self-consistent DFT
calculations.

IV. PRACTICAL TRANSFERABILITY
AND NONORTHOGONAL ORBITALS

According to the arguments of the preceding section,
any S-scaling algorithm based on the locality of electron-
ic structure should yield electronic-structure information
that is, in principle, transferable. In practical terms,
however, not all ¹caling algorithms are equally well
adapted for that purpose. We mentioned in the preced-
ing section thai in order to apply transferability, two
large systems must contain "matching" subsystems with
similar arrangements of atoms. If transferability worked
only for fairly large matching subsystems, its applicabili-
ty would be limited to only those cases where large num-
bers of atoms have matching or incrementally different
positions. Here, however, we want to find a formulation
that allows the transfer of electronic-structure informa-
tion between relatively small subsystems, such as func-
tional groups of large molecules. As we will see, express-
ing the electronic structure in terms of nonorthogonal lo-
calized orbitals provides such a formulation.

To show this, we recall that the basic approximations
of most ¹caling algorithms amount to a truncation of
the real-space density matrix beyond a certain cutoff ra-
dius R:

p(r, r') =0 for Ir —r'I & R .

This is the approximation that is essential for the O(N)
scaling of the numerical algorithm. The exact self-
consistent solution of the density matrix (without the
above approximation) would be

N

p{r,r') =g g;(r)P;(r'), (2)

with f;(r) the ith self-consistent eigenstate and the sum
running over the N lowest eigenvalues of the Kohn-Sham
Schrodinger equation. (For the purposes of this general
discussion, we completely suppress electron spin. } Since
{2) decays to 0 as ~r —r'~ increases, approxiination (1) is
physically motivated. [In insulating systems, this decay
is exponential, as can be seen from the properties of Wan-
nier functions in insulating systems. In (ordered) me-
tallic systems, the decay must be algebraic. This can be
proven from the fact that the k-occupation numbers are
discontinuous. ] Typically, R must be several (i.e., more
than 3) interatomic distances to permit a degree of accu-
racy that is acceptable for DFT calculations (see the re-
sults in Sec. V).

The exact ground-state density matrix is idempotent,
s.e.,

Jd r"p(r, r")p(r",r')=p(r, r') . (3)

Since we want to start an N-scaling DFT calculation with
a first guess that is "close" to the exact solution, this first
guess should at least be approximately idempotent. If we
want to assemble this first guess from subblocks of con-
verged density matrices obtained in previous calculations
and at the same time fulfill the condition of approximate
idempotency, an analysis of Eq. (3) in connection with (1)
shows that the transferable blocks must correspond to
subsystems with a radius larger than R. Only then can
we expect that the idempotency of the previous results
will approximately carry over into the first guess for the
density matrix. (This conclusion is quite independent of
the particular, algorithm-dependent parametrization in
which the density matrix is given. ) Because R is, in gen-
eral, at least three interatomic distances, the correspond-
ing subsystems would typically contain more than a hun-
dred atoms in three-dimensional systems. Evidently, this
would virtually eliminate any prospect for the practical
applicability of transferability. It follows that in any
practical transferability scheme the length scale of the
transferable subunits must be separated from the length
scale of the localization cutoff R that determines the ac-
curacy of the N-scaling algorithm.

In order to bring about this separation, we formulate
the electronic structure in terms of nonorthogonal local-
ized orbitals. Specifically, we parametrize the density
matrix in the form

N

p(r, r') =g P;(r)2)J4J(r') . (4)

Here, P;(r) are nonorthogonal localized orbitals. The
coefficients 2); form a matrix that compensates for the
nonorthogonality of the P;(r) and restores the (approxi-
mate) idempotency of p(r, r'). From this it follows that
for exact idempotency, we must have

N

g &;,&;k =&;k (5)
J

g,,=J d'rP;(r)P, (r) . (6)

In this sense, the matrix elements 2)," are not independent
parameters of the density matrix, but dependent quanti-
ties. Once the P;(r)'s are given, the 2); 's can, in princi-
ple, be obtained through the inversion of the overlap ma-
trix (6}. [However, an actual O(N ) numerical inversion
of the overlap matrix is never carried out within the X-
scaling algorithm. Instead, we proceed by O(N) iterative
updates' on 2),", as described in the Appendix. ] The
point of the ansatz (4) for p(r, r') is that because of their
nonorthogonality, the localized orbitals P;(r) can be
made relatively short ranged. In the next section, we
present results showing that we can obtain very accurate
density matrices with localized orbitals extending over
relatively few atoms. The comparatively long range of
p(r, r') that is necessary for sufficient accuracy, however,
is maintained by a long-range cutoff that is imposed on
the matrix [2),i]. (For details, see the Appendix. ) Thus,
instead of only one cutoff radius, we now have two
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different cutoff radii: A relatively long-range cutoff on
the 2),. coefficients that essentially corresponds to the
p(r, r') cutoff R introduced above, and a short-range
cutoff for the truncation of the localized orbitals P;(r).
Since the P;(r) are the actual independent quantities
parametrizing p(r, r'), they must be the transferable sub-
units that carry electronic-structure information from
one system into another. Because they are relatively
short ranged, only small subsections of different systems
have to match in order to enable the practical transfer of
electronic structure.

In the Appendix, we discuss the technical procedures
by which electronic structure can be obtained in terms of
nonorthogonal localized orbitals. Here, we only remark
that the numerical handling of nonorthogonal orbitals
does not pose any particular problems and that some ex-
isting N-scaling algorithms can, in principle, be adapted
to converge density matrices parametrized in the form of
Eq. (4).

V. NUMKRICAI. RKSUI TS

In the first part of this section, we describe the applica-
tion of transferability to self-consistent DFT calculations
on molecular systems, specifically, to simple hydrocarbon
molecules. We illustrate how transferability works in
practice, and what the possible efficiency gain is. We find
that —at least in this case —transferability allows for the
complete elimination of self-consistent cycling.

The second part is devoted to a more theoretical dis-
cussion of why the use of nonorthogonal localized orbitals
appears to be essential for obtaining transferable elec-
tronic structure at the level of accuracy required by DFT.
To exemplify this, we apply a "conventional" N-scaling
algorithm in the limit of strong localization as would be
necessary for obtaining a practical transferable electronic
structure. We show that this leads to unacceptably large
errors because the short range of the orbitals causes the
density matrix to be short ranged and rather inaccurate.
We then demonstrate that an algorithm based on
nonorthogonal orbitals, with the same strong orbital lo-
calization, can be made accurate enough for practical
DFT applications. As discussed in the preceding section,
inclusion of the 2) matrix allows for a long-ranged and
accurate density matrix in spite of the strongly localized
orbitals.

To illustrate the application of transferability in a sim-

ple yet realistic situation, we consider the heptane and
decane hydrocarbon molecules depicted in Fig. 1. The
chemical bond picture suggests bond orbitals as the "nat-
ural" choice for the localized nonorthogonal orbitals ap-
pearing in our parametrization (4) of the density matrix.
On chemical grounds, we would expect that in the central
section of the hydrocarbon chains, all the carbon-carbon
bonds are fairly similar to each other, and that the same
is true for the carbon-hydrogen bonds. Near the chain
end, however, the shape of the bond orbitals should
display certain distortions as the bonds start to "feel" the
disruption of periodicity. Consequently, we would expect
that a good starting guess for a long hydrocarbon chain
can be generated from a short one by "cutting" the short

FIG. 1. The heptane (C7H&6) and decane (C&pH22) molecules
with the labels denoting bonds and nuclei appearing in Figs. 2

and 3.

molecule in half and replicating the central section
several times. This defines the first test case for transfera-
bility that we want to discuss here.

For the hydrocarbon molecules, we assume ideally
tetrahedra1 coordination of the carbon atoms and C-C
bond lengths of 1.54 and C-H bond lengths of 1.09 A.
We localize the bond orbitals by restricting their range to
the two atoms connected by the bond and the first shell of
nearest-neighbor atoms. C-C and C-H bond orbitals thus
extend over eight and five atoms, respectively. For these
relatively small systems, we impose no cutoffs on the 2)
matrix because the sparseness in the Hamiltonian and
overlap matrices is not sufficient to restrict the ranges of
& and eV significantly.

In all that follows, Hamiltonian and overlap matrices
are obtained from the LCAO algorithm by Feibelman'
in the parallelized version by Sears and Schultz. ' We use
minimal Gaussian basis sets ("single zeta") for carbon
and hydrogen. All calculations are fully self-consistent:
The only modification of the original LCAO program is
the replacement of the diagonalization step with an X-
scaling subroutine based on nonorthogonal localized or-
bitals. For the problems specified in this way, it is possi-
ble to converge the total Kohn-Sham energies to errors of
AEKs =0.555 meV/bond (heptane) and b EKs =0.661
meV/bond (decane), compared to the self-consistent cal-
culations using fu11 numerical diagonalizations. Because
of the absence of a cutoff in 2), in this particular case
there is no error in the particle number.

In Figs. 2 and 3, we show the carbon-carbon bond or-
bitals obtained from the heptane and decane calculations,
respectively. In Fig. 2, we show contour plots of bonds 1,
2, and 3 of the heptane molecule (cf. Fig. l), and in Fig. 3

analogous plots of bonds 1—5 of the decane molecule.
The bond orbitals are plotted on cross sections of dimen-
sions 4X4 A that lie in the plane of the carbon atoms.
The positions of the nuclei within the plot cross sections
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Heptane

Bond

3
FIG. 2. Converged C-C bond orbitals for heptane.

are indicated. All the bond orbitals are L normalized to
unity. The amplitude difference between neighboring
contour lines is 0.2, with solid thin contour lines marking
positive values, broken contour lines marking negative
values, and the thick solid line marking the zero contour.
The bond orbitals look very plausible physically. The ex-
pected distortions of the bond orbitals close to the mole-

Bond 1 Bond 4

cule ends are clearly visible. In the decane bond orbitals,
only bonds 1 and 2 deviate appreciably from the "interi-
or" bonds 3, 4, and 5. Also, the bond orbitals are clearly
centered between the bonded atoms and are even more
tightly localized than is enforced by the localization con-
straints. This indicates that the choice of the localization
constraints is clearly adequate to the nature of the prob-
lem. More importantly, Figs. 2 and 3 also allow some ob-
servations relevant to the transferability concept: First,
comparison of the heptane with the decane results shows
that bonds 1, 2, and 3 of the heptane molecule are almost
indistinguishable from the decane bonds 1, 2, and 3, re-
spectively. Second, in the decane molecule, bonds 3, 4,
and 5 look almost exactly the same, and are in turn very
similar to bond 3 of the heptane molecule. This implies
that the decane electronic structure can be generated
from the electronic structure of the heptane molecule by
threefold replication of the central heptane bond orbital.
In other words, the heptane system already contains all
the information needed to construct the decane system.
This is precisely what is necessary to have orbital
transferability.

But how well does transferability work in a quantita-
tive sense? To address this question, we transfer the con-
verged orbitals obtained above to the dodecane molecule

C]pHp6. Specifically, we first construct the dodecane mol-

ecule from decane bonds, then from heptane bonds. The
results are summarized in Table I: In the first three rows,
we give the error (as compared to full diagonalizationj for
the heptane, decane, and dodecane molecules; i.e., the re-
sidual error in total Kohn-Sham energy after self-
consistently converging the molecule, using a nonorthog-
onal 1ocalized orbital N-scaling algorithm. Rows 4 and 5
are the error in the total energy obtained for dodecane,
using only information from heptane and decane, respec-
tively. In other words, we have not performed any self-

consistent iterations nor any orbital updates. The total
energies are very close to those obtained from a fully
self-consistent calculation. In order to put the accuracy
obtained into perspective, we note the following: The
LCAO takes 7-8 iterations to self-consistently converge
the above hydrocarbon systems. In the course of the last
iteration of the self-consistency cycle, the total Kohn-
Sham energy typically changes by an amount that is
larger than the differences between the values in rows 3,
4, and 5 of Table I. Hence, the "first guesses" for dode-

Bond 2 Bond 5
TABLE I. Kohn-Sham energy errors for hydrocarbon sys-

tems, obtained from self-consistent iteration and/or orbital
transfer.

8nd 3

FIG. 3. Converged C-C bond orbitals for decane.

System

C-H&6

CiP4z
Ci2H26
C12H26

Ci2H26

~Ks/bond

0.555 meV
0.661 meV
0.703 meV
0.707 meV

0.725 meV

How obtained

sc iteration
sc iteration
sc iteration
Srst guess

(transfer from C&OH22)

Srst guess
(transfer from C7H&6)
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cane in rows 4 and 5 display strictly the same degree of
accuracy as the result in row 3 that was obtained from a
full self-consistent calculation. For this particular set of
molecules, perfect transferability is possible. The only
numerical effort needed is the determination of the Xl ma-
trix (which is a fast operation, see the Appendix) and the
calculation of the relevant observables (such as charge
density, total energy, etc.). This effectively amounts to a
reduction in numerical effort by a factor of roughly 7—8.
We do not expect that transferability can always enable
the complete elimination of self-consistent iterations.
However, the existence of realistic examples where self-
consistent cycling is eliminated gives us reason to expect
that frequently very significant reductions in the number
of self-consistent iterations can be achieved.

Now we turn to test calculations that exemplify why
nonorthogonal orbitals are important for attaining the
simultaneous goal of high accuracy and practical
transferability. Specifically, we compare a nonorthogonal
orbital E-scaling algorithm to the method of Ordejon
et ttl. " (The latter method is very similar to the algo-
rithm of Mauri, Galli, and Car' for the choice of their
parameter JV= 1.) The explicit relationship between the
Ordejon algorithm and the nonorthogonal orbital algo-
rithm that we used here is clarified in the Appendix.
Here, we only mention that the Ordejon method also fur-
nishes the density matrix in terms of localized orbitals,
but does not include a 2) matrix to compensate for the
nonorthogonality of the orbitals. We apply the
nonorthogonal and the Ordejon algorithm to the same
model system, imposing strong localization for the orbi-
tals as would be necessary to have practical transferabili-
ty. It will be seen that the Ordejon algorithm does not
reach a level of acceptable accuracy whereas the
nonorthogonal algorithm does. In particular, the total
particle number resulting from the Ordejon algorithm is
too inaccurate to consider applying that algorithm (with
strong localization) to self-consistent LCAO-DFT. For
this reason, we choose a TB model as our example sys-
tem, specifically, the nonorthogonal TB model for silicon
from Mattheiss and Patel. '

We emphasize that the point of the following discus-
sion is not to show that the Ordejon method is somehow
"intrinsically less accurate" than the nonorthogonal
scheme, which is certainly not true. Ordejon et al. have
demonstrated that for suSciently large localization radii,
arbitrarily high accuracy is achievable with their method.
Here, we merely show that in the limit of very strong or-
bita1 localization, accuracy losses are severe in the
Ordejon method, but not for nonorthogonal orbitals. As
a consequence, we can infer that a nonorthogona1 algo-
rithrn can be used to obtain strongly 1ocalized and, there-
fore, transferable orbitals at high overall accuracy. The
same is not true for the unmodified Ordejon method.

In the calculations that follow, we use a periodically
continued 64 atom silicon supercell. With four sp orbi-
tals per silicon atom, the basis set dimensionality of the
problem is 256. 128 fully occupied electronic orbitals are
iterated. Their start values are taken to be the 128 bond-
ing orbitals in the system whereas the unity matrix is
chosen as the start value for X). In order to facilitate in-

TABLE II. Comparison of the converged solutions of the
present and the Ordejon algorithms.

Present

40.1 meV
39.1 meV

—0.9DX 10-'

Ordejon et al.

758.6 meV
189.6 meV

—0.49 X 10

terpretation, we formulate the problem in terms of the
bonding and antibonding orbitals of the silicon tight-
binding model. Specifically, we confine the orbitals to
two adjacent atoms, their connecting bond, and the first
shell of neighboring bonds. For the S cutofF' the
minimal reasonable value is the range of 4' as determined

by the cutoff of the localized states and the range of S.
(The corresponding real-space distance is approximately
3.5 silicon-silicon bond lengths. ) If the 2) cutof were
chosen much smaller, we could not expect 2) to converge
to any meaningful approximation of 1 '. The results ob-
tained by our method and the Ordejon algorithm for this
set of real-space cutoffs are listed in Table II. See the Ap-
pendix for a definition of the modified total-energy func-
tional F, the total band-structure energy (E },and the to-
tal particle number (N) in terms of the localized orbi-
tals. We give the deviations of the converged values of I',
(E }, and (,N } in the presence of the eutoff's described
above, from the respective converged values in the ab-
sence of all localization constraints. The errors are nor-
malized with respect to the system size, i.e., divided by
the number of iterated orbitals, 128 for this case. Since
there are only X eigenvalues of p that are difFerent from
0, and because these eigenvalues are constrained to be
smaller than or equal to 1, 2X is a rigorous upper bound
to ( N ), and b ( N } is necessarily negative. The quality
of the solution is drastically improved by the inclusion of
the Xl matrix: The convergence of the functional is im-

proved roughly by a factor of 20, whereas the error in the
energy is reduced by a factor of almost 5. Convergence
of the particle number is improved by a factor greater
than 500.

Still, the few numbers given in Table II do not allow
for an entirely informative comparison of the two solu-
tions. Therefore, we give in Fig. 4 the spectral decompo-
sitions of the converged density matrices corresponding
to the values listed in Table II. These pictures are ob-
tained as follows: We compute the matrix representations
of the density matrices in the eigenbasis of the Hamiltoni-
an. The filled dots (~) represent the diagonal elements of
this matrix as a function of the corresponding energy ei-

genvalue, and the empty dots ( 0 ) are the averages of the
off-diagonal elements in the columns belonging to the
respective eigenvalue. The error bars denote maximal
and minima1 values of off-diagonal elements for a given
eigenvalue. The first set of values should approach the
Fermi step (the energy scale has been normalized to
e~ =0), whereas the second set of values should approach
zero. In this picture, the quality difference in the density
matrices obtained becomes unambiguous. It appears fair
to conclude that in the strong localization limit, the
Ordejon solution does not adequately approximate the
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to the numerical efficiency gains from linear scaling. We
demonstrated that in the context of DFT calculations,
suitably formulated N-scaling algorithms can bring about
qualitatively different savings in computational efFort that
are related to the transferability of localized electronic-
structure information.
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FIG. 4. Comparison of the spectral decompositions of the
converged density matrices for the present approach (above)
and the Ordejon method (below).

ground state: The occupation number of the highest oc-
cupied state is smaller than 0.65, and about 11 electrons
are missing in the system. The solution obtained by the
present method, however, falls only 0.02 electrons short
of the exact electron number. While deviations from the
ideal Fermi step are still visible in the spectral composi-
tion, the overall picture appears quite accurate.

VI. CONCLUSION

We applied an N-scaling algorithm based on
nonorthogonal localized orbitals within a fully self-
consistent LCAO-DFl' calculation on hydrocarbon mole-
cules. We simultaneously obtained high accuracy of the
solutions and optimal transferability. For the systems
treated here using minimal basis self-consistent LCAO,
transferability could be shown to eliminate the cycle of
self-consistent iterations. This was made possible by the
use of nonorthogonal localized orbitals. In the strong-
localization limit, these orbitals represent compact and
conveniently transferable pieces of electronic-structure
information. At the same time, the density matrix can
have a sufficiently long range in real space to permit high
accuracy of the DFT calculation. In an application to a
TB model system, we showed that in other ¹caling al-
gorithms that do not contain this separation of length
scales, high accuracy and compact transferable subunits
are, in general, not simultaneously achievable.

The aim of this paper is to raise attention to the fact
that the usefulness of ¹caling algorithms is not limited

There are several ways to obtain electronic structure in
terms of nonorthogonal orbitals. We experimented with
two difFerent methods, on which we want to comment
briefly.

The first method is the algorithm by Stechel, Williams,
and Feibelman (SWF)' that proceeds by a state-by-state
iteration in the course of which the P;(r) states are updat-
ed sequentially. Simultaneously, analytical updates on
the 2)," matrix are performed. Besides the approach by
Galli and Parrinello, these are the only N-scaling algo-
rithms proposed in the literature that have been explicitly
constructed to handle nonorthogonal orbitals. The SWF
algorithm requires very few sweeps through the set of
iterated orbitals to converge. Because this method has
been presented in detail elsewhere, ' we omit an in-depth
discussion here.

It is also possible to adapt other ¹caling algorithms
for the computation of nonorthogonal orbitals. In some
algorithms where (explicitly or implicitly) a density ma-

trix is iterated, substitution of (4) for this density matrix
leads directly to a nonorthogonal orbital scheme. To our
knowledge, the basic procedure of such a generalization
has not yet been reported. For this reason, we describe
the fairly straightforward adaptation of the algorithm of
Ordejon et al." This algorithm is very similar to the
method proposed independently by Mauri, Galli, and
Car' for the choice of their parameter A'=1. The adap-
tation outlined below furnishes the nonorthogonal algo-
rithm with which the results of Sec. V were obtained.

In the simplest case, the original method is based on a
modified total energy functional' "that can be written
in the form

F=(E) e,„(N) . — (Al)

e is a parameter to be defined later. (E ) and (N ) are
the band-structure energy and the particle number, re-
spectively:
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(A2)

p(r, r')=(rlplr') . (A4)

Now, p is reexpressed in terms of an auxiliary density
operator p:

(A5)

This reparametrization has the effect that p cannot have
eigenvalues larger than 1, which is decisive to give the
functional the desired minimal properties. ' '" With the
above substitution, Fbecomes

The factor of 2 accounts for spin degeneracy, as we as-
sume a spin-unpolarized electron system. For the sake of
simplicity, we also neglect Hamiltonian self-consistency
for the time being. (The corresponding generalizations of
what follows are straightforward. ) p is the density opera-
tor that is related to the real-space density matrix intro-
duced in Sec. III by

where H &=(alH e—,„lP) and S ~= (alP). In (A10),
we have used a shorthand notation, denoting all the
XXX matrices with script letters, and all the M XM ma-
trices with uppercase letters.

In the above form (A10), the partial derivatives of F
with respect to the parameters I2); ] and Ic, ] can be
carried out. To conveniently write down the gradient ex-
pression, we define an M XX matrix c containing the ex-
pansion coefficients Ic; I. We represent all M XN ma-

trices by lowercase letters. In this notation, the gradient
with respect to the expansion coefficients Ic;] is given

by an M XXrnatrix g:

g =2[He(22) ;Dt's)) S—c2)&2)]—.

F=2tr(2p —
p )(H —e,„) . (A6)

The gradient with respect to 2) (again in matrix notation)
is given by an N XN matrix 9:

In the cited references it is proven that global minimiza-
tion of (A6) with respect to p leads to an approximation
of the ground-state density matrix, provided a para-
metrization of the operator p is chosen that constrains it
in the following way.

(1) p is Herinitian.
(2) All but exactly N eigenvalues of p are constrained

to zero.
(3) There is an upper bound e,„ to the expectation

value (PlPlP), where lP) may be any of the normalized
eigenstates of p. [This defines the parameter e,„ in

(Al).]
Ordejon et al. use the following parametrization:

where the coefficients 2); are now subject to the Hermi-
ticity constraint 2),"=2)," and the nonorthogonal local-
ized states are represented in the bra and ket notation.

Now, the t l P, ) ] are expanded in a basis set I l
a ) I of

dimension M=O(N):

(A9)

We reexpress the functional (A6) in terms of the parame-
ters I2); I and Ic, ], which will then be used as minimi-
zation variables:

F=2 tr(2 —2N)2)&, (A10)

with

with localized orbitals ly; ), which can be shown to fulfill
the above constraints. But so does our ansatz (4), and so
we substitute

(A14)

g and 9 are the total gradients that can be used for the
global minimization of F. As mentioned above, these
minimization variables will then converge in such a way
that p and p as defined by (A5) and (A8) approach the
electronic ground-state solution.

In Sec. V, we said that the c coeScients representing
the localized orbitals are transferable, but the 2) matrix is
not and must be recomputed. From the above equations,
it can be shown that this recomputation of the 2) matrix
at fixed c coefBcients is much faster than a complete itera-
tion of c and S. First, the matrices % and S are fixed
and need not be recomputed in each iteration. Second,
Eq. (A14) shows that the computation of the 2) gradient

requires fewer operations than the computation of the c
gradient g. Third, the functional (A10) is parabolic in S
so that a conjugate-gradient minimization of the func-
tional with respect to 2) alone requires relatively few
iterations.

For appropriately imposed real-space cutoffs, the
method becomes order N. For localized l(t; ) states, %
and 4 are sparse matrices. If Xl is also chosen sparse'
(e.g., by constraining all elements connecting localized
states whose spatial separation is larger than some fixed
distance to zero), all the matrix-matrix multiplications
among the N XN matrices scale as 0(N). Furthermore,
if we choose a spatially localized basis set for I la) ], H
and S will also be sparse, and each lP,. ) state will only
have 0(1)nonzero c coefficients. Because M=O(N), the
generation of & and 4 according to (Al 1) and (A12) will
also require a computational effort of 0(N), making the
entire algorithm scale linearly. We assume that the num-
ber of required line minimizations and the number of
self-consistent Hamiltonian updates are roughly indepen-
dent of the system size, although they may vary widely
for chemically different systems.
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