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In bilayer electron systems realized in wide single quantum wells with intermediate density, we observe a

many-body quantum Hall state at Landau-level filling v= 1 stabilized by interlayer Coulomb interaction. This

quantum Hall ground state makes a phase transition to a compressible state as density is increased. The unusual

temperature and density dependence of the data as the transition boundary is approached is suggestive of an

additional ftnite tempera-ture transition from a quantum Hall state to a compressible state, which is unique to

bilayer systems.

Low-disorder bilayer electron systems (BLES's) exhibit
unique quantum Hall phenomena such as a v=-,' even-
denominator fractional quantum Hall effect (QHE), which
has no counterpart in single-layer two-dimensional electron
systems (v is the total filling factor for the BLES). This
QHE has been associated with a correlated, two-component

33$ Laughlin-like state stabilized by interlayer Coulomb
interaction. In BLES's with appropriate parameters, the
interlayer interaction can also lead to correlated QHE at cer-
tain integral fillings such as v=1. ' In contrast to the
v=1 QHE state associated with the tunneling gap (Esses)
separating the symmetric and antisymmetric states, the
many-body, bilayer v=1 QHE state characterized by the
two-component '0»& wave function has been predicted to
exhibit properties such as neutral superfluid modes and a
Kosterlitz-Thouless transition, ' ' and has already re-
vealed an unexpected in-plane field-driven phase transition
(to another compressible state). " '

We present here an experimental study of the v= 1 QHE
in BLES's in wide single quantum wells (WSQW's) of vary-

ing width and areal density Nz. The data reveal that the
ground state at v=1 evolves continuously from a single-
particle QHE state stabilized by a large hsAs at low Ns to a
many-body QHE state stabilized by strong interlayer interac-
tion at intermediate Nz. As Nz is further increased, we
observe an incompressible-to-compressible transition. Near
this transition, the many-body v=1 QHE state exhibits a
remarkable dependence on temperature T: the diagonal resis-
tivity becomes activated rather abruptly below a temperature
(T*) that strongly depends on Ns, while the measured qua-
siparticle excitation gaps are much larger than T* and are
nearly independent of Nz. As possible origins of this behav-
ior, we discuss finite-T incompressible-to-compressible
phase transitions that are unique to BLES's.

The samples are modulation-doped GaAs wells grown by
molecular-beam epitaxy and have a width ranging from 680

to 1200 A and typical low Tmobilit-y —1X10 cm /Vs.
They are of exceptionally high quality as they show very
strong fractional QHE including quantum Hall states at the

even denominator v=-,' and -', fillings. Front and back side

gates were used to vary N& and also to obtain symmetric

charge distributions in the samples. ' We measured hsAs
from the Fourier transform of the low-field magnetoresis-
tance oscillations. The measured hats were in excellent
agreement with those determined from self-consistent
Hartree-Fock calculations, an example of which is shown in

Fig. 1(a) inset.
In a WSQW, increasing Ns leads to a reduction of b sAs

and an increase in d. Here d is the calculated distance
between electron layers [see inset to Fig. 1(a)].We are there-

fore able to study the evolution of the ground state at
v=1 in WSQW's as summarized in the d/lit vs a [=hsAs/
(e /e ltt)] phase diagram of Fig. 1(a), where ltt =(1/eB)'/ is
the magnetic length. In this diagram the closed (open) sym-
bols represent the presence (absence) of the v=1 QHE in
WSQW's. For comparison, we have also indicated (shaded
area) in Fig. 1(a) the region where the v=-,' QHE is stable in

the same or similar WSQW's.
For an ideal BLES in which the thickness of the layers is

zero, d/ltt is a measure of the competition between the intra-

layer and interlayer interaction, while a reflects the strength
of the tunneling ga compared to the intralayer electron-
correlation energy. ' In systems with finite-layer thickness
such as in wide parabolic wells' or WSQW's, however, the
large layer thickness [k in Fig. 1(a) inset] substantially re-
duces the short-range component of the Coulomb interaction
and plays a crucial role in determining the ground state of the
system. For example, as evident in Fig. 1(a) and discussed in
detail elsewhere, in WSQW's the v=-,' QHE is observed at

d/ltt values which far exceed the value d/l&=2. 5 near which
this state is theoretically expected ' and experimen-
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FIG. 2. Arrhenius plots of R„,at v=1 vs 1/T for a WSQW of
width 770 A for different N~. The temperature above which the

activated behavior ends is marked by T*.

3

2
0 0.05 O. l 0.15 0.2

FIG. 1. In (a) experimental data are shown in d/l~ vs a
[=hsAs/(e /els)] phase diagram for BLES's in WSQW's at
v=1. The closed (open) symbols represent the presence (absence)
of v= 1 QHE at the experimental base temperature of 25 mK. Data
are shown for five WSQW samples with well widths between 680
and 1200 4, and with varying areal densities; the solid thin curves
are guides to the eye and go through data of a given sample. The
dashed curve is the experimental transition boundary based on this
data. The shaded area shows the region where a v= 2 QHE is stable
in BLES's in WSQW's. The inset exhibits the calculated electron
wave functions (dotted curves denoted 4'z and q"As) and the dis-

tribution function [solid curve denoted p(z)] for a representative
WSQW (width is 770 A, Nz ——1.1X10 ' cm ) at 8=0. In (b) the

experimental data are shown in a d/l vs P [=AsAs/(e /el)] phase
diagram, where l=(la+ k )U is used to account for the effect of
finite-layer thickness.
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and '-, QHE in addition to the v=1 QHE. Figure 2 presents
Arrhenius plots of the diagonal resistance (R„„)at v=1 for
electron density 5.0~N&~ 16.4X 10 cm experimentally
achievable in this sample. The quasiparticle excitation gaps
6 determined from the slopes of the activated regions of

these plots according to R„„-exp(—b,/2T), together with
the measured and calculated b, sAs, are shown in Fig. 3(a) as
a function of Nz. Several features of the data of Figs. 2 and
3 are particularly noteworthy: (1) While As&s decreases with

increasing Nz, 'b increases and exceeds hsAs by more than

tally observed to be stable in a BLES with small X.. In a
crude approximation, replacing la by l=(ltt+k )'/ to ac-
count for the finite-layer thickness leads to the phase dia-
gram of Fig. 1(b), which clearly demonstrates that both small
tunneling and large effective layer separation are responsible
for the collapse of the v=1 QHE in WSQW BLES's. The
experimental boundary in Fig. 1(b) is qualitatively similar to
the experimental and theoretical boundaries reported for the
collapse of the v=1 QHE in BLES's in double quantum
wells, where X~lz. "' In the remainder of this paper we
show that the v=1 QHE observed in WSQW's near the tran-
sition boundary, in approximately the same range of param-
eters where the many-body v= z QHE state is stable, is also a
many-body state, predominantly stabilized by strong inter-
layer correlations and possessing unusual finite-T properties.

We focus on data for one of our highest-quality samples, a
770-A-wide quantum well that exhibits the strongest v=z

(b)
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FIG. 3. (a) Measured hsAs and 6 energy gaps for the v=1
QHE as a function of Nz (lower axis) or d/l (top axis) for a 770-
A-wide WSQW. The solid curve is the calculated hsAs. (b) Plot of
experimental T* vs Nz and d/l.
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a factor of 3 at the highest accessible Ns . (2) For
N&~10X 10' cm, the activated behavior of R,„vs1/T

starts rather abruptly below an Ns-dependent temperature
T*. Above T*, the R minimum at v=1 vanishes, i.e.,
R is nearly independent of magnetic field and T. For
Ns~10X10' cm, the Arrhenius plots show a smoother

behavior and '5 gaps start to decrease with decreasing

Ns. (3) The measured '5 for Nz)10X10' cm are ap-

proximately constant (=20 K) and exceed T* by more than

an order of magnitude. (4) The plot of the measured T* vs

Ns presented in Fig. 3(b) shows that T* decreases with in-

creasing Ns and extrapolates to zero at Ns=20. 5X10'
cm . This' corresPonds to P=0.073 and d/1=2. 75, con-

sistent with the phase boundary of Fig. 1(b). These features

clearly point to the many-body origin of the v=1 QHE
states observed at large Ns in this WSQW.

The data of Figs. 1—3 demonstrate that the ground state of
the BLES's in WSQW's at v= 1 evolves continuously from a

single-particle QHE at low Ns, where the tunneling (AsAs)
is large, to a many-body QHE state at intermediate Ns, and

then makes a transition to a metallic state at large Ns. We
believe that in the intermediate Ns range we are observing a

bilayer QHE state stabilized by comparable interlayer and

intralayer correlations. A possible candidate is the two-

component W»& state, which, for a BLES with negligible
layer thickness and interlayer tunneling, is predicted to be
stable for d/1~=2. ' ' This state has been discussed

widely and may be responsible for some of the v=1 QHE
states reported in the double-quantum-well samples of Ref.
11.The observation of a 'P», -like state in our WSQW's with

such a large d/l~ may initially seem surprising. As already
pointed out, however, in our system, the short-range compo-
nent of the intralayer Coulomb interaction is softened be-
cause of the large electron layer thickness (typically
&/lz-2). It is therefore reasonable that the "P»& state in our

system would be stable under the conditions of reduced in-
terlayer correlation (i.e., larger d/l~). Consistent with this

conjecture, Fig. 1(b) shows that, if corrections for the finite-

layer thickness are made, the effective layer separation (d/I)
in our WSQW's at intermediate Ns are indeed close to the

predicted value for the stability of the 0'»& state. Finally, as
mentioned earlier, in these WSQW's we also observe a
strong v= —,

' fractional QHE state that we can associate with

another two-component (4'33$) state with comparable inter-

layer and intralayer correlations. The stability of the v=-,'

and the many-body v=1 QHE states in a similar range of
d/1 vs p diagram [see Fig. 1(b)] suggests that the latter is
also a correlated bilayer state. We note that for small p and

large d/1, the v= 2 QHE also collapses, but it makes a tran-

sition to an insulating phase rather than a metallic phase. '
Data on another WSQW with a well width of 1000 A., in

which we can cross the boundary for the collapse of the v=1
QHE (see Fig. 1), are similar to and consistent with the re-
sults presented here. For large Nz (d/l~2. 6), the 1000-4-
wide sample shows a metallic behavior (R „nearly indepen-
dent of T) at v= 1 down to our base T of 25 mK and there is
no signature of a v=1 QHE minimum. For intermediate

Ns, at high temperature R at v=1 nearly coincides with
the high Nz (metallic) data, but below an Ns-dependent T* a
v= 1 QHE abruptly develops and quickly becomes activated.
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FIG. 4. Arrhenius plots of R„,at v=3 vs 1/T for the sample of
Fig. 2.

The dependence of T* on Ns is similar to the data shown in

Fig. 3(b) and, in particular, T decreases with increasing

Ns (increasing d/I) and tends towards zero as d/I —+2.6, con-
sistent with the phase boundary of Fig. 1(b). For very small

N&, similar to the data of Fig. 2, no clear T* is observed and

the high-T data deviate from the high-Ns metallic data.
The data of Figs. 2 and 3 are collectively very unusual

and qualitatively different from what is observed for the in-

tegral or fractional QHE in standard single-layer two-
dimensional (2D) systems or for the QHE at higher fillings

such as @=3 in the same BLES sample (Fig. 4). As Ns is

lowered, the single-layer @=1 QHE data exhibit a larger

R„„(atany given T), a smaller excitation gap, and typically
a smoother saturation of the activated behavior at high T. '
This behavior is very similar to what we observe for the
v=3 QHE in our sample (Fig. 4) and for the v= 1 QHE at

low Ns (&10X10' cm ) far away from the compressible
boundary (Fig. 2). It is in sharp contrast to the v= 1 data at

high Ns near the compressible boundary (Ns&IOX10'0
cm in Fig. 2), where R„„vsT ' data appear to simply
shift horizontally to lo~er T as Ns is raised.

Based on what is known for the QHE in single-layer 2D
systems, our experimental observations and, in particular, the

dependence of T* on Ns near the compressible boundary
remain unexplained. Our data appear to be consistent, on the
other hand, with the signatures of a Kosterlitz-Thouless (KT)
transition that has been recently proposed for BLES's.' '
Associating the layer population with an isospin, the theories
argue that in the limit of zero interlayer separation (d =0),
the spin system has the symmetry of the 2D quantum ferro-
magnetic Heisenberg model. For finite d and in the absence
of interlayer tunneling, however, the system has an XY
symmetry and thus may support a KT transition at a critical
temperature TKT. As the effective layer separation becomes
larger, TKT decreases and vanishes above a critical
separation. The manifestation of this KT transition in the
transport coefficients of the BLES is not entirely clear, al-

though it is predicted that below TKT a gap for the creation of
charged particle-hole pairs should lead to a QHE with an

activated resistivity. Associating our observed T* with

TKT, the data of Figs. 2 and 3 are qualitatively consistent
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with these predicted features: we observe a QHE for
T~ T*, our measured T* are of the order of the rough esti-
mates given for TzT, and both T* and TKT decrease with
increasing d/l.

An alternative explanation for our data may be the
following. Consider the BLES at T= 0 at an N& where v=1
QHE is observed, but close to the boundary for its collapse.
Two possible states for the system are (1) a correlated
('IT» i-like) incompressible QHE state, and (2) an uncorre-
lated compressible state with v=-,' in each layer. The corre-
lated state, being energetically more favorable, is the ground
state. The uncorrelated state, however, has larger entropy. It
is therefore possible that the BLES makes a transition from
the correlated QHE to the uncorrelated (compressible) state
at finite T. This is qualitatively consistent with our observa-
tion that the closer the BLES is to the compressible boundary
the smaller the T needed to destroy the correlated QHE state
(Fig. 3). For an ideal BLES, such a transition should be first

order and one may expect sharper features in the R„vs
1/T data than observed in Fig. 2. Sample impurities and

inhomogeneity, however, may lead to a smoother transition,

consistent with the experimental data.
In summary, we have presented ground-state and finite-T

data for the v=1 QHE in BLES's in WSQW's. The results

provide evidence for the presence of many-body integral

QHE in these systems, and point to the rich and not yet
understood transitions brought about by the interplay of in-

tralayer and interlayer correlations and temperature.
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