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Coupled-cluster approximation for the linear E e Jahn-Teller effect
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The successive coupled-cluster approximation up to the third level is applied to study the ground
state of the linear E-e Jahn-Teller eKect. Over the whole range of the coupling parameter, our results
for the ground-state energy are not only in good agreement with the exact numerical diagonalization
results, but they are also better than those from earlier analytical studies. The mathematical treat-
ment in this work is quite simple and could be easily extended to the studies of the more complicated
Jahn- Teller systems.

III@) = R,it),
can then be written as

&I@o) —= exp( S)H exp(S)l@o) = EoIOo)

where

(2)

In recent years, a lot of attention has been paid to the
studies of the dynamical Jahn-Teller effect in localized
systems because of the growing number of experimen-
tal manifestations of the Jahn-Teller effect in molecules
and solids. ' Among the various Jahn-Teller systems,
the linear E-e system, i.e., an electronic doublet inter-
acting with a doubly degenerate vibration, is the sim-
plest but nontrivial one, and has been completely solved
by numerical methods many years ago. ' However, there
has been continued interest in approximate analytical so-
lutions, because analytical methods are usually able to
provide more physical insight than numerical methods
and can be extended to more complicated cases, e.g. , the
multimode case, the nonlinear effects, and the cooper-
ative systems, where numerical methods are very diK-
cult to apply. Previous analytical treatments of the lin-
ear E-e Jahn-Teller system are either based on canonical
transformations or on the variational principle. In
this communication, we explore the applicability of the
coupled-cluster method to the ground state of the lin-
ear E-e Jahn-Teller system. The coupled-cluster method
has proved to be a very useful technique, and has been
applied to a wide range of physical systems in nuclear
physics, quantum chemistry, relativistic quantum field
theory, etc. One of its main advantages is its systematic
ability to be taken to arbitrary accuracy. The coupled-
cluster method can be used to calculate ground-state and
excited-state energies, and also such other physical quan-
tities as correlation functions and density matrices.

The basic ideas of the coupled-cluster method rely on
the fact that the exact ground state of a system described
by the Hamiltonian H can always be expressed as

I4') = exp(S)I4o),

with IC'o) being an appropriate "starting wave function"
which is not orthogonal to the exact ground state. The
corresponding Schrodinger equation

1
exp( —S)H exp(S) = H + [H, S] + —[[H, S],S] +

2

Since ICo) is normalized, we may write

&o = (4'oI&I@'o) = (@oIexp( —S)H exp(s) I@o)

(4)

This orthogonality condition yields a series of nonlinear
coupled equations, each of which contains a finite num-
ber of terms. The correlation operator S is determined
by solving these equations. Once S is known, the ground-
state energy and wave function can be obtained readily.
Hence, the problem of finding the ground-state energy
and wave function of the system is reduced to computing
the operator S. Nevertheless, this is a very formidable
task, and some approximation scheme has to be used to
solve the coupled equations. In the following, we shall ap-
ply a successive coupled-cluster approximation scheme to
investigate the ground state of the linear E-e Jahn-Teller
system. This approximation scheme has been success-
fully applied to the quantum spin systems and Hubbard
model on a square lattice.

The linear E-e Jahn-Teller system is described by the
Hamiltonian,

H = ax z+ 2a2+1— (ax+ay)o + ( 2+au)o*
k t k

2 2

where a~(aq) and a2(a2) are boson creation (annihi-t
lation) operators, and cr and o, are the usual Pauli
matrices. We begin our treatment by first applying
a unitary displacement transformation to H: H

exp(Tt)Hexp(T), where T = (k/~2)(az —aq). After
the transformation, we obtain

and by projecting Eq. (3) onto the states IC „)which are
orthogonal to I@e), we obtain

(c„izic,) = (e„iexp(-s)H exp(s)ie, ) = o.
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H = a, a, + a2a2 + 1 + q (1 —4S.)
t

+q(a, + ug)(1 —2S ) + rj(a2 + a2)(S+ + S ),

w here g = k/~2. The operators S, and S~ are the spin
operators corresponding to the Pauli matrices. To ini-
tiate our coupled-cluster approximation, we choose our
"starting state" l@o) to be the state lvac)l t). This
"starting state" has the advantage that if we apply the H

to this state, the off-diagonal term q(a~+ad) (1—2S, ) will
vanish automatically. With this l@o), we simply choose

the correlation factor S in Eq. (1) to be aa2S for the
first level of the successive coupled-cluster approxima-
tion. This operator simply represents the simultaneous
excitation of the spin and the vibrational mode 2. Using
this correlation operator S, it can be found that

t'RlCo) = ( Fo+ FS+ rIaa2

+2gaa~a2S —ga a2 S )l@o),2 ts
(9)

where 'R = exp( —S)H exp(S), Eo ——1 —rI2 + qa, and
aF = g + (1 + 4g )a —ga . By setting F to be zero, a
quadratic equation of the parameter o. is obtained, which
can be easily solved to give two roots. The admissible so-
lution is given by a = (1+4'~ —gl + 12r12 + 16rI4)/(2g).
With the remaining terms of Eq. (9) being neglected,
an estimate of the ground-state energy is found to be
&o = 1 —g2 + (1 + 4q —Ql + 12@ + 16' )/2.

Next, in order to improve the approximation, we shall
include in S all the terms necessary to cancel the remain-

ing terms of Eq. (9): S = P„~S„with Sq ——aza2S

S2 = A2G1 G2 S ) S3 = c13G2 ) and S4 A4G2 S— The
terms S1 and S4 denote simultaneous excitations of the
spin and the vibrational mode 2, S2 the simultaneous ex-
citation of the spin and both of the vibrational modes,
and S3 the excitation of the mode 2 only. With this
correlation operator S, we obtain a set of four nonlinear
coupled algebraic equations of the parameters o. s:

S=) S„,
n=1

where

S1 ——a1G2S, S2 ——a2a1a2 S, S3 ——O'3G2
t

S4 ——n4G2 S, S5 ——a5G1 a2S

S6 ——o.6G1a2 S,Sy ——o.TG1, Ss ——o.8a1G2
ti' — t — t t'

S9 O'9G2 S10 o'10G2 S— S11 11G1 G2
t4 ts t ts

S12 o'12 1 G2 S— S13 —O'13G2
t2 ts t& (12)

This correlation operator S includes various multiphonon
excitations to account for both the anharmonicity of
each vibrational mode and the strong correlation between
these two modes, which are induced by the spin Huctua-
tion. After some straightforward, though tedious, calcu-
lations similar to those in the second-level approximation,
a set of 13 nonlinear coupled algebraic equations of the
parameters o,, 's are obtained. As in the second-level ap-
proximation, one needs to resort to numerical methods to
solve these equations. Then, these parameters a s wi11
in turn give the ground-state energy E0 ——1 —g + go. 1

of the system.

ga, —(1+4g )a~ —2rl(a2 + as) —rI = 0,
qaq + 3ga4 + (1 + 2gaq) as ——0,

'gay + (1 —'gay + 2'g )a2 = 0

q(l + 2as) a, —(3 —4qa, + 4q )a4 ——0 .

These nonlinear coupled equations have no closed-form
solutions, in general, and need to be solved numerically.
At this second level of approximation the ground-state
energy is given by E0 ——1 —q + qo. 1 ~ It is obvious
that provided the parameters n2, o.3, and a4 are not
zero, there is considerable improvement beyond the first-
level results (see Table I). Finally, to go to the third-level
approximation, we shall repeat the previous procedure
and choose the correlation operator S as follows:

TABLE I. Ground-state energies obtained in different levels and the results of previous studies.

k

0.25
0.5
0.75
1
2

3
5
7
10
15
20
30

First
level

0.7958
0.6320
0.4831
0.341?

—0.1926
—0.7081
—1.7228
—2.7298
—4.2355
—6.7401
—9.2425

—14.2449

Second
level

0.7777
0.5931
0.4284
0.2750

—0.2877
—0.8184
—1.8506
—2.8685
—4.3852
—6.9019
—9.4124

—14.425?

Third
level

0.7742
0.5806
0.4066
0.2453

—0.3343
—0.8704
—1.9051
—2.9231
—4.4391
—6.9538
—9.4623

—14.4719

Exact
0.774
0.578
0.400
0.233

—0.369
—0.919
—1.961
—2.976
—4.485
—6.991
—9.493

—14.496

Refs. 5
and 8

0.7766
0.5920
0.4308
0.2838

—0.2454
—0.7494
—1.7500
—2.7500
—4.2500
—6.7500
—9.2500

—14.2500

Ref. 9
0.7883
0.6155
0.4609
0.3168

—0.2166
—0.7281
—1 ~ 7371
—2.7409
—4.2436
—6.7458
—9.2468

—14.2479

Ref. 11
0.7877
0.6119
0.4522
0.3017

—0.2577
—0.7886
—1.8225
—2.8418
—4.3600
—6.8780
—9.3894

—14.4035

Ref. 12
0.7766
0.58??
0.4173
0.2586

—0.315?
—0.8466
—1.8716
-2.8833
—4.3937
—6.9042
—9.4111

—14.4202
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In Table I the numerical results for the first three lev-
els of the successive coupled-cluster approximation over
the whole range of the coupling paraxneter are tabulated.
For comparison, we also tabulate the ground-state ener-
gies evaluated by the other methods. It can be observed
that although the coupled-cluster method is not a varia-
tional method and the estimates of the ground-state en-
ergy at each level of approximation are not necessarily
upper bounds of the energy, the method does system-
atically improve its estimation of the energy as we go to
higher and higher levels of approximation. In accordance
with the numerical data, the convergence of our results is
fairly rapid, especially for the weak- and strong-coupling
cases. Since our choice of the starting state is dictated
primarily by our desire to use a calculationally manage-
able starting state and may not be a good one at all,
one may thus ixnprove the convergence of the successive
coupled-cluster approximation by using a better starting
state. It is also clear that over the whole range of the cou-
pling parameter, our results for the ground-state energy
are not only in good agreement with the exact numeri-
cal diagonalization results, but they are also better than
those &om earlier analytical studies. Accordingly, the
successive coupled-cluster approximation seems to be a

practical tool for calculating the ground-state energy of a
vibronic system since only the first few levels of approx-
imation will be needed in actual practice.

In summary, we have applied the successive coupled-
cluster approximation up to the third level to investigate
the ground state of the linear E-e Jahn-Teller system.
Taking into account both the anharmonicity of each vi-
brational mode and the strong correlation between these
two modes, which are induced by the spin Buctuation, the
coupled-cluster approximation provides a treatment bet-
ter than previous analytical studies over the whole range
of the coupling parameter. Its estimates of the ground-
state energies are also in good agreement with the exact
numerical results. Since the mathematical treatment in
this work is quite simple and could be easily extended to
the studies of the more complicated cases, we hope this
xnethod could be applied to the many-electron systems
where the cooperative dynamical Jahn- Teller effect plays
a major role.
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