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A quantitative study of the compressibility of the two-dimensional electron gas in GaAs heterostru-
tures is reported. Using a recently developed capacitive technique that avoids the large offset signals
characteristic of conventional methods, high-precision compressibility data at both zero and high mag-
netic field has been obtained. The curious negative sign of the compressibility in certain regimes is
shown to be a consequence of electron-electron interactions. Detailed numerical calculations show that
the zero-field data are fully consistent with the known exchange energy, provided the finite thickness of
the electron gas is properly included. At high magnetic fields, in the extreme quantum limit, the in-
tegrated compressibility signal is used to obtain a quantitative measure of the chemical potential discon-
tinuity associated with the v=1 fractional quantum Hall effect. Comparison with a theoretical model
which includes quasiparticle interactions has allowed a determination of the inhomogeneous broadening
due to density fluctuations and has provided evidence of a second, apparently distinct, source of disor-
der. While the origin of this disorder is not fully understood, the data are consistent with simple lifetime

broadening of the quasiparticle states.

I. INTRODUCTION

One of the central aspects our present understanding of
the fractional quantum Hall (FQHE) effect found in two-
dimensional electron systems (2DES) is the anticipated
incompressibility of the underlying quantum liquid
ground state.! While more than a decade has passed
since the discovery® of the FQHE, the great majority of
reported experimental findings are the result of electrical
transport measurements or, in a growing number of
cases, optical studies. Observing incompressibility, or the
lack of it, requires a thermodynamics experiment and
there have been very few of these, even in the integer
QHE regime. The reason for this is simply the small
number of electrons to be measured and often the pres-
ence of large unwanted background signals. Neverthe-
less, thermodynamic measurements provide information
about the 2DES not readily obtained from transport stud-
ies where the distinction between localized and extended
electronic states is critical. For example, several thermo-
dynamic measurements, including specific heat,* magne-
tization,>® and magnetocapacitance,’® have demonstrat-
ed the existence of substantial numbers of localized states
in the gaps between disorder-broadened Landau levels.
These nonconducting states are not directly detectable in
transport studies. Similarly, in the FQHE regime, despite
the impressive convergence between the measured'®
transport mobility gap and the theoretically predicted''
quasiparticle gap that has developed over the last few
years, we can expect thermodynamics experiments to re-
veal localized quasiparticle states within the gap. One
consequence of these localized states will be a suppression
of incompressibility.

In an earlier publication!? we reported qualitative re-
sults from a study of the thermodynamic compressibility
K of the 2DES at both zero and high magnetic field. The
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compressibility K is simply related to the total energy
E,.. (per unit area), chemical potential u, and areal densi-
ty N of the system:
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These relations illustrate the close connection of the
compressibility to the underlying equation of state,’ a
quantity of fundamental importance and one generally
more amenable to theoretical analysis than the transport
or optical response of the system. The advantage of a
highly sensitive and selective, capacitive technique'? and
the availability of high-quality samples allowed us to easi-
ly detect the thermodynamic signatures of electron-
electron interactions in the 2DES, not only in the frac-
tional quantum Hall regime,'* but also at zero magnetic
field where, to our knowledge, prior results did not exist.
These results highlighted the advantages of thermo-
dynamic probes of the 2DES by revealing qualitative as-
pects of the system not apparent in transport measure-
ments. Prominent among these was the finding that the
compressibility of the 2DES can become negative, owing
to interactions, at low enough densities.'>!> At zero mag-
netic field this effect is due primarily to the exchange en-
ergy while at high field'®!” the correlation energy plays a
significant role as well. An additional qualitative result
was the observation of deep minima straddling the
compressibility peaks at the v=1 and 2 FQHE states.
These minima were interpreted'?!8 as strong evidence for
the existence of the interacting quasiparticle gases central
to the theory of the FQHE.

In this paper, beyond elaborating on these earlier
findings, we present the results of a quantitative study of
the observed compressibility features. The plan of the
paper is as follows. Section II is devoted to experimental
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issues. Included is a description of the technique we have
developed for measuring du /0N, a discussion of how the
raw data is prepared for analysis and, finally, a brief ac-
count of how the samples are grown and processed. In
Sec. III we demonstrate that compressibility measure-
ments at zero magnetic field allow a quantitative deter-
mination of the exchange energy, so long as the finite
thickness of the 2DES is properly accounted for. Section
IV covers the high-field results, concentrating on the
fractional quantum Hall regime. The strong compressi-
bility signatures at the v=1 FQHE state are used to ob-
tain values for the chemical potential discontinuity asso-
ciated with this curious quantum liquid. Comparison of
the results with theory gives a quantitative measure of
the disorder in the sample and suggests that beyond sim-
ple inhomogeneous broadening due to density fluctua-
tions a second, independent, gap suppression mechanism
exists. In Sec. V we summarize our findings and conclude
the paper with remarks about possible future directions.

II. EXPERIMENTAL METHOD

A. Field penetration technique

The method employed here to determine the compres-
sibility of the 2DES is an improvement on a standard
capacitive one.!* In the conventional scheme the capaci-
tance between the 2D gas and a metal gate electrode is
measured. This capacitance is of course largely deter-
mined by the distance between the gate and the 2DES
and the dielectric properties of the intervening insulating
layer, but it also depends upon the density of states, or
compressibility, of the 2DES itself. The dominance of a
large geometric term in the measured capacitance essen-
tially forces one to vary some other parameter, like mag-
netic field, and then subtract off a large, and hopefully
constant, offset in order to uncover the 2D contribution.
This approach has been widely used to assess the
Landau-level density of states for 2D systems.””® There
are two major drawbacks to this technique. First, the
geometric term is usually not accurately known and
therefore the subtraction is uncertain. At zero magnetic
field this difficulty leaves even the sign of the 2D
compressibility unknown. The geometric term produces
a second difficulty as well: it may not actually remain
constant as the external parameter is changed. For ex-
ample, measuring the dependence of the 2D compressibil-
ity upon sheet density usually requires application of dc
potentials to the gate electrode in addition to the small ac
voltage used to measure the capacitance. The resulting
large dc electric field can alter the dielectric properties of
the spacer region between the gate and the 2D gas, and
thus change the magnitude of the geometric capacitance.
This leaves the subtraction procedure problematic. This
problem can be significant in modulation-doped GaAs
heterostructures where Si dopant layers often lie in the
spacer region between the gate and the 2DES.

The present capacitive technique avoids these problems
by, in effect, automatically subtracting the geometric
term. This is achieved by use of a double layer 2D sys-
tem and measuring the fraction of the ac electric field
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FIG. 1. Current flow onto lower 2DES layer vs dc gate volt-
age at T=0.3 K and zero magnetic field. This current is direct-
ly proportional to the differential penetrating electric field 8E -
The data are normalized by 81, =1.59 nA, the current mea-
sured with the top 2DES depleted. Inset: Schematic depiction
of experimental arrangement.

OE, applied by the gate which penetrates one layer and
impinges upon the second. The inset to Fig. 1 contains a
schematic diagram of the basic configuration. As the dia-
gram shows, the “top” 2D layer of the pair is grounded.
Assuming there is no direct stray capacitance between
the gate and the bottom 2DES, any ac electric field ter-
minating on the bottom layer will have penetrated the
top layer. Such an ac penetration field 8E, will require
current flow across the external impedance Z and thus
will generate a detectable voltage V. It is intuitively
clear that any nonzero 8E, exists only because of the
finite screening ability, or compressibility, of the top 2D
layer. Thus the entire observed signal voltage reflects the
compressibility of the top layer; there is no offset. Figure
1 also contains a typical scan of the ac current flowing
onto the lower 2DES due to the penetration of an applied
ac gate electric field through the grounded upper 2DES.
This signal is plotted versus the dc component of the gate
voltage used to provide a sweep of the average density of
the upper 2DES. The observed negative sign of the
penetration signal, one of the central findings of this
work, reflects the substantial impact of Coulomb interac-
tions on the thermodynamics of typical 2DES’s in GaAs.
In order that the measured currents flowing on and off
the lower layer accurately reflect the thermodynamic
properties of the upper 2DES, it is essential to keep the
measurement frequency low enough that the finite con-
ductivities of the two electron gases do not play any role.
If the conductivity is too low (a question of RC time con-
stants) then the field penetration will be enhanced above
its thermodynamic value. At zero magnetic field the high
mobility of the 2DES’s allows measurements in the kHz
range without producing significant quadrature signals or
affecting the capacitive component. At high magnetic
field, however, problems can arise, especially if either
2DES enters a quantum Hall state where its conductivity
o, vanishes exponentially at low temperature. Careful
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examination of the frequency and temperature depen-
dences of both phases of the observed signal voltage was
required to establish acceptable ranges for these parame-
ters. As a result, spurious conductivity effects do not
contribute to the bulk of the data presented here. The
only situations in which such nonequilibrium effects
could not be entirely eliminated was when the upper
2DES was very near to complete depletion or extremely
close to strong integer quantum Hall states. None of our
conclusions are affected by these cases.

To extract quantitative information about the 2D
compressibility from the observed penetration signal re-
quires consideration of several effects. Important among
these are two that stem from the finite thickness of the
2D layers themselves: a softening of the Coulomb repul-
sion between electrons and bending of the conduction-
band edge in the quantum wells. While both of these will
be addressed in detail below, we give here simple results
for the idealized case of two infinitely narrow quantum
wells separated by a distance s, with a gate electrode de-
posited a distance s; above the top 2DES. This geometry
is schematically illustrated in Fig. 2(a). Let the gate be

FIG. 2. (a) Simplified band diagram of the gated double
quantum well structure. The shaded region in each quantum
well denotes the Fermi distribution of the 2D electrons. The
chemical potentials i, , are measured relative to the bottoms of
the individual wells. (b) Mesa and gate layout. The central
mesa and gate squares are 250 and 210 um, respectively, on a
side. Each of the mesa arms is terminated with an indium Ohm-
ic contact and has two associated gates, on the sample front and
back sides, used for establishing separate connections to the in-
dividual 2D electron layers.
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biased to a voltage ¥ with respect to the common chemi-
cal potential of the two 2D layers which we assume to be
in equilibrium with each other. A small change 8V in the
gate voltage will produce a change 8E in the electric
field between the gate and the top 2DES and 8E, in the
electric field between the two layers. (We assume that
there is no change in the electric field beneath the bottom
layer; this is equivalent to assuming that there are no ad-
ditional parallel conducting layers in equilibrium with the
bilayer 2DES. We also assume that the layer spacing is
large enough that any interlayer many-body effects® can
be ignored.) Let du,, be the resultant changes in the
chemical potentials of the two 2DES’s (measured relative
to the bottoms of the respective quantum wells) and 6N, ,
the associated changes in the two sheet densities. We
have (in the SI units used throughout this paper)

edV=es 8E,+du, ,

du, =du, +es,0E, ,
and, from Gauss’s law,

SE,=(e/e)(6N,+6N,) ,

dE,=(e/e)8N, .

Combining these relations we arrive at

8V =8E,[s, td,(d,+s,)/(d,+d,+s,)] 4)
and, most importantly,

8E,/8E,=d,/(d,+d, +s,), (5)

where we have defined the fundamental distance parame-
ters:

d,,=(e/e*)(@u/dN),, . (6)

Equation (5) expresses the basic advantage of the present
experimental approach: measuring the penetrating elec-
tric field 8E,, which is proportional to the current flow-
ing onto the bottom 2DES, provides direct access to
dou/oN for the top 2DES without any offset signals.
From Eq. (1) we see that this constitutes a direct measure
of the compressibility K of the top 2DES. Note that Eq.
(5) shows that the penetration also depends on the
compressibility of the bottom 2DES. Usually, however,
the penetration is fairly weak (s, >>d, and d;) and the
bottom layer density remains close to its nominal value
for all dc gate voltages until the top layer depletes.
Indeed, for noninteracting 2D electrons
d,=d,=me#’ /m*e*=a,/4, with g, the semiconductor
Bohr radius. In GaAs a,/4=25 A and since the quan-
tum well spacing s, is several hundred A, the typical
penetration would be only a few percent, and would be
positive.?! As we have shown,!? this result is qualitatively
altered by electron-electron interactions, with the ob-
served differential penetration often being of opposite
sign to the applied field.

B. Data analysis

Experimentally it is the current 8I, flowing onto the
lower layer in response to the ac gate excitation voltage
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8V which is measured. This current is directly propor-
tional to the ac penetrating electric field 8E,. To employ
Eq. (5), however, we must also know the applied electric
field 8E,. While this can be accomplished by simultane-
ously measuring the current flowing onto both 2D layers
and then using Eq. (3) to determine the ratio 8E, /3E,,
we have chosen to employ a simpler, if slightly less accu-
rate, method that requires only the lower layer current be
measured. (In those instances where both methods have
been compared, the differénce in the deduced 8E, /8E|, is
completely negligible.) The simpler procedure relies on
estimating 8E, from the lower layer current measured
when the upper layer is fully depleted (by a large negative
dc gate bias), for then 8E,=08E,. Prior to depletion, of
course, the actual 8E value is larger by roughly the fac-
tor 1+s,/s; ~1.07 and depends on the penetration itself.
Defining 8Ej as the applied electric field when the top
2DES is depleted (d, — =), using Eq. (4) gives

8E,/SE}
[14y(1—8E, /8E} )]

8E, /8E,= , )

where y=(d,+s,)/s,~0.07. Equation (7) provides
8E,/8E, solely in terms of the measured bottom layer
current 61,, since

SE,/SE§ =8I, /5I} (8)

with 81} the current measured with the top layer deplet-
ed. While Eq. (7) does depend on the validity of the nar-
row well approximation, it does so only very slightly. In
essence, this equation merely corrects the estimate of the
applied field 8E, for the different distances between the
gate and the two 2DES’s. Since this correction is only
about 7% in our samples, any additional error incurred
by neglecting the thickness of the quantum wells can be
safely ignored. The truly important consequences of the
finite thicknesses appear in the measured 8E,, not in the
estimated 8E,.

Finally, since it is the dependence of the compressibili-
ty on sheet density that is desired, a conversion algorithm
between dc gate voltage and top 2DES density must be
established. Determination of the nearly linear propor-
tionality between these two quantities is greatly simplified
by the observation of signatures in the penetration signal
in an applied magnetic field that can be unambiguously
associated with specific Landau-level filling fractions. On
the other hand, the exact relation depends upon the
penetrating field itself. This can create significant non-
linearities when the penetration is strong, irrespective of
its sign. To account for this, we use Egs. (3), (4), (7), and
(8) to relate the ratio 8N, /8V to the differential penetra-
tion 8E,/8E; and normalized lower layer current
81 b / 81 : M

8N, /8V=—""B(1—8E, /8E} )=—S—B(1—8I, /5I3) .
es; es;

9)

This equation is then numerically integrated to determine
N,(V). The factor B, typically around 0.9, has been in-
serted to adjust this relation to fit the known features ob-

served in an applied magnetic field. Given the uncertain-
ties in the dielectric properties of the doped semiconduc-
tor layers between the double quantum wells (DQW) and
the gate and the simple narrow-well model used to derive
Eq. (9), this ~10% correction seems reasonable. A
minor complication with this scheme concerns the ap-
propriate endpoints for the integral of Eq. (9). In particu-
lar, to establish the gate voltage at which the density
N,=0 would require the integration to span the region
where the upper 2DES is depleting. This is problematic,
however, since extremely close to depletion the observed
penetration eventually must become polluted by the van-
ishing sheet conductivity. This problem is dealt with by
integrating Eq. (9) across depletion but adding on a con-
stant of integration N . This offset, along with the pa-
rameter f3, is then adjusted to give a best fit to the density
fixed points observed in a magnetic field. While the typi-
cal B values are around 0.9, the accompanying density
offsets are typically only N g~2.0X10° cm™2, about
2.5% of the nominal ungated density of either 2D layer.
The constant N sets a lower limit on the density at
which we can draw conclusions about the 2DES
compressibility.

In the foregoing discussion we have largely ignored the
effect of the lower layer compressibility, which enters via
the parameter d,, assuming it has little quantitative im-
pact. This is almost always an excellent assumption, pro-
vided the lower layer does not enter a quantum Hall
state. Not only is d, numerically much smaller than s,,
the quantum well center-to-center spacing, but, since the
penetration effect itself is small, the density N, of the
lower layer remains close to its nominal value. At zero
magnetic field, in fact, the net change in N, over the en-
tire range of gate voltage (before depletion of the upper
layer) is only about 10%. Consequently, our approach
has been to simply replace d, by a constant which is
readily determined from applying Eq. (5) to the observed
penetration at zero gate bias where, since the DQW is
then well balanced, we can assume d,=d,. It is com-
pletely adequate to use the uncorrected penetration,
8E,/SE ¢, for this determination.

C. Samples and processing

The double layer 2D systems employed in this work
are standard GaAs/Al Ga,_,As double quantum wells
(DQW) grown by molecular-beam epitaxy (MBE) on
(100 )-oriented GaAs semi-insulating substrates. While
a number of samples with varying structures have been
grown and studied, specific parameters will be given here
only for the one used in the present quantitative work.
The compressibility data from this sample show that its
upper 2DES is less disordered than that in any similar
sample yet examined. The DQW consists of two 200-A-
wide GaAs quantum wells separated by an undoped 175-
A Al 33Gag ¢;As barrier. The well center-to-center dis-
tance is thus 5, =375 A. The barrier is sufficiently thick
that tunneling, while detectable, is so weak that it plays
no role in these experiments. The DQW is embedded in
thick Alj ;3Gag ¢;As cladding layers. The total distance
between the sample top surface and the center of the top
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GaAs well is s, =5300 A. The lower GaAs well is popu-
lated with electrons donated by a Si 8 layer 1650 A below
it in the alloy cladding layer while a similar Si layer is de-
posited 1400 A above the upper GaAs well. This doping
configuration® results in high-mobility 2D gases with
about 7.5X 10 cm ™2 carriers in the lowest subband of
each quantum well. Standard magnetotransport mea-
surements on the individual 2DES’s yield mobilities of
2.1 and 0.6 X 10% cm?/Vs for the upper and lower layers.
Several fractional quantum Hall states are readily detect-
ed in the transport at high magnetic fields.

The basic measurement geometry is illustrated in Fig.
2(b). A square mesa, 250 um on a side, is created using
standard photolithographic techniques. Four 20-um-
wide arms extend from the sides of the mesa. Each is
eventually terminated with a diffused In Ohmic contact.
The gate electrode used to form a capacitor is deposited
onto the sample front surface. Note that this gate
(210X210 pum) does not overlap the mesa edge except
where thin contact arms extend out and away from the
central mesa. This was done in order to reduce the direct
stray capacitance between the gate and the lower 2DES
occurring where the gate metal overlaps the mesa edge.
This stray capacitance, though small, adds a positive
offset to the apparent 8E, /8E values. The nonoverlap-
ping gate geometry has reduced this capacitance by a fac-
tor of about 12 relative to our earlier measurements.'?
This stray capacitance is estimated to not exceed 0.05 pF.
This value is comparable to the fluctuations in the base-
line differential penetration at zero gate bias observed
from one sample cooldown to the next.

As Fig. 2(b) shows, each of the arms extending out
from the central mesa is crossed by two additional gates,
one on top the sample and the other underneath the
DQW on the sample backside. These gates are used to
establish the separate electrical connections to the indivi-
dual 2D layers essential to the entire technique. As de-
tailed elsewhere?’ any of these gates can be biased so as to
locally completely deplete the nearer 2DES without seri-
ously affecting the remote layer. In this way an Ohmic
contact at the end of any arm is connected to the central
mesa through only one of the 2D layers. In practice, for
these experiments two of the arms are completely “cut
off” by biasing the two appropriate top gates strongly
enough to deplete both of the underlying 2DES’s. For
the remaining two contact arms, one is rendered a top
layer contact by biasing the associated backside gate till
the lower 2DES is locally depleted, while the other is
made a bottom layer contact by biasing the relevant top
gate. (In order that the required back gate biases are not
too large, and reasonable lateral definition of the gated
region is maintained, the sample is thinned to a total
thickness of around 50 um before the backside gates are
deposited.)

III. ZERO MAGNETIC FIELD

A. Experimental results

Figure 1 shows the detected ac current 8I, at zero
magnetic field flowing onto the lower 2DES in response

to an ac gate excitation of 20 mV at 2 kHz. The data
have been normalized, as discussed above, by the current
8I; measured when the upper 2DES is fully depleted.
The dc component of the gate voltage V is swept from
+0.5V down to —0.8V, reducing the upper 2DES densi-
ty N, from a maximum of about 1.3 X 10" ¢cm ™2 down to
zero at V= —0.6 V. These data were taken at a tempera-
ture of T=0.3 K, but no significant changes were ob-
served up to about T=2 K, except very close to de-
pletion. As the figure shows, the sign of the differential
penetration field 8E, (<8I,) is negative over the entire
range of gate voltage except near depletion where an in-
creasing fraction of the applied electric field 6E begins
to penetrate. Immediately prior to depletion the data
suggest an incipient negative divergence in du /0N for the
upper 2DES.

To convert between dc gate voltage and sheet density
the differential penetration field is measured with a small
magnetic field B applied perpendicular to the 2D planes.
Figure 3 contains data obtained at B=0.2 T. The oscil-
lations observed at this magnetic field reflect the modula-
tion of the 2D density of states dN /du due to the forma-
tion of Landau levels. At each local maximum the Fermi
level of the upper 2DES is centered in the gap between
two Landau levels. At this low magnetic field the spin
Zeeman splitting of the levels is not resolved. Thus, on
moving from one maximum to the next the density in the
upper 2DES changes by AN, =2eB /h and the filling fac-
tor v,=hN, /eB by Av,=2. Furthermore, by observing
the magnetic-field dependence of the oscillation pattern,
it is possible to assign a precise value of v, and hence den-
sity, to each maximum in the penetration signal. The
solid dots in Fig. 3 show this determination.

As outlined earlier, the variation of N, with gate volt-
age depends on the differential penetration itself and Eq.
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FIG. 3. Density calibration. The solid oscillating curve
shows the uncorrected differential penetration in a B=0.2 T
magnetic field. (The lightly dotted curve shows the zero-field
data.) Each peak corresponds to a specific filling fraction v, and
therefore density N, =v,eB /h; these are represented by the solid
dots. The diagonal solid curve is the final density-gate voltage
calibration obtained after integrating Eq. (9), with the zero-field
data inserted, and adjusting the parameters 8 and N 4 for a best
fit to the solid dots.
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FIG. 4. Differential penetration vs upper 2DES density at
T=0.3 K and zero magnetic field. The horizontal dashed line
assumes noninteracting electrons; the dotted curve includes the
exchange energy but omits all finite thickness effects.

(9) expresses this dependence. The solid line in Fig. 3 re-
sults from integrating Eq. (9) (with the zero field 81, /81
data shown in Fig. 1 inserted) and adjusting the parame-
ters B and N 4 for a best fit to the set of densities deter-
mined from the Landau- level analysis of the B=0.2 T
data. With s, =5300 A and e=11. Og, (appropriate?* to
the Alj;;Ga, ¢;As alloy layer above the DQW), a least-
squares fit gives $=0.877 and N g =2.0X10° cm 2

The final step in the data reduction consists of using
Egs. (7) and (8) to make the small (~7%) correction to
the estimated applied gate field 8E,. To apply these
equations we need to estimate d,, the parameter
reflecting the lower layer compressibility. As mentioned
above, this is done by simply applying Eq. (5) to the mea-
sured 8E,/8E; value obtained at zero gate bias where
the two 2DES’s have nearly the same densities. As ex-
pected, the resulting estimate, d, =~ —12 A, hasa negligi-
ble impact since it is so greatly exceeded by the quantum
well center-to-center spacing s, =375 A and distance to
the top gate s, =5300 A. Figure 4 contains the final plot
of the fractional differential penetration 8E, /8E versus
top layer density N,.

B. Analysis and discussion

The qualitative origin of the observed negative
differential penetration field, and thus the negative
ou /9N for the upper 2DES, lies in the dominance, at low
density, of Coulomb interactions over kinetic effects. For
a noninteracting infinitely thin 2DES du/dN is a posi-
tive constant, independent of density. As mentioned
in Sec. II, for GaAs under these assumptions,
d,=dy,=ay/4=d,=25 A. With s,=375 A, the quan-
tum well center-to-center spacing, the expected
differential penetration would be, using Eq. (5),
8E,/8E;=1/(2+s,/d;)=0.059. The dashed line in
Fig. 4 shows that this simple estimate is completely
wrong. On the other hand, including electron-electron
interactions, even at the lowest level, lays bare the origin

of the negative compressibility. For this model of the
ideally thin 2DES, the total energy per unit area is, in
Hartree-Fock approximation,

Eff =(lep+e, N, (10)

where N is the sheet density, eF=N1rﬁ2/m‘ the Fermi
energy, and €. the exchange energy per electron. (For
now we are ignoring any contributions to the energy aris-
ing from the confinement of the 2DES in the quantum
well.) In this ideal 2D model the exchange energy is
given by?

Eex=—%(2/ 1/2 e’ N1/2 11)
Using Eq. (1) allows the calculation of du /dN:
2
_aﬂ_:ﬂ — 172
aN . [1—(N./N)"’*] (12)

with the critical density N,=(87°d}) '~6.5X10'°
m~ 2. While at very high density du /3N approaches the
noninteracting result, as N is reduced it deviates more
and more, becoming negative for N <N_.. As N—O0 Eq.
(12) predicts that du/dN diverges negatively, as N /2,
Again employing Eq. (5) (with the lower layer density set
to N, =7.5X10'° cm™2) leads to the dotted curve in Fig.
4. Unlike the noninteracting result, the figure shows that
Eq. (12) captures the essential physics underlying the ex-
perimentally observed differential penetration.

It is worth noting that the interaction-induced diver-
gence in du /0N is truncated, by disorder presumably, at
a density of only 7X10° cm™2. This is very low by the
standards of GaAs heterostructures. Using the conven-
tional parameter r,=a; '(7N)~!/2, this density corre-
sponds to r,=6.8. (We emphasize that the effects of
finite sheet conductivity do not become significant until
still lower densities, comparable to N z=2X 10° cm ™2,
are reached.) The truncation of du /9N implies, crudely,
that the electron-electron interaction has become weaker
than the disorder potential V;,,. From Eq. (11) then, we
estimate Vg, ~1.0 meV.

A system with negative thermodynamic compressibili-
ty is generally unstable. This does not apply, however, in
the present case because the measured differential
penetration field reflects only that portion of the total
compressibility due to the 2DES itself. In Egs. (10)-(12)
the spatial separation between the 2DES and its associat-
ed positive neutralizing background (in the donor layers
and on the gate electrode) has been ignored. The long-
range electric fields due to these separations produce
large capacitive contributions to the total energy which
render the total compressibility positive. In fact, the
main advantage of the present experimental technique
lies in its discrimination against these long-range electric
fields. Nevertheless, interesting stability questions can
arise in situations closely related to the present one. For
example, it has been suggested? that in a closely spaced
DQW all the electrons will jump into one of the wells if
the density is low enough, simply because the negative
o /9N arising from exchange will eventually dominate
the capacitive term. In addition to such global instabili-
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ties, the negative compressibility might also create in-
plane inhomogeneities, such as charge-density waves.
While the exchange contribution to the total energy is
the essential reason that the observed 2DES compressibil-
ity becomes negative at low density, it is clear from Fig. 4
that other quantitative effects are at work as well. For
example, consider the many-body corrections that go
beyond Hartree-Fock approximation to include the
effects of electron-electron correlation. Tanatar and
Ceperley’s?’ extensive Monte-Carlo calculations of the
ground-state properties of the ideal 2DES at zero mag-
netic field show, however, that for the range of densities
examined here the effect of correlation on the compressi-
bility is not very large (~10-20 % relative to the nonin-
teracting case). A much more significant, if less funda-
mental, class of corrections to our experimental results
stems from the finite thickness of the quantum wells.
These include effects of the softened Coulomb repulsion
between electrons and the Stark-like shifts of the quan-
tum well confinement energies which accompany changes
in density (or gate voltage). We begin by considering the
Coulomb softening only. In Hartree-Fock approxima-
tion, Stern?® described how to calculate the exchange en-
ergy including the extent of the electronic wave function
in the z direction. In terms of the quantitity
re=ay "(wN)" /2, the “thickened” exchange energy is

e?
8mea,

_ 82
3

Eex ™

rF(r,,0(2)) . (13)

This result is identical to Eq. (11), aside from the form
factor F(r,,¢(z)) which depends upon the shape of the
electronic wave function ¢(z). To evaluate the form fac-
tor F we have made the simplifying assumption that ¢(z)
is adequately approximated by the ground-state wave
function of an infinite square well of width w. Borrowing
an integral from Price,”” we have numerically evaluated
the function F which, in this case, depends on the single
variable {=w /ayr;. Once F(§) is known Eqgs. (1), (10),
and (13) are employed to determine o /ON. (The details
are given in the Appendix.) Since the finite thickness
reduces the magnitude of the exchange energy it can only
lessen the tendency toward negative compressibility and
this, as Fig. 4 proves, will merely worsen the agreement
between theory and experiment.*

In order to completely account for the finite
thicknesses we have to include contributions to the total
energy E,, coming from the confinement of the 2DES in
the quantum well. If the subband energies in the well
were independent of electron density N, the increment to
E,,, would be linear in N and would therefore not affect
du/dN (=3d%E,,/dN?. This is, unfortunately, not a
good approximation here and the distortions of the po-
tential wells owing to the space charge of the electrons
are significant. With the subband energies depending
upon electron density, a nonzero effect on du /9N results.
To assess these band-bending effects we have self-
consistently solved the Schrodinger and Poisson equa-
tions for the double quantum well system;>' the details of
these numerical procedures are left to the Appendix. As
will become evident, this has led to quantitative agree-

ment with the experimental results.

The inclusion of these Hartree band-bending effects
makes a negative contribution to the differential penetra-
tion field. When electrons are added to the upper quan-
tum well, by positively incrementing the gate bias volt-
age, the induced electric field pulls the 2DES toward the
upper interface of the well. This makes the potential
more asymmetric, and causes the ground-state energy to
fall relative to the lower interface of the quantum well.
While if taken alone this would produce a negative
9L /0N, it is offset by the positive contribution from the
noninteracting density of states (i.e., d). In the absence
of interaction effects we have found the net du/0N
remains positive at all densities in our samples, at least at
zero magnetic fields. We emphasize that these Hartree
effects, while pushing du /3N more negative, are qualita-
tively distiguishable from the interaction effects. In par-
ticular, they are only weakly density dependent and lack
the divergence in the limit N —O0 that is characteristic of
the many-body effects.*?

The numerical approach we have taken is to self-
consistently determine the electron density in each quan-
tum well for a given distribution of the positive back-
ground charge. This background charge is assumed to lie
in two sheets, one above and one below the DQW, each
producing a uniform electric field. The action of the gate
electrode is simulated by simply altering the positive
background density above the DQW. Then, after arbi-
trarily dividing the total electron density (equal to the to-
tal background density) between the quantum wells, the
ground subband energy and Fermi level in each well is
separately determined by self-consistent solution of the
Schrodinger and Poisson equations. If a mismatch of the
Fermi levels exists, charge is transferred from one well to
the other and the calculation is repeated. This process is
iterated until convergence with matched Fermi levels is
obtained. (Note that this does not generally imply a flat-
band condition in the barrier layer.) The assumption that
the wells can be treated independently is justified by the
tiny magnitude (<10~ * meV) of the tunneling-induced
splitting of the ground symmetric and antisymmetric
states of the DQW when it contains equal densities in
each well. Once the density in each well is determined
for a large number of gate charge levels, the differential
penetration 8E, /8E, is determined from the variation of
the lower quantum well density N, with the background
charge on the gate N,. After pairing these results with
the calculated upper quantum well densities N, compar-
ison with experiment can be made.

Many-body effects have been incorporated into these
calculations in either of two ways. The first approach
treats interactions in a thickened 2D Hartree-Fock ap-
proximation. At each step in the interwell self-
consistency loop, the subband energy g, in each well is
calculated in Hartree approximation, i.e., ignoring ex-
change. The chemical potentials are then determined by
adding to g, the appropriate Fermi energy € and an ex-
change contribution u.,. The interwell loop is then al-
lowed to proceed. The term p., is calculated from Eq.
(13) [u.,=09(Ne.,)/dN] with the simplifying assumption
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that the form factor F remains adequately approximated
using infinite square well wave functions. Consequently,
this method does not treat the exchange fully self-
consistently. We believe, however, that the errors in-
curred are small; this is supported by the near unit over-
lap (>98%) between the actual Schrdodinger-Poisson
wave functions and those of an infinite square well.

For our second method, we have employed the local-
density approximation (LDA). In this approach ex-
change (and correlation) are treated three dimensionally
by introducing an additional z-dependent term v, (¢(z))
in the potential which depends upon the 2D subband
wave function ¢(z). This term is just the exchange-
correlation contribution to the chemical potential of a
fictitious homogeneous electron gas with 3D density
N|é(z)|%. Following Stern and Das Sarma,** we employ
the Hedin-Lundqvist** functional for v,.. With this term
included in the potential, the calculated subband energies
€y include the many-body corrections. The chemical po-
tential is then found by simply adding the Fermi energy:
p=¢go+er. (We remark that if the correlation energy is
omitted from the LDA functional, the calculated du /0N
is only slightly changed over the density range appropri-
ate here.)

Figure 5 compares these numerical results with the ex-
periment. While both the experiment and the numerical
results yield the differential penetration SEP /8E,, we
have chosen to convert both into values for d, < du, /dN,
for the equivalent narrow-well structure. To do this the
lower layer parameter d, is first determined from the
(measured or calculated) differential penetration obtained
when the DQW is balanced by applying Eq. (5) with d,
set equal to d,. Equation (5) is then inverted to obtain d,
at all densities. As Fig. 5 shows, the inclusion of both the
Coulomb softening and the Hartree band bending into
the calculations has produced good agreement with the
data. The two different approaches for incorporating the
many-body effects give results which the experiment can-
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FIG. 5. Compressibility parameter d, vs density from the
zero magnetic-field data. Dashed and dotted curves are theoret-
ical calculations in local-density approximation and thickened
2D exchange model, respectively. These calculations contain no
adjustable parameters. The error bars on the dotted curve
reflect £15% changes in the exchange energy.
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not distinguish. The error bars attached to the thickened
2D Hartree-Fock results show the effect of a +=15%
change in the exchange energy.

The most significant known sources of systematic error
are the run-to-run fluctuations in the baseline differential
penetration at zero gate bias, the small, but inevitable,
direct stray capacitance between the gate and the lower
2DES, and the uncertainties in the density calibration.
The run-to-run fluctuations and the (estimated) direct
stray capacitance are of comparable magnitude, about
0.05 pF. This translates into shifts in d, of only about 3
A, roughly equal to the difference between the two nu-
merical schemes used to incorporate the many-body
effects. The uncertainty in the density calibration is im-
portant only very close to depletion where, as already
mentioned, it is estimated not to exceed 2X 10° cm 2. As
Fig. 5 shows, this does not noticeably degrade the agree-
ment between theory and experiment.

These zero magnetic-field experiments serve to illus-
trate the power of the experimental technique employed
here. At the qualitative level our data clearly reveal
strong signatures of electron-electron interactions in the
thermodynamic properties of typical 2D electron systems
in GaAs. From detailed calculations we have shown that
the experimental results are in good accord with our un-
derstanding of exchange effects in 2D systems, once vari-
ous technical issues are addressed. The good agreement
between theory and experiment found at zero magnetic
field suggests that this experimental technique will be
especially useful in situations where our understanding of
the many-body physics is less developed. At high mag-
netic field, in the so-called “extreme quantum limit,”
where correlation effects dominate, this is very much the
case and it is to this regime that we now turn.

IV. HIGH MAGNETIC FIELD

A. Experimental results: Qualitative

Figure 6(a) shows the normalized differential penetra-
tion field {")El,/SE0 at B=6 T and T=0.4 K, the raw
data having been reduced according to the scheme de-
scribed in Sec. II. These, and almost all other high
magnetic-field data, were obtained using a gate excitation
voltage of 10 mV at 7 Hz. This frequency was found to
be adequate, for T7=0.4 K and B <13 T, to eliminate
spurious signals arising from the finite 2DES conductivi-
ty o,., except when the upper 2DES entered integer
quantum Hall states or was very close to depletion.
These experimental constraints were established by a
careful examination of the frequency and temperature
dependences of both signal phases when the upper layer
was in the v=1 fractional quantum Hall state and o,
was therefore extremely small.

The gate voltage-to-density calibration procedure fol-
lowed the method outlined in Sec. II. At magnetic fields
above ~6 T, however, the Fermi level for the upper
2DES lies in the lower spin branch of the lowest Landau
level at all gate voltages used. Therefore, fractional quan-
tum Hall features must be used as the fixed points in the
density calibration. For example, in Fig. 6(a) the prom-



1768 J. P. EISENSTEIN, L. N. PFEIFFER, AND K. W. WEST 50

T T T T T

B=6T T=0.4K

(@) ]

05 . P . . .
-08 -06 -04 -02 00 02 04
Gate Voltage (V)

, dv/b

—-1.0 Il L 1 1
0.0 02 04 06 08 1.0
Filling factor v

FIG. 6. (a) Differential penetration at B=6 T and T=0.4 K
vs gate bias. FQHE states at v,= 5 and % are highlighted. (b)
Compressibility parameter d, (divided by the magnetic length
1y) vs filling factor v,. The arrows denote the minima created by
quasiparticle interactions. Note the truncated negative diver-
gences as v, —0 and 1.

inent local maxima in 8E,/8E, at ¥y~ —0.28 and 0.10
V correspond to the FQHE states at filling fractions
v,=1 and 3, respectively, and these have been used for

the density calibration for this data set. (The fitting pa-
rameters $=0.923 and N 3=2.0X 10° cm 2 are virtually
the same as those found at zero magnetic field and similar
values were obtained at all other magnetic fields.) As at
zero magnetic field, the 8E, /8E, data are converted into
d,(x0du,/dN,) values for the equivalent narrow well
structure by inverting Eq. (5). These data are displayed
in Fig. 6(b) with d: in units of the magnetic length
I,=(#/eB)"/? (105 A at 6 T) and the upper 2DES density
N, converted into Landau-level filling fraction
v,=hN, /eB.

Figure 6(b) contains several qualitative features which
merit discussion. Away from the peaks in du /9N at the

1 and Z FQH states (which become positive at higher

magnetic fields) the 2DES compressibility is negative
throughout the extreme quantum limit v, <1. This is not
surprising since the Landau quantization quenches the
kinetic energy.’® In a noninteracting system this would
leave du/dN =0; with interactions the compressibility
will be negative. (As at zero magnetic field, of course, the
degree of negative compressibility will depend upon the
layer thickness.) The figure also shows that the divergent
trend of du /AN as the density goes to zero (v, —0) exists
at high fields just as it did at B=0, only it is stronger
now. In this limit the total energy per electron approxi-
mates® that of a classical Wigner crystal for which®’

ewe= —0.7821(e%/4mely)v'/2.  This produces'® a

du/dN <« —N " 2xy~1/2 divergence almost twice as
strong as that due to simple exchange [Eq. (12)] at B=0.
Another interesting feature here is the presence of a simi-
lar divergence as v, — 1. This result, which has also been
seen in the Si metal-oxide semiconductor system,!” can be
understood by appealing to particle-hole symmetry. As
v,—1 the system may be regarded as equivalent to a di-
lute 2D gas of holes with density 1—v,. For such a sys-

tem one expects du/dN < —(1—v,)” "% as v, —1. The
observed weakness of this cutoff divergence, in compar-
ison to the v, —0 case, indicates a breaking of particle-
hole symmetry. Landau-level mixing, which could be im-
portant at these low magnetic fields, is one possible
source of the symmetry breaking. But even the Hartree
band-bending effect, which produces a density-dependent
negative contribution to du /0N, will create an apparent
particle-hole asymmetry.

The overall density dependence of du/dN in the ex-
treme quantum limit reflects several factors: Hartree
band bending, thickness-induced softening of the
Coulomb interaction, and the many unknown features of
the density-dependent total energy. In an approach
designed to elucidate the gross features of the compressi-
bility at high magnetic fields, Efros'® has calculated
o /0N by approximating the total energy with the inter-
polation formula of Fano and Ortolani.®® This formula,
appropriate to an ideally thin 2DES in the extreme quan-
tum limit 0<v <1, contains no structure due to the
FQHE (i.e., no cusps) but does possess the correct limit-
ing behavior’’ as v—0 and 1 and is manifestly particle-
hole symmetric. The (two) fitting parameters in the for-
mula were adjusted to closely approximate various
ground-state energy estimates from exact diagonalization
studies of few-electron systems. Efros'® argues that al-
though the formula has no first-principles validity, it
represents a ‘“backbone”*® density dependence which
should be useful when FQHE features are washed out by
disorder or high temperatures. Figure 7 compares the
O /9N calculated from the Fano-Ortolani*® formula (dot-
ted curve) with the experimental results at B=11 T.
This comparison is exactly analogous to the zero-field re-
sults contained in the inset to the figure. In both cases
the dotted curves represent a calculation for an ideally
thin 2DES. As the figure makes plain, away from the
strong FQHE structure around v,=1 and %, this naive
calculation agrees astonishingly well with the data. The
apparent quantitative agreement is, however, fortuitous.
It results from the approximate cancellation of the two
main effects of the finite layer thickness: softened
Coulomb interactions and Hartree band bending. At
B =0 both effects were incorporated into the Hartree-
Fock numerical calculations and good agreement with
experiment was achieved. At high field, although lacking
an analog to the finite thickness form factor of Eq. (13)
which softens the electron-electron interaction, we can
include the effect of the Hartree band bending. This is
done (see Sec. III and the Appendix) by first solving the
Schrédinger-Poisson equations to determine the quantum
well energy levels €, and then setting the Fermi level in
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each well to ep =gy + +#iw, + 1o, Where pgg is the chem-
ical potential contribution derived from the Fano-
Ortolani formula. The dashed line in Fig. 7 gives the re-
sult of these calculations. As at B =0, the effect of the
band bending is to push the calculated i /3N more nega-
tive, reducing the agreement with experiment to the
merely qualitative. A similar calculation for the B=0
case is shown in the inset; the downward shift of du /0N
is, not surprisingly, almost quantitatively identical.>> The
softening of the Coulomb interaction will push the curves
back up again; at B=0 this eliminates about half the
band-bending effect whereas at high B, where interactions
are considerably stronger, the softening apparently al-
most completely cancels the Hartree shift.

In this connection we note that at v, =1 the value of
o /9N, once the Hartree shift is removed, is numerically
quite small, implying the half-filled Landau level is highly
compressible. For the B=11 and 13 T data in Figs. 7
and 8 we estimate a Hartree-corrected value of
d,/ly= —0.01 although we stress that the systematic un-
certainties in this value are considerably larger, ~£0.04.
Recent theoretical work® suggests that the 2DES at v=1
may be regarded as a Fermi liquid of massive composite
fermions*® in zero effective magnetic field. If disorder
and interactions between the composite particles could be
ignored, the compressibility would determine their mass:
du/dN «1/m*. The very small observed du/dN at v=1
thus points to a large mass; even with d,/l;=0.04, the
estimated systematic uncertainty, the deduced mass is
about 8X the bare GaAs conduction-band mass. Obvi-
ously, reduced experimental uncertainties and theoretical
estimates of the effects of disorder and interactions be-
tween the composite fermions are needed in order to
refine this estimate of the mass.

The most interesting qualitative features apparent in
the high-field data, however, are those associated with

0.0 0.1 0.2 0.3 0.4 0.5
Filling factor

FIG. 7. Compressibility parameter d, /I, vs filling factor v, at
B=11T and T=0.4 K. Dotted curve is the Fano-Ortolani*®
approximation employed by Efros'® which assumes an ideally
thin 2DES. Dashed curve includes the Hartree finite thickness
correction but not any softening of the Coulomb interaction.
Inset: Analogous comparison at B=0. Dotted curve represents
ideally thin exchange while the dashed curve includes the Har-
tree correction.

1769
5 | 3[x100 B=145T B=13T |
$
S
So \ g |
<
1 | -sb, . . .
3
o
0
-1 2/7
0.0 0.1 0.2 0.3 0.4

Filling factor

FIG. 8. Compressibility parameter d, /I, vs filling factor v, at
B=13 T and T=0.4 K. In addition to the strong 1 state, the
v,=% FQHE state is also easily seen. Inset: B=14.5 T data
showing a weak feature near v,=§. (A slowly varying back-
ground has been subtracted to obtain ths plot.)

the fractional quantum Hall effect. As Fig. 6 shows, both
the + and 2 FQHE states produce local maxima in
du /0N, reflecting the “incompressibility” (i.e., the energy
gap) of the liquid ground state. Although the observed
strength of the FQHE peaks in du /3N can be enhanced
significantly by increasing the magnetic field (as in Figs. 7
and 8), the maximum observed penetration we have
recorded (~30% for the 1 state at B =13 T) is still con-
siderably less than unity. This is not a finite temperature
effect but is instead due to the “disorder” of the 2DES.
This disorder may stem from both inhomogeneous and
homogeneous sources, including screened long-range den-
sity fluctuations*! and quasiparticle lifetime broadening.*?

Immediately adjacent to the peaks in du/dN at v, =1
and  are local minima, indicated by arrows in Fig. 6(b).
These features are, at one level, merely indicative of
downward curvature of the total energy vs density rela-
tion on each side of the upward FQHE cusp. This down-
ward curvature has, however, a simple heuristic explana-
tion.'>'® Close to a precise fractional filling v, (e.g., L)
the 2DES consists of the Laughlin condensate plus a di-
lute gas of quasiparticles.! These are either quasielect-
rons or quasiholes, depending on whether the filling fac-
tor v is greater or less than v,. In either case their densi-
qp 18 proportional to |v—v|. Being charged objects
the quasiparticles will interact and produce, in exact
analogy to the v,—0 and 1 cases, new negative diver-
gences in du /AN, scaling as |v—vy| 12, as v—v,. Cou-
pled with the stronger positive singularity due to the
FQHE cusp itself, finite disorder will convert these quasi-
particle signatures into local minima straddling a central
peak. The observation of these minima represents direct
thermodynamic evidence for the interacting quasiparticle
excitations central to the theory of the fractional quan-
tum Hall effect.

Increasing the magnetic field enhances the strength of
the observed FQHE features in the compressibility
significantly. The main panel of Fig. 8 contains du /0N
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data obtained at B=13 T, while the inset shows a re-
stricted set of 14.5-T results (from which a smooth back-
ground has been subtracted). Both data sets were taken
at T=0.4 K. At these fields the main v,=1 peak is
strongly positive, the differential penetration reaching
+30% at B=13 T. A strong peak is also observed for
the v, =% state (at lower magnetic field the I state is seen
as well). Less obvious at 13 T is the % state, although a
weak maximum has been detected there at B=14.5 T
(not shown in the inset). The B=14.5 T data were ob-
tained at the increased measurement frequency of 23 Hz.
This was done to reduce the preamplifier noise and hope-
fully detect a compressibility signature for the v, =1
state. At this high frequency the data very near 1 filling
were polluted by finite conductivity effects but over the
range 0.32>v,>0.03, including the Z and 1 states, they
were not. As the inset shows, a clearly defined maximum
is found close to v, = 1. While this is almost certainly the
FQHE 1 state, it is slightly displaced in density
(v, ~0.01). The reason for this is unknown but it is
most probably due to uncertainties in the gate voltage-
to-density calibration. (At these high fields the 1 and £
states are used as fixed points and they are unfortunately
rather close together.) In any case, the peak near 1 filling
is fully 100 times smaller than the corresponding one at
v, =1

Intriguingly, the observed du/dN shows the charac-
teristic signature of strong electron-electron interactions,
i.e., a tendency toward divergence at low density, down
to a filling factor of about v?‘i“zO. 025 while, at the same
time, exhibiting no significant FQHE features for
v, <2/7. This suggests that the FQHE, while dominat-
ing the electrical transport parameters, really represents
rather weak additional correlations in an already strongly
interacting system. This view is consistent with the re-
cent observation*® of a deep gap in the tunneling density
of states of the 2DES that exists over wide ranges of
filling factor. This gap is a purely collective effect and yet
it is only weakly affected by the FQHE.

B. Chemical potential jump at v=1

A discontinuity Ay in the chemical potential at certain
magic densities is perhaps the single most important pre-
diction of the theory of the FQHE. Heretofore Ap has
only been inferred, almost exclusively44 through its
theoretical connection to the measured excitation gap E,
extracted from the thermally activated transport
coefficient p,,. For the v=p /q FQH states the predicted
ratio Au/E, is just g, the inverse of the quasiparticle
charge.1 As mentioned in the Introduction, transport
determinations of E, are insensitive to localized states in
the gap, measuring instead of mobility gap between ex-
tended quasiparticle states. In contrast, by simply in-
tegrating the observed compressibility du /0N we can ex-
tract the first thermodynamic determinations of Apu.
These results reflect all electronic states, both extended
and localized.

Figure 9(a) illustrates the temperature dependence of
the compressibility around the v, =1 and £ FQHE states
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FIG. 9. (a) Temperature dependence of v,=1 FQHE

compressibility signature at B=13 T. The nearly horizontal
dashed line is a fit to the high-temperature background
compressibility. (b) Chemical potential around the v, =4+
FQHE obtained by integrating the compressibility data in (a).

Dashed line is the integral of the background compressibility.

at B=13 T. Significant temperature dependence persists
to below 0.5 K, although the data suggest a leveling off
below 0.4 K. It was very difficult to obtain reliable ther-
modynamic data (for the v, =1 peak) below 0.36 K at
this magnetic field owing to the rapidly falling sheet con-
ductivity. At temperatures above about 2 K the peak at
v, =1 disappears leaving only a smooth negative back-
ground compressibility. The dashed line is an estimate of
that background obtained by a linear fit to the T=1.85
K data in the windows 0.25<v,<0.27 and
0.43 <v, <0.45. The chemical potential, shown in Fig.
9(b), is obtained by integration:

I, e? d,

w=J o, N e J 1, 4 14
The constant of integration is chosen so that u, =0 at
v,=1. The dashed line in Fig. 9(b) is the integral of the
linear fit to the high-temperature background compressi-
bility. From the data in Fig. 9(b) we can extract Ay,, the
jump in the chemical potential for the 1 FQHE state at
B=13 T. These results are denoted by the solid dots in
Fig. 10. The open circles in the figure show the
magnetic-field dependence of Ap, at the fixed low temper-
ature of T=0.41 K. [For both data sets, the Au, values
are normalized by the typical Coulomb energy
e?/4mely~51KV B(tesla).] To assign numerical values
to Ay,, a smooth density-dependent background was first
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FIG. 10. Chemical potential jump at v, =§ vs temperature at
B=13 T and vs magnetic field at 7=0.4 K. These jumps,
displayed in units of e?/41el,, include the background subtrac-
tion described in the text.

subtracted from the integrated du/dN. For the data in
Fig. 9(b) this background is just the dashed line, the in-
tegral of the linear fit to the high-temperature compressi-
bility just described. (A similar background subtraction
is performed for the T=0.41 K magnetic-field-dependent
Ap, values.) The jump Ay, is then set to the difference
between the local maximum and minimum in this
background-subtracted chemical potential immediately

adjacent to v, =1. The efficacy of this background sub-

traction scheme is aided by the relative sharpness of the
observed FQHE features. As outlined in the Appendix
this analysis has been validated by applying it to numeri-
cally simulated 8E,/8E data in which a known chemi-
cal potential jump has been imposed.

C. Analysis and discussion

The predicted' chemical potential discontinuity for the
v=1 FQHE state in an ideal 2DES, in the limit of very
high magnetic field, is approximately Au=0.3e2/4mel,.
As the data in Fig. 10 make clear, the observed chemical
potential jump never exceeds 20% of this ideal value.
Similarly, the maximum value of d, /I, observed at v, =1
is only =2.4 (at T=0.4 K and B=13 T and with the
Hartree contribution®? removed). This value implies that
the effective density of states AN /3u in the center of the
FQHE gap is still 15% of that in an ideal noninteracting
2DES at B =0. These results, coupled with the obvious
smearing of the “discontinuity” in chemical potential and
the clear indication (from Fig. 10) that higher magnetic
fields would produce larger values of Ap,/(e?/4mel,),
suggest a substantial role for disorder.

The present compressibility measurements average
over the entire sample area (210 X210 um) and are there-
fore quite sensitive to long-range fluctuations in the
2DES density. Such density variations can arise both
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from statistical fluctuations in the ionized donor distribu-
tion*! but also from nonuniformities in the MBE growth
of the sample. In order to investigate the effect of this in-
homogeneous broadening on the observed du/0N we
have to assume a distribution function and adopt a
specific model for the density dependence of the total en-
ergy E,(N) near the FQHE singularity. For simplicity
we will take the density distribution to be a simple Gauss-
ian!® about the average density N,

P(N)=(2m0%,) " %exp[ —(N—Ny)*/20% ] . (15)

This assumption for P(N) ignores the effects of screening
in the FQHE regime. Pikus and Efros*' have shown that
the Gaussian assumption is only good if the FQHE gap is
small in comparison to the mean fluctuations of the ion-
ized donor potential and that this probably is not the case
in our samples. In their model the density distribution
exhibits a percolating network of strips of finite width in
which the density is pinned to magic FQHE values. For
the Gaussian, of course, these strips are just contour lines
with zero width. We employ the Gaussian for simplicity
and refer the reader to Pikus and Efros’s paper*! for the
more sophisticated model.

The total energy in the proximity of an FQHE state at
vo=1/m is modeled® as a cusp plus a term to account
for quasiparticle interactions. With energy in units of
e?/4mel, the total energy (per unit area) is

E o (V)=E o (vp)+e*N,
—0.7821m ~*(27l})'2N¥? (16)

where N, =m|v—1vy|/(271}) is the number of quasipar-
ticles of charge e* /e =1/m per unit area and €™ (¢7) is
the so-called “gross” quasielectron (quasihole) energy.*®
The term linear in N, gives the cusp in E,,; and a chemi-
cal potential (u=09E,, /ON =2mI}dE,,, /dv) discontinuity
Ap=m(e*+€7) at v=v, The last term in Eq. (16) ap-
proximates the quasiparticle interactions with the same
Wigner crystal estimate® used for the electrons in the
v,—0 limit only modified appropriately for the quasipar-
ticle charge and density. A similar formula was em-
ployed by Pikus and Efros*! only their interaction term
differs from ours by a factor of m 372,

Figure 11 contains examples of the calculated
d/ly<du/dN and chemical potential u for the vy=1
FQHE state. Both the solid and dotted lines result from
convolving the total energy in Eq. (16) with a Gaussian
density distribution P(N) of width o, /N,=0.03 and
then taking the appropriate density derivatives to deter-
mine d /I, and p. The only difference between the two
curves is that the quasiparticle interaction term was omit-
ted in the dotted line case. It is obvious from the figure
that these interactions have a major impact on the re-
sults. As expected they produce satellite minima adja-
cent to the main du/3N peak but they also have a
significant effect on the peak height and the magnitude of
the smoothed jump in the chemical potential. The reason
for this is apparent from the dashed curve in Fig. 11(b)
which shows the chemical potential in the absence of
smoothing. The quasiparticle interactions create sharp
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FIG. 11. (a) FQHE compressibility parameter d /I, vs v—1
calculated using the model described in the text including con-
volution with a Gaussian density distribution of width
oy /N=0.03. Solid curve includes quasiparticle interactions,
dotted curve omits them. (b) Calculated FQHE chemical poten-
tial signature. The dashed curve omits the density averaging.

peaks in p at the discontinuity and these will be easily
wiped out by density fluctuations, finite temperature, or
any other source of disorder.

We have not found it possible to simultaneously fit the
width and amplitude of the observed compressibility peak
with the single parameter o 5. Reasonable fits can be ob-
tained, however, after simply multiplying the total energy
in Eq. (16) by an ad hoc suppression parameter F. Figure
12 compares the B=13 T, T=0.4 K data with this gen-
eralized model. The calculated du /9N and chemical po-
tential are shown as dotted lines. To arrive at these
curves we have simply adjusted oy to give the correct
width for the peak and then chosen F to fit the amplitude.
(The theory curve also incorporates our best estimate®? of
the Hartree band bending contribution the compressibili-
ty but this has no impact on the fitted width and ampli-
tude of the peak.) For the data in Fig. 12 we found
ony=1.8X10° cm~? and F=0.39. This value for oy is
reasonable, being about half that expected*! from statisti-
cal fluctuations in a random donor distribution (set back
1400 A from the 2DES) with concentration equal to that
of the ungated 2DES. In spite of the many approxima-
tions within the theoretical model (neglect of higher-
order fractions, an oversimplified quasiparticle interac-
tion term, etc.) the “fit” shown in Fig. 12 seems reason-
able. The model is employed merely for the extraction of
two simple but important numbers from the data: the
amplitude (<F) and the width (oy) of the FQHE

3 T - T T
(a) B=13T

T=0.40K

/(e2/4mnel)
o
8

1 0.04
-0.08 | 1 . 1
-0.10 -0.05 0.00  0.05  0.10
w—1/3

FIG. 12. Comparison of observed compressibility and chemi-
cal potential data (solid curves) around the v, =§ FQHE state
with the theoretical model including a Gaussian density distri-
bution of width oy=1.8X10° cm™? and a phenomenological
suppression parameter F=0.394. The theory curves include
the estimated (Ref. 32) Hartree shift.

compressibility signature.

Both the finite thickness of the 2DES and the mixing in
of higher Landau levels contribute slightly to the
suppression parameter F. There have been numerous
theoretical estimates of the thickness-induced FQHE gap
suppression, mostly for the so-called Fang-Howard wave
function.! In quantum wells, however, the subband wave
function does not possess the long tail characteristic of
heterojunctions and consequently the thickness effects are
reduced. We have estimated the effect in quantum wells
by calculating the Coulomb pseudopotentials V,, (in the
lowest Landau level) for an ideal infinite square well, us-
ing the result of Price.” The V,, represent the Coulomb
repulsion between a pair of electrons with orbital angular
momentum m. Following a suggestion of MacDonald*’
we assume the quasiparticle gap for the v=1 state is pro-
portional to the difference V| ;=V,—V;. (In the Fang-
Howard case this assumption agrees well with the exist-
ing lgterature.‘) We find that the ratio y of V3 for our
200-A-wide quantum wells to the ideally thin value
ranges from a minimum of y=0.865 at B=13 T up to
0.932 at B=5 T. The effect of Landau-level mixing on
the gap has been estimated by Yoshioka.*® This effect,
which depends upon the ratio (e?/4mel,)/#iw, suppresses
the gap by typically 10-20 % in our case. As the mixing
becomes less important at high fields where the finite



50 COMPRESSIBILITY OF THE TWO-DIMENSIONAL ELECTRON . ..

thickness suppression is greatest, the combined effect is
roughly independent of field. Redefining the parameter y
to include both effects, we find ¥ =0.78 for 5<B <13 T.
The small values of F (<0.4) required for fitting the
compressibility data therefore suggest an additional
source of disorder beyond simple inhomogeneous
broadening.

Figure 13 summarizes the results of the fits of the
theoretical model to the 7=0.4 K data, assuming the
ideal quasiparticle gap at v=1 is 0.10e?/4mel,. These
“fits” are not least-squares in any sense, we have merely
adjusted o and F till the model matches the amplitude
and full width at half maximum found in the data. [A
smooth background is first subtracted from the data; see
the discussion of Figs. 9 and 10. There generally remains
a small (Ad, /I, ~0.05) vertical offset between the fit and
the background-subtracted data, which we ignore.] The
quality of the fits is comparable to that shown in Fig. 12.
From 13(a) we conclude that the inhomogeneous
broadening parameter o, remains near 2X 10° cm 2 in-
dependent of magnetic field. This independence is ex-
pected since the density fluctuations are set by the donor
distribution and this not altered when the gate is used to
change the 2DES density. In Fig. 13(b) the solid dots
show that the suppression parameter F* is strongly field
dependent. (F*=F/y, so the figure represents the
suppression after removing the finite thickness and
Landau-level mixing effects.) Not surprisingly, the field
dependence of F* is roughly the same as that of the nor-
malized chemical potential jump shown in Fig. 10.

=}
w
I' (K)

00 1 1 L 1 o
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Magnetic Field (T)

FIG. 13. Results of the fits of the %-state compressibility
peak at T=0.4 K to the theoretical model vs magnetic field. (a)
Width of Gaussian density distribution. (b) Solid dots: Phe-
nomenological suppression parameter F*. (F*=F/y, with
v=0.78 is the combined finite thickness/Landau-level mixing
gap suppression.) Open dots: Homogeneous broadening param-
eter I' determined from F* via Eq. (17).
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The physical origin of the suppression of the FQHE
compressibility signatures beyond simple inhomogeneous
broadening is not well understood. Conceivably the as-
sumption of a Gaussian density distribution obscures the
more subtle aspects of the inhomogeneity and, were these
accounted for, agreement with theory could be obtained
without resorting to a phenomenological suppression pa-
rameter. Pikus and Efros*' have examined this issue
carefully and have shown that the Gaussian model is
indeed oversimplified. Their calculations show that the
deviations from the Gaussian actually enhance the
compressibility peak, at least for a given random donor
distribution. No doubt by adjusting the donor fluctua-
tions their model would yield better agreement with ex-
periment than the simple Gaussian approach. This might
be justified since the fitted o 5 values are smaller than the
estimate*! based on a random donor distribution.

Another possibility is that the suppression parameter
F* reflects some kind of scattering induced lifetime
broadening of the quasiparticle states. For example,
MacDonald, et al.*? considered the disorder broadening
of the magnetoroton excitations. Over the years this idea
has been applied to the analysis of the quasiparticle gap
determined from the activated temperature dependence
of the diagonal resistivity.*” In this phenomenological
approach the observed energy gap A.,(B) is assumed to
be smaller than the disorder-free gap A(B) by some con-
stant amount: A (B)=A(B)—I. The parameter I'
represents the width of the broadened quasiparticle
states. Adapting this to the present context we write

Auxp(B)=F*yAg(B)=7AyB)—T , (17)

where ¥ is the combined finite thickness and Landau-
level mixing gap suppression and Ay(B)=0. 10e2/
4mel, < V'B is the predicted energy gap for the v=1
FQHE state in a clean and ideally thin 2DES. The open
circles in Fig. 13(b) represent the values of I'" determined
by applying Eq. (17) to the fitted F* and calculated y
values. In spite of the strong field dependence of F*, the
broadening parameter is roughly independent of magnet-
ic field, I'=7.4 K=0.64 meV, suggesting that the simple
homogeneous broadening model expressed by Eq. (17) is
at least plausible. The magnitude of I' is about 4 X larger
than the zero-field lifetime broadening determined in in-
terlayer tunneling studies on similar samples.” Little is
known about the physics of quasiparticle scattering and
thus the magnitude of I' is not readily interpreted. Nev-
ertheless, since the observed compressibility at v=§,
while nonzero, is considerably smaller than at zero mag-
netic field, the donor impurity potential is less well
screened. One might thus expect relatively strong quasi-
particle scattering.

We also note that the tiny magnitude of the compressi-
bility signature at v= ¢ argues against models including
only inhomogeneous broadening. The estimated' quasi-
particle gap for the 1 state is about one-fourth of the i-
state gap, making the chemical potential jump 40% as
large as for v=1. If this is the case, and knowing that
oy is essentially independent of density, a strong
compressibility feature should be seen at +. On the other
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hand, at 14.5 T (appropriate to the inset to Fig. 8) the
predicted v= 1 excitation gap is roughly 5 K, close to the
broadening parameter I' ~7 K extracted from the }-state
analysis. The crude equality of these numbers plausibly
explains the near absence of the v= state and supports
the view that simple inhomogeneous broadening does not
fully represent the disorder in the sample.

Conceivably, the observed gap suppression might not
be due to disorder at all, resulting instead from some
unappreciated new physics. One interesting speculative
possibility is that the second 2DES layer is somehow in-
volved. A simple way in which this might occur would
be in the second layer’s screening of the electron-electron
interaction in the FQHE layer. If the second layer acts as
a perfect metal then the positive image charges for each
electron in the FQHE layer soften the long-distance
Coulomb repulsion and this should reduce the gap.’!'*?
Since the Laughlin | state depends mostly on the short-
range part of the interaction the image plane has to be
nearby for there to be much effect. We have estimated
this by again calculating the V,—V; pseudopotential
difference for such a screened interaction. Taking the
distance to the image plane to be 375 A, the quantum
well center-to-center spacing, the calculated gap suppres-
sion is only 2% at B=13 T rising to 6% at 5 T. (These
results are in good agreement with those of Sivan.’!) If
one assumes that the relevant spacing is just the barrier
width, 175 A, suppressions of 11 and 26 % are obtained
at these magnetic fields. Thus, while probably not strong
enough to explain the present data, it would be very in-
teresting to search for this effect in samples with more
closely spaced layers.

V. CONCLUSION

This paper has been devoted to the extraction of quan-
titative information about electron-electron interactions
in 2D systems using a thermodynamic probe, the
compressibility. We have shown that it is possible to at-
tain quantitative agreement between theory and experi-
ment at zero magnetic field by taking account of the 2D
exchange energy and the smaller, yet important, effects of
the finite thickness of the 2D sheets. At high magnetic
field, in the fractional quantum Hall regime, we have
used the strong compressibility signatures observed at the
v=1 state to learn several things about this novel quan-

tum fluid. First, we have demonstrated the importance of
quasiparticle interactions. At the qualitative level these
interactions produce the satellite minima adjacent to the
FQHE compressibility peak while on the quantitative
side they have a significant impact on the shape and mag-
nitude of the observed chemical potential jump in real
samples where inhomogeneous broadening is important.
By fitting our data to a simple model of the FQHE total
energy we have extracted both a measure of the inhomo-
geneous density distribution in our sample and the mag-
nitude of an apparently distinct suppression mechanism.
While this latter effect may be interpreted in terms of a
homogeneous quasiparticle lifetime broadening, its pre-
cise origin remains puzzling.

There are numerous avenues for future work in this
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area. One possibility would be to try to determine the
quasiparticle charge from the ratio of the chemical poten-
tial jump to the quasiparticle excitation gap. While the
latter is usually determined from transport measure-
ments, the temperature dependence of the peak compres-
sibility in an FQHE state should also reflect this gap. An
advantage of this approach would be its ir situ nature.
When better samples become available the weaker FQHE
states could also be studied, perhaps allowing a test of the
recent suggestions® that the states in the sequence 1, 2,
2, ... share the same chemical potential jump. Another
possibility would be to investigate the compressibility
near the Wigner crystal transition. Finally, double layer
systems with thinner barriers offer interesting possibilities
as well. In addition to possible instabilities at very low
density®® there is the general issue of how interlayer
correlations might be studied via compressibility.
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APPENDIX: NUMERICAL PROCEDURES

Self-consistent DQW solver

In order to predict the differential penetration
8E,/8E, in a given circumstance we solve for the equi-
librium charge density in each quantum well in a double
layer structure for a given distribution of neutralizing
background charge. This background charge is con-
sidered to be localized in two planes, one above the DQW
and one below it, mimicking the actual doping of the
sample. The gate, which is deposited on the sample top
surface, contributes additional background charge but
this can, without loss of generality, simply be included as
part of the upper donor concentration. We assume that
the individual quantum wells are sufficiently separated
that they may be regarded as quantum mechanically in-
dependent and that no charges other than those in the
donor sheets (and gate) and in the quantum wells (the
2DES’s) need be considered. Let D, and D, be the areal
concentrations of the top and bottom donor sheets and
N, and N, the 2DES concentrations in the two quantum
wells.

Ignoring, for the moment, electron-electron interac-
tions beyond the Hartree approximation, for a given D,
and D, the Schrddinger and Poisson equations are first
solved self-consistently for each quantum well separately,
assuming some definite partitioning of the total 2DES
charge available (D, +D,) between the two wells. For



50 COMPRESSIBILITY OF THE TWO-DIMENSIONAL ELECTRON . ..

each well the net confining potential is of the form

V(2)=Vqw(z)+Vp(2)+Vy(z,4(2)) , (A1)

where Vgow is the quantum well defined by the
conduction-band offset of GaAs and Al ;Ga, ;As, here
assumed to be 250 meV, Vj is the net (linear) potential
due to the background charge, which includes both posi-
tive donor sheets and the 2DES in the other quantum
well. The last term, ¥V is the space charge, or Hartree,
potential which depends upon the subband wave function
¢(z). This last term is calculated from integrating the
Poisson equation.>> We assume simple parabolic bands
with effective mass m*/my,=0.067 and take the dielec-
tric constant to be e =12.6¢,; any discontinuities in these
parameters at the quantum well interfaces are ignored.
Starting by assuming the 2DES charge is spread uniform-
ly across the quantum well, the Schrodinger equation is
solved to obtain the ground subband wave function ¢(z)
and energy g, (no higher levels are ever populated). The
Hartree potential is then recomputed and the process re-
peated until convergence has been achieved. Knowing
the ground subband energy in each quantum well, the
chemical potentials are then calculated, in the Hartree
approximation and at zero magnetic field, by adding on
the Fermi energies 1rh2N,, »/m*. Taking proper account
of the electric field within the barrier layer, these two
chemical potentials are then compared. If they do not
match charge is transferred from one well to the other
and the whole process repeated. This interwell self-
consistency loop proceeds until final convergence is
achieved.

Many-body effects have been incorporated into this
procedure in two different ways, the local-density approx-
imation (LDA) and a “thickened” 2D Hartree-Fock ap-
proximation. In the LDA an additional term V,(z) is
added to the potential in Eq. (A1l). We have employed
the Hedin-Lundqvist** LDA exchange-correlation func-
tional in our calculations. With this term included the
calculated subband energy €, contains the many-body
effects, and the chemical potential is found by simply
adding on the Fermi energy 7#°N, wp/m*. In the thick-
ened 2D Hartree-Fock approximation we calculate the
2D exchange contribution to the chemical potential tak-
ing into account the thickness of the 2DES with a
density-dependent form factor.?® (This form factor is dis-
cussed in detail at the end of this appendix.) At each step
in the interwell charge-transfer loop these exchange con-
tributions are added to the noninteracting chemical po-
tential.

Calculation of differential penetration

Once the densities N, , are determined for a wide range
of top donor concentrations D, (the bottom donor density
D, is kept fixed throughout) the differential penetration is
evaluated as follows. A small variation 8D, (due to a
small change in gate voltage) produces a small change
8E,=(e/e)8D, in the electric field between the upper
donor sheet and upper quantum well. Some of this elec-
tric field penetrates the upper well and impinges upon the
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lower. The variation in the penetrating field 8E, is
proportional to the change in the bottom 2DES

density: 8E,=(e/e)8N,. From charge neutrality
(D,+D,=N,+N,) we have
8E,/8E,=G /(1+G); G=08N,/dN, . (A2)

The derivative G is evaluated either as a finite difference
or computed analytically after first fitting the paired N,
and N, values to a sensible function N, =H(N,).

Figure 14 presents typical results from the LDA. In
Fig. 14(a) the calculated 2DES densities are plotted vs the
top donor layer density D, which acts as the “gate.” (For
these data the bottom donor density was set to
D,=0.8X 10" cm~?, but the final 8E, /8E results hard-
ly depend on this value.) As the figure shows, the upper
2DES density is roughly linear in D,. By contrast the
bottom layer density, while changing little in magnitude,
increases as the top layer is being depleted of carriers.
This overscreening reflects the negative compressibility of
the top 2DES. In Fig. 14(b) the same data are replotted
as N, vs N,. This is appropriate since the penetration
effect is governed by the upper 2DES density, not the
donor concentration. The solid line in Fig. 14(b) is a
least-squares fit of the function

H(N,)=a,N}*+a,+a;N,+a,N>+asN} (A3)
1.5 : . . 51 0.86
L] (a) o°
<« o°
* {0.84
1o °, 6°
= s . 1082 £
o. oo
05t ot
0° Tee. 40.80
r oo "o,.
Do o....
0.0 =2 L : 0.78
0.0 05 5 1.0 1.5
t
0.86
0.84
2 0.82
0.80
0.78 1 1 1 1 1
0.0 05 , 1.0 1.5
t

FIG. 14. Results of LDA calculations. (a) 2DES densities in
the top (NV,, open dots) and bottom (N,, solid dots) quantum
wells vs the top donor layer density D,, all in units of 10'! cm™2,
(b) Solid dots: Calculated bottom 2DES density N, vs top 2DES
density N,. Solid line through points is a least-squares fit of the
function H(N,). Dashed line is the computed differential
penetration 8E, /8E,.
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to the computed N, values. Differentiating to obtain
G(N,)=H'(N,) produces, via Eq. (A2), the calculated
differential penetration 8E, /8E, shown as a dashed line
in Fig. 14(b). Exactly as with experimental data these
8E, /8E, values can be converted into the compressibili-
ty parameter d, for the equivalent narrow well model by
inverting Eq. (5). The d, values for this example are
represented by the dashed line in Fig. 5. [As described in
the text, the value of d, is replaced by the constant evalu-
ated using Eq. (5) at balance where N,=N, and thus
db =d t ]

Determination of chemical potential jumps

The chemical potential jumps for the v=1 FQHE were
evaluated by integrating the ‘“‘equivalent” narrow well
compressibility parameter d, found by inverting Eq. (5).
We here validate this analysis by applying it to artificial
data constructed using the numerical procedures outlined
above. Specifically, we simulate the jump of the Fermi
level between the two lowest Landau levels at filling fac-
tor v=2 and calculate the resulting 8E,/8E,. These
‘“‘data” are then analyzed just as the experimental data.
We assume that in a perpendicular magnetic field the in-
plane and z motion remain decoupled. Electron-electron
interactions are ignored except for the Hartree self-
consistent potential. The Fermi level is assumed to
remain fixed at 17w, above the ground subband energy ¢,
until the 2DES density N, exceeds N*=1.0X10"! cm™?
where it jumps to 3/2%iw,. For GaAs this corresponds to
a magnetic field of B=2.07 T where #iw,=3.60 meV.
The Landau-level contribution to the chemical potential
is taken to be

IJLL:%ﬁCOC(Z"'tanh[(Nt’b—N*)/Uo]) . (A4)

The jump has been smoothed out for convenience, taking
0o=N?*/40. The bottom donor density is set again to
0.8X 10" ¢cm~? and, as a consequence, the lower 2DES
remains in the lowest Landau level throughout. Figure
15(a) shows both the calculated lower 2DES density and
differential penetration 8E, /8E vs top 2DES density N,.
The latter was computed via Eq. (A2) after fitting the
N,(N,) data to the form

H(N,)=a,+a,(N,—N*)+a;(N,—N*)

+agytanh[(N,—N*)/o0] . (AS)

The line running through the solid dots in Fig. 15(a) is
the fitted H(N,) function. Figure 15(b) shows the
“equivalent narrow well” compressibility parameter d,
determined by inverting Eq. (5) and the deduced chemical
potential obtained by integration as in Eq. (14). Note
that away from the peak in d, the compressibility is
slightly negative. This is just the Hartree band-bending
effect described in the text. The dashed line is a linear fit
to this background compressibility away from the peak.
To obtain the chemical potential u} shown, this back-
ground is subtracted from d, prior to the integration.
This is exactly the same procedure applied to the actual
experimental data around the v=1 FQHE. After this
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FIG. 15. Simulation of Fermi-level jump between two Lan-
dau levels. (a) Solid dots: Calculated lower 2DES density N, vs
upper 2DES density N,. Line through points is the least-
squares fit to the function H(N,). The broadened peak is the
calculated differential penetration 8E,/8E,. (b) Solid curve:
Compressibility parameter d, from equivalent narrow well
analysis. Dotted curve: Background subtracted chemical poten-
tial. The measured jump is 3.60 meV, in exact agreement with
fiw,.

subtraction the deduced chemical potential jump is 3.60
meV in exact agreement with ..

Exchange energy form factor

The exchange energy at zero magnetic field for elec-
trons in the ground subband of a quantum well of width
w is numerically smaller than for the ideally thin case.
Defining the form factor F(r;,#(z)) as the ratio of the
thickened to the ideal 2D exchange energy per electron
we have, following Stern,?

Eerlw)
£r(0)

=3 [ f(2kpx)[eos ™ x) —xVT=xJdx

F(ry,¢(z))=

(A6)

where the Fermi wave vector kp=(2wN)"2=V2/a,r,
and the function f(2kgpx) depends upon the subband
wave function ¢(z):

f@= [ [1¢)2¢(z")%exp(—qlz —2’|)dz dz" .

Price?® has evaluated Eq. (A7) for the case of an infinite
square well where ¢(z)=(2/w)! %sin(7rz /w) obtaining

(A7)
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Feowlgy=2T3EW)_ G —4rel) 2| gb) |
5 yi+ant  (pi+4r?)? oy y
(A8)

where g(y)=(1—e™”) and y =qw. With this result we
have numerically integrated Eq. (A6) and fitted the re-
sults, which depend only on the single variable
{=w/ayr,, to a third-order polynomial valid over the
range (0<x <3.5):

Fqw(£)=1—0.16851£+0.02766952—0.0024392¢> .
(A9)

With this result we can evaluate the exchange contribu-
tion to the chemical potential via u ., =9(Ne.)/0N. As
mentioned in the text, the use of infinite square well wave
functions is an approximation which destroys complete
self-consistency of the 2D thickened Hartree-Fock re-
sults. The near unit overlap (>98%) of the calculated
Hartree wave function ¢(z) with the simple square well
result suggests the approximation is a good one. Figure
16 illustrates the substantial effect of this softening of the
exchange energy on the compressibility parameter d,.
The horizontal dotted line is the noninteracting result
d,=a,y/4 valid in the ideally thin case while the solid
curve adds in the exchange energy for this same ideal
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FIG. 16. Effect of exchange energy form factor on compressi-
bility parameter d,. Dotted line: Ideally thin 2DES, nonin-
teracting. Solid line: Thin 2DES with simple exchange.
Dashed line: “Thickened” exchange in 200-A-wide quantum
well. None of the curves contain the Hartree band-bending
effect.

case [see Eq. (12)]. The dashed curve, however, includes
the Cou!,omb softening, embodied in the form factor F,
for 200-A-wide quantum wells (but continues to omit the
Hartree band-bending effects). Note that the first-order
term in Eq. (A9) produces a uniform upward shift in the
compressibility: Ad, /w = +0.050.
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FIG. 2. (a) Simplified band diagram of the gated double
quantum well structure. The shaded region in each quantum
well denotes the Fermi distribution of the 2D electrons. The
chemical potentials u, , are measured relative to the bottoms of
the individual wells. (b) Mesa and gate layout. The central
mesa and gate squares are 250 and 210 um, respectively, on a
side. Each of the mesa arms is terminated with an indium Ohm-
ic contact and has two associated gates, on the sample front and
back sides, used for establishing separate connections to the in-
dividual 2D electron layers.



