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In8uence of the adsorbed layer randomness on charge transfer
in alkali-metal adsorption on metal surfaces

Z.L. Miskovic, ' S.G. Davison, ~ F.O. Goodman, t and R.A. English
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada NpI SG1

(Received 12 July 1994; revised manuscript received 19 September 1994)

We investigate theoretically the efFects of the adlayer randomness at low coverages on the charge
state of alkali adatoms within the Muscat-Newns model ISolid State Commun. 11, 737 (1972)j. The
Quctuating electrostatic potential at an adatom site due to a random arrangement of all the other
atoms in the adlayer is modeled in analogy to Holtsmark's theory of static broadening of spectral
lines in plasmas. We 6nd that these Buctuations induce a stronger depolarization of the adlayer
with increasing coverage than in the Muscat-Newns model, corresponding to a slower drop of the
effective work function.

Although an extensively studied subject of surface sci-
ence (for recent reviews, see Refs. 1—4), alkali-atom ad-
sorption on metal surfaces still presents a challenging
problem, as regards both the electronics and atomic
structure of the adlayer at submonolayer coverages. In
particular, the characteristic dependence of the effective
work function (WF) on the adatom coverage has been
the subject of many theoretical investigations (a detailed
list of references can be found in Refs. 1—4). We shall
study here this problem in the low-coverage regime, us-
ing the microscopic model due to Muscat and Newns

(MN), 7 which is based on the Anderson Hamiltonian
in the Hartree-Fock approximation. According to this
model, the ~ns) valence level of an isolated adatom is
broadened into a resonance as a result of the interaction
with the metal bands, and the width of the correspond-
ing Lorentzian shape is determined by the chemisorption
function 6 (which is, actually, a constant for a Hat and
wide metal band). When the adatom is placed at a dis-
tance d &om the image plane, the resonance center e is
placed well above the Fermi level, owing to rather low ion-
ization potential I and the upwards image shift 1/(4d) of
the ~ns) valence level. (Atomic units are used, unless oth-
erwise explicitly indicated. ) As a result, the average elec-
tron population (n ) of the resonance is rather small, that
is, an isolated adatom is largely ionized, with the eKec-
tive (positive) charge Q = 1 —2(n ) (neglecting the spin
polarization and the intra-atomic Coulomb repulsion ).
Neglecting further the intra-atomic charge polarization,
one can associate with each adatom a dipole, formed by
the charge Q and its image, with the dipole moment
y, = 2dQ. With increasing adatom coverage p, a dipole
layer is formed on the surface, resulting in a decrease of
the effective WF P, according to

4 = A —2~pe

where Po is the WF of the clean surface.
More important for the MN model is that the dipole

layer induces a local electrostatic potential lowering at
each adatom site, so that the ~ns) resonance shifts down-
wards and becomes more and more populated by elec-
trons as the coverage increases. As a result, ionic-to-

neutral change of adatoms occurs, leading to a reduction
of the dipole moment p, so that the P dependence on p
becomes no longer linear, as implied by Eq. (1). This de-
polarization of the adlayer leads to a characteristic min-
imum in P, occurring typically at about one half, or less,
of the monolayer coverage. In the MN model, the charge
on adatom is obtained, in the simplest form, as

&..+ V'l
Q = —arctan

7r ( b, )

where e = Po —I + 1/(4d) is the valence level of an
isolated adatom, referred to the Fermi level (neglecting
the temperature eKects on the Fermi-Dirac distribution),
and V is the electrostatic potential at the adatom site,
due to all other adatoms in the adlayer. In fact, V is
the parameter of the microscopic model, which contains
an information about the atomic arrangement of the ad-
layer. Assuming a homogeneous distribution of charges Q
on adatoms, and taking the classical form of the dipole
potential for each adatom

Vgr =Q
+4d )

(where r is a distance across the surface), one can obtain
V as a function of Q, so that Q results from (2) self-
consistently. To do so, one has to specify the geometric
configuration of atoms within the adlayer, and this is an
extremely complex requirement. Usually, one assumes
that the adlayer forms a regular (square or hexagonal)
lattice at all coverages and temperatures, with the lat-
tice spacing scaled by the raean adatom-adatorn spacing

1/~p, and takes for V an average value Vj by means
of a lattice sum of the dipole potential terms.

However, it has been demonstrated experimentally
(see, e.g. , Ref. 9), using low-energy electron diffraction
(LEED), that, at room temperatures and low coverages
(below the WF minimum), alkali atoms are uniformly
dispersed over the surface, due to the mutual dipole-
dipole repulsion, forming a two-dimensional "gas" phase.
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Q = — dV P(V) arctan
~

=2 (s +V)
7r

(4)

where P(V) is the probability distribution function (nor-
malized to unity) of the electrostatic potential at the
adatom site, due to random positions of all other adatoms
within the adlayer.

A useful basis for obtaining the distribution P is the
Holtsmark's theory for the spectral line broadening in
plasmas in the static limit (for details see, e.g. , Ref. 11).
Assuming a perfectly smooth surface, that is, a homoge-
neous adlayer, we obtain, to the lowest order in coverage,

At coverages around the WF minimum, the depolariza-
tion of the adlayer is accompanied by a reduction of the
dipole-dipole repulsion between the adatoms, which al-
lows a condensation of the "gas" phase into a "liquid"
phase, corresponding to the onset of the short-range or-
der in the adlayer. At high coverages, towards the mono-
layer, a direct adatom-adatom interaction dominates and
leads to a long-range order in the adlayer, with corre-
sponding increase of the WF towards the value charac-
teristic for a regular lattice of an alkali-metal film. Since
the MN model ignores the direct adatom-adatom interac-
tion, its applicability is limited only to the low coverages
(roughly, up to the work function minimum), where the
dipole interactions determine both the arrangement of
adatoms and their charge state, and, therefore, cannot
describe the increase of the WF at higher coverages. Ob-
viously, using the lattice sum is an adequate description
of the adlayer structure at temperatures below the or-
dering temperature for a given coverage, which turns out
to be much lower than the room temperature in the low-

coverage regime. While a regular lattice implies neg-
ligible fluctuation of V around the value Vj in (2), we

wish here to check the assumed validity of the lattice
sum description at low coverages and temperatures above
the ordering temperature, since, in this regime, one ex-
pects large fluctuations of the value of V in (2), owing
to the randomness of the corresponding "gas" or "liq-
uid" phases. Namely, in such a situation, each adatom
experiences a different configuration of other atoms, and
all these configurations form an ensemble. Consequently,
the expression (2) for the charge Q on an adatom should
be taken rather as an ensemble average

These ring patterns, whose radii are proportional to ~p,
are characteristic of a liquid phase. Consequently, g(r)
should be normalized as

p dr1 —gr =1 (6)

0.8
P(e, c)

Or7

in order to reflect the tendency of adatoms to stay away
from each other, due to the electrostatic repulsion be-
tween them. The simplest form of g(r), which satis-
fies the above requirements and generates an appropriate
LEED structure factor, is a step function of the inter-
adatom distance r, placed at 1/~xp.

Using the dipole potential (3) in (5), and introducing
the parameter W = (harp)s~2]]jd, which has the dimension
of energy, one can express the distribution function as

P(V) = p(v, c)/W, where p(v, c) is a function of the re-
duced electrostatic potential v = V/W and the reduced
coverage c = 4xpd2. In Fig. 1, we show the universal
function p(v, 0), which describes the low-coverage case,
c &( 1, together with the corresponding Gaussian approx-
imation (GA). It follows &om the p(v, 0) curve that P(V)
peaks at about V„= —1.68W, which is, within several
percents, equal to the low-coverage value &om the lat-
tice sum, V~ = —9p / pd. ' Note that the GA generally
peaks at the value of the first moment V of the distri-
bution P(V), which is = —2W in the case c « 1. More
important is that, for c (& 1, the full width at half max-
imum (FWHM) of both the distribution P(V) and the
corresponding Gaussian is 1.66We This means that the
lowering of the ~ns) resonance in a proportion to W is in-

evitably accompanied by its broadening by a comparable
amount of W. In other words, the original width of the
~ns) resonance 4 is increased, through the convolution

(4), by the randomness broadening, leading to a stronger
depolarization of the adlayer with increasing coverage,
than expected &om the MN model. Consequently,
since 4 is essentially a free parameter of the MN model,
its choice by fitting to experimental data ' should be
influenced by the effect of the adlayer randomness. Also
presented in Fig. 1. are the function p(v, 1) and its GA

1
P(V) =—

x exp(ttV+pf d~rg]r)]e ' t't —1]). ]5)

Since P(V) is evaluated at a charged site, we need in (5)
the pair distribution function g(r) of the adlayer, which
is diKcult to model, but provides substantial flexibility
to our theory. For instance, at low coverages, one may
describe the adlayer as a "nonideal gas" by using for
g(r) a Boltzmann factor, involving a dipole-dipole po-
tential, and study the effects of increased temperature.
However, we prefer to make a closer connection with the
ring-shaped LEED patterns, observed at room temper-
atures for coverages up to about half a monolayer.

FIG. 1. Solid lines represent the probability distribution
function p(v, c) of the reduced electrostatic potential v for
reduced coverages c = 0 and 1, while the dashed lines are
the Gaussian approximations for these two functions (see the
text). The broader pair of curves correspond to c = 0 and the
narrower to c = 1.



17 692 BRIEF REPORTS

for medium coverages, e = 1, showing a reduction of both
the peak shift and the FTHM in terms of R". These
curves also show that the accuracy of the GA improves
with increasing coverages, and we have verified numeri-
cally that it suffices to use this approximation for P(V)
in Eq. (4). In order to study how the drop of the effective
WF, b,P = 2z pp [cf. Eq. (1)], is inffuenced by the ran-
domness effect, we choose the system K/Cu(100) (Refs.
9 and 14) and solve Eq. (4) self-consistently for d = 3.6
and d = 4.1, with the corresponding values 6 = 0.48 eV
and 6 = 0.78 eV, chosen to reproduce the zero-coverage
dipole moment per adatom po = 6.2 = 15.8 D. The
results for the AP dependence on the coverage 0 (de-
fined as the number of adatoms per number of surface
atoms) are displayed on Fig. 2. These results are com-

pared in Fig. 2. with the results from the standard MN
model, ' ' obtained as the self-consistent solution of Eq.
(2) with V = V, which contains no broadening due to
adlayer randomness. As expected, the stronger depolar-
ization of the adlayer due to randomness broadening of
the [ns) resonance leads to a slower drop of the effec-
tive WF with increasing coverage at temperatures well

above the ordering temperature, than in the standard
MN model. This randomness e8'ect appears already at
coverages well below the WF minimum [note that the ex-

perimentally observed %F minimum occurs at 0 = 0.17
(Ref. 9) or 0 = 0.13 (Ref. 14) for the adsorption system
K/Cu(100)]. A similar effect of the increasing disorder of
the adlayer on the work function has also been obtained
from the lattice-gas model.

In a conclusion, let us note that the present theory of-
fers only qualitative description of the randomness efFect
at low coverages, because we have neglected the intra-
atomic charge polarization in the microscopic model,
which is known to reduce the dipole moment per adatom
with increasing coverage. Since this polarization re-
sults from the hybridization of the ~ns) and [np, ) alkali

d =4.1

FIG. 2. Drop of the effective work function EP as a func-

tion of the coverage 8 for the system K/Cu(100) (see the
text). Solid lines are the results with the randomness ef-

fect, while the dashed lines are the results from the standard
Muscat-Newns (Refs. 7, 9, and 14) model. The upper pair
of curves correspond to the adatom distance from the image
plane d = 4.1 and the lower to d = 3.6.

valence orbitals, which is mediated by the normal com-
ponent the local electrostatic 6eld at an adatom site, it is
important to consider also the Buctuations of this 6eld,
which are statistically correlated with the Huctuations of
the electrostatic potential at the same site.
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