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Plasmons and optical properties of carbon nanotubes
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The optical properties of carbon nanotubes are studied within the gradient approximation. The calculated

dielectric function exhibits many divergent structures, due to the divergencies in its density of states. As a

result, the electron-energy-loss spectrum has many peak structures, including a prominent one at -6 eV, which

is identified as the collective excitations of the m-band electrons. This plasmon is found to be insensitive to

both radius and chiral angle, due to the unique one-dimensional band structure of carbon nanotubes. The result

is consistent with the experimental measurements. The reflectance also exhibits many interesting features,

including a weak but sharp plasmon edge at -6 eV.

Iijima' recently reported observation of carbon nanotubes,
which are graphite sheets rolled up in the cylindrical form.
These nanotubes, with radii between 10 and 150 A, represent
an interesting class of one-dimensional (1D) systems. This
system has generated many interesting studies on its
structural, electronic, " magnetic, ' ' and transport
properties. The objective of this paper is to investigate the
basic optical properties of the carbon nanotubes by means of
evaluating their dielectric function e(co).

The system under consideration consists of a bundle of
identical, single-shell nanotubes that have their axes parallel
to each other. The dielectric function is evaluated within the
gradient approximation, ' which has been applied, with suc-
cess, to graphite' and graphite intercalation compounds
(GIC's). ' We assume that the polarization of the electromag-
netic (em) field is parallel to the tubular axis. Other polariza-
tion angles will be discussed elsewhere. In the evaluation
of e(to), the intertube interaction is neglected, but the band
structure is taken into account within the tight-binding
method. Correct description of the band is found to be very
important in this study.

A carbon nanotube has subbands that, in general, exhibit
typical 1D character with a divergent density of states (DOS)
at the band edge. As a result, there are many divergent struc-
tures in e(co) and peak structures in reflectance [R(to)].
Also present in R(to) is a Drude-like, but weaker edge at
co-6 eV (6=1), which is identified as a collective mode
due to the m electrons. This plasrnon mode has been studied
in detail and its unique characters are found to originate from
the special band structure of the graphitelike system. Our
study shows that the plasmon structure is insensitive to
changes in both the radius and the chiral angle of the nano-
tube, and always lies at 6—7 eV. This result may well explain
the -5—7-eV plasmon found in the electron-energy-loss
spectrum (EELS) of multishell carbon nanotubes.

A carbon nanotube, as shown in Fig. 1(a), is a rolled up
graphite sheet such that the carbon atom at origin coincides
with another carbon at R= mat+ na2, where ai = +3be„and
a2=(+3/2)be„—'-,be are the primitive lattice vectors of the
graphite sheet, and e„(e~) is the unit vector along the x axis
(y axis). The nearest-neighbor distance b= 1.42 A. The ge-
ometry of a nanotube is completely determined once R is

determined. One can thus specify a nanotube by the param-
eters (m, n). For example, the zigzag tubule that has R~~e„ is
denoted by (m, 0). The (23,0) tubule, which has a small ra-
dius r =9 A, is chosen here for a detailed study. It reveals
that the unique 1D band structure causes the prominent
-6-eV plasmon structure in all nanotubes. Some results
calculated from other tubules will be presented here to illus-
trate this common feature.

The electronic structure of a zigzag is calculated within
the tight-binding model, which is similar to the one em-

ployed for a graphite sheet. The m-band structure of a
graphite sheet is caused by the overlapping carbon 2p, or-
bitals, which belong to two sublattices. The Hamiltonian in
the subspace spanned by the two tight-binding functions
U, (k„,k ) and U2(k„,k~) is thus described by a 2X2
matrix, '

r 0
H=

( H,*2(k„,ky)

Ht2(k„, ky) I

where Htz(k„, k~) = —y X;o,e '"'. The Hamiltonian only
contains the interactions of each carbon atom with its three
nearest neighbors, denoted by r;. The quantity yo= 3.033 eV
(Ref. 7) is the resonance integral, and k is the Bloch wave
vector. The Bloch states of Eq. (1) when applied to the nano-
tubes, must satisfy the boundary condition

0
0.0

I ~ I I I I I I ] I I I 1

k„(A ')

FIG. 1. (a) The vector R defines a carbon nauotube in terms of a
graphite sheet. (b) The conduction bands of the (23,0) tubule. The
occupied valence bands are symmetric, about EF=0, to the conduc-
tion bands.
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3bky JmE'"(J,k»)=~ya 1+4 cos cos
2 ) I, mj

I Jmi
+4 cos i

(m~

and the wave functions are

(3a)

'(I"(r) =W(r+ R),

where R is the vector that defines the tubule. For a zigzag
nanotube, the boundary condition requires that the transverse

wave vector k„=2'/+3mb (J=1,2, . . . ,2m); the J's thus
serve as good quantum numbers for the subbands. The axial
wave vector is confined to the first Brillouin zone
~(k»~~7r/3b, and k»=0 corresponds to the band edge. The
m-band energy dispersions of the (m, 0) tubule are obtained
from diagonalizing the Hamiltonian:

1 0,*2(J,ky)'"(, y)= 1(, y) I k
~

U2(J, ky)

(3b)

The superscript c (v) represents the conduction (valence)
band. The nanotubes with 2m+ n = 3 X integer are metallic;
otherwise, they are semiconducting. The (23,0) tubule is
thus a semiconductor with a 0.48-eV band gap; its band
structure is given in Fig. 1(b). All the subbands are doubly
degenerate except the two with J=m and 2m.

The (23,0)-nanotube bundle ' is assumed to have a den-

sity of one tubule per (2r+d) A, which corresponds to
that of a square-lattice structure. d=3.4 A is the intertube
distance. Only the density is relevant here since the inter-
tube interaction among the nanotubes has been neglected.
Then e(co) is essentially determined by a single tubule and,
within the relaxation-time approximation, ' it is given by

2

'I'(J, ky) 0'"(J,ky))me8 ~
(' dk

co(2r+ d) 1 J y,(Bz2m co„,(J,ky)

1 1

co —a)„,(J,ky) + iI co+ co„,(J,ky)+ iI'

Allowed transitions are restricted to the vertical excitations
(i.e., J and k» remain unchanged) from the valence bands to
the conduction bands. This result follows from our assump-
tion that the polarization of the em field is along the axial
direction of the nanotubes. Other polarizations have more
complicated results. In Eq. (4), co„,(J,ky)=2E'(J, ky),
i.e., the vertical interband excitation energy. The background
dielectric constant F0=2.4 is taken from graphite. I is the

energy width due to various deexcitation mechanisms, and is
treated as a free parameter in the calculation. The velocity
matrix element )(0"'(J,ky)~P»/m, ('I"(J,ky))( may be ap-
proximated by taking the gradient of Hamiltonian
versus k», e.g., ((U&(J,ky) (Py /m,

~
Uz(J, ky)) (

=&H&2(J,ky)/())k». The matrix element may then be easily
evaluated. Similar approximations have been successfully
applied in explaining optical spectra of graphite' and
GIC's '

The real [e,(co)] and the imaginary [ez(cu)] parts of the
dielectric function of the (23,0) nanotube are shown in Figs.
2(a) and 2(b). The dielectric function becomes essentially
featureless above 12 eV and is thus not shown. The profile of
e(ckk) mainly reflects the available channels of optically in-

duced interband excitations. At an energy co, which corre-
sponds to excitations from states near the band edge, the
number of such excitations becomes infinite because of di-
vergent DOS of the 1D subband there. Therefore, there are
many divergent structures in e(co). The joint density of
states (JDOS) [Dz(co) = Xz~ Bco„,(J,k»)/())k»~ „„]is evalu-

ated and shown in Fig. 2(c), which clearly illustrates the
correspondence between the 1D DOS and e(ru). It should be
noted that the JDOS at co is simply one-half of the DOS of
the conduction band at E'= co/2. This relation follows from

the fact that the conduction bands and the valence bands are
symmetric about energy zero [Eq. (3a)]. That e(cu) should

diminish in magnitude at large cu results from the 1/cu factor
of Eq. (4). Figures 2(a)—2(c) reveal an important message:
the singular structure of the JDOS by and large determines
e(ck)) and, hence, also the optical properties of the 1D nano-
tubes.

That the conduction bands [Fig. 1(b)] concave upwards at
the band edge (k»=0) for E'(y0 and downwards for
E'&y0 has important consequences as far as the optical
properties are concerned. Mainly, the DOS near a band edge
at E',d(y0 diverges in the form I//gE' E,'d while tha—t at

E',d) y0 diverges in the form 1/gE', d
E' Similar —dive. r-

gences can thus be found at co-2E,'d in the JDOS [Fig.
2(c)], as explained earlier. Corresponding to a concave
downward 1D band (i.e., E,'d) ya), e&(co) becomes negative

and divergent at ~~2E',„.This results follows directly from
Eq. (4) and can be derived analytically by assuming the
dominance of the first term on the right-hand side of the
equation. '

Clearly, e, (cu) must thus have zeros at co in the

neighborhood of 2E,'d)2y0. Zeros in e&(co), if at where

E2(QJ) is small, are associated with collective modes, or plas-
mons, of the system. Plasmons could cause prominent struc-
tures in, for example, EELS, which is examined below, as are
other optical properties of the nanotubes.

The calculated EELS at zero momentum transfer, which is
defined as Im[ —1/e(co)], is shown in Fig. 3 at several dif-
ferent energy widths. The spectral function has many local
minima at ~~2y0, obviously due to the divergent JDOS
from the concave-upward subbands. The spectra behave
characteristically differently at ao)2y0. There the divergent
JDOS from the concave-downward subbands lead to promi-
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, (72,32), andELS of four carbon nauotubes: (230) (4010) ((, ), labeled a, b, c, and d, respectively (I'=0.1 eV).

The fine details of the EELS become smoothed out at in-

creasing broadening. But even at I =O.S eV the plasmon

structure at -2yo remains strong and becomes the only

domominating structure in the spectrum. In short, this band-

induced 1D plasmon mode at -2y is thyp is e most important

excitation in the loss spectrum.
The properties of the (23,0) nanotube discussed above are

ound to be generally true to other nanotubes. The inset of
Fig. 3 illustrates the EELS (I =0.1 eV) of different nano-

tubes, with a wide range of chiral angles and radii. Details of
these calculations will be discussed elsewhere. Some of the

tubules are metallic and others are semiconducting, but all of
them share thee common feature —a prominent plasmon struc-

ture at cu-2yo. This result is not accidental but follows
from the fact that all carbon nanotubes derive their bands
from that of a graphite sheet. Carbon nanotubes of different

sizes and chiralities satisfy different boundary conditions,

Eq. ( ), and their bands are thus all different. But an impor-

tant common band feature exists, and that is the presence of
—yo, t e origin ofconcave-downward 1D subbands at E'- h

the plasmon at co-2yo. In terms of the hexagonal Brillouin
zone of a graphite sheet, ' these concave-downward 1D sub-

bands come from the midsection between the degenerate X

(2), must all sample this region for allowed states, and thus

a have the -2yo plasmons, as the inset of Fig. 3 shows.
Detailed and calculations of the carbon nanot b 1 d

o su t e modifications, but they are not expected to change
the basic conclusion reached above It

'
te. is interesting to note

that similar inter-m-band transitions h b
' '

ns ave een suggested to
explain an -6-eV plasmon in C6o.

Thee prediction that different carbon nanotubes have ap-

proximately the same plasmon energy at -2yo=6 eV could
be experimentally checked, with EELS or other optical mea-

or mu tis ell car-surements. EELS measurements exist "f 1

bon nanotubes of different sizes and reveal that a broad,

result is consistent with our calculations. Within the indepen-
ent nanotube approximation, a multishell nanotube can be

regarded as a combination of single-shell tubules. The ob-
served plasmon structure is then a superposition of several

sing e-s ell plasmons. ' This picture, crude as it is, may well

exp ain the prominent plasmon structure at -6 eV, and also
the shoulders that appear in the measurem ten s.

e calculated EELS of Fig. 3 clearly has several plas-
mon structures at ~&2yo,. the weaker ones at higher ener-

gies iminish only at fairly large broadening width. These
plasmons are caused by a series of concave downward sub-
bands see Fig. 1(b)]; each of these band edges determines

e, (ur)/cryo (, may be evaluated from Eq. (4) and is
found to be approximately proportional to I*/ur for a
plasmon at ~ m*p a ~~; m is the effective mass of the subband that
determines the plasmon. The plasmon at -2 th

as e ominating spectral weight while others at higher
energies appear as weaker plasmon satellites in th e spectra

have strong multiple plasmon satellites, however cannot b
out. There exist some evidences of such 1D-subband-
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FIG. 4. The calculated reflectance spectra of the nanotubes

(23,0), (40,10), (72,32), and (78,78). The inset shows the details at
o)-6 eV.

induced plasmon satellites (at -9 eV) in the measurement.
Further study is clearly needed to clarify this rather unique
feature of carbon nanotubes.

Figure 4 is the reflectance spectra of several nanotubes at
I =0.1 eV, which are calculated from the relation

R(ro) = l1 —Pe(ro) l
/l1+ Pe(co)

l
. There are many peaks in

R(ro) at co&2 y'o, clearly due to the divergent JDOS that we
discussed earlier. These structures are strong for the (23,0)
tubules and gradually diminish as the radii of the nanotubes

increase, owing to a rapid increase in the number of sub-
bands. For co&2yo, the reflectance is essentially featureless
and can be represented by a Drude tail. At ao-2', where
the strong plasmons are located, the clear plasmon edge is
observed in R(ru) (see inset). This edge structure is unique in
that it is not as strong as in ordinary metals where the plas-
mon edge can be described by a one-parameter Drude model,
while on the other hand, the plasmon edge of nanotubes is
rather sharp (0.1—0.2 eV in width). That it should be so sharp
is unexpected since ez(co&) is fairly large [Fig. 2(b)], which
usually accounts for strong Landau damping of the plasmon
mode. It is the rapid and strong fluctuations in the 1D JDOS
[Fig. 2(c)] of the nanotubes that cause the unique features in

R(co).
We have calculated for carbon nanotubes the dielectric

function at zero-momentum transfer e(co), which is useful
for studying the optical properties. Despite the very compli-
cated band structure, different nanotubes always have a
dominating plasmon mode at 2yo-6 eV. The cause and the
character of this 6-eV plasrnon have been discussed in detail.
The findings should have an important bearing on our under-

standing of this 1D system. Some experimental evidence in

support of our results is discussed. Further details, together
with a discussion on the magneto-optical properties, will be
given elsewhere. '
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