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In various recent model calculations on the transport properties of microstructures, transmission
resonances have been found that exhibit the asymmetric Fano line shape. In particular, one often
encounters points of vanishing transmission or re8ection as a resonance is crossed. The interference
efFects that cause this phenomenon are identified in this paper using first a coupled-channel theory
that starts &om the full scattering Hamiltonian and second a more general S-matrix approach.
The latter is model independent and thus yields predictions for the possible line shapes in a wide
variety of systems. Model-independent results are desirable because knowledge of the microstructure
potentials is often incomplete. %'e show for the most general multiprobe, multisubband structure
that the total transmssion never varies by more than unity on resonance, generalizing a result
previously known only for resonant tunneling structures. The role of symmetry is investigated to
clarify which features (e.g. , reSection zeros) are a consequence of special invariance properties and
which are robust in the unsymmetric case. The effect of a resonance is found to decrease with an
increasing number of leads in a rotationally symmetric structure. Only in a two-probe geometry
can zeros in transmission and re6ection occur together for a single resonance. The known result
that resonances in symmetric resonant tunneling devices always display exactly unit variation of the
transmission is shown to be violated in structures where the nonresonant transmission exceeds 1.
Time reversal invariance is not required in the present treatment. Two model systems displaying
asymmetric resonances are discussed. Their advantage is that the resonance lifetime can be tuned
externally, making it possible to test a scaling property of the Fano line shape that we derive below.

I. INTRODUCTION

A relatively new arena has been opened for the quan-
tum theory of scattering since it became clear that the
electrical linear response of open multiterminal conduc-
tors can be related to its transmission and re8ection
properties. ~ While the three-dimensional (3D) scatter-
ing theory is well developed, the confining potentials
defining a microstructure force us to consider the scat-
tering of particles whose asymptotic motion is not free.
In the absence of magnetic fields, these systems can be
called "electron waveguides. " A scattering theory for
such systems of reduced dimensionality must take into
account the different boundary conditions for the sta-
tionary states, as well as the different symmetries that
play a role. In spherically symmetric 3D scattering, an-
gular momentum is a good quantum number and serves
to reduce the problem to a one-dimensional equation for
the radial wave function. The presence of leads in a
microstructure makes it impossible to retain a contin-
uous rotation symmetry. Even if some other set of con-
served quantities exists such that the time-independent
Schrodinger equation of the system is completely sep-
arable, the resulting purely one-dimensional scattering
problem obeys difFerent boundary conditions than the
radial problem in 3D. In general, separability cannot be
expected and only the asymptotic motion in the leads
is of a one-dimensional nature if we consider the leads
as semi-infinite and straight. We use the term quasi-
one-dimensional (QlD) to emphasize this fact. A mo-
tivation for pursuing the formulation of a Q1D scatter-

ing theory can be drawn &om numerical studies of such
systems. z ~~ Elastic scattering resonances in QlD sys-
tems do not always exhibit the symmetric Breit-Wigner
(BW) line shape familiar from 3D scattering, but instead
show an asymmetric line shape when the nonresonant
transmission is significant. Often, but not always2 r (cf.
Sec. IIC), these resonances can be explained in terms
of coupling between a bound state and a continuum in
difFerent subbands of the quant»m wire leads.

Although the Breit-Wigner peak is the most common
resonance line shape observed in atomic and nuclear scat-
tering, it has been known for some time that the most
general resonant line shape (which includes the BW as a
special case) is described by the asymmetric Fano func-
tion (see Fig. 1)

f( )
( + I)
e2+ 1

Here e = (E —ER)/I' is the (dimensionless) energy from
resonance, I' is the resonance width, and q is the asymme-
try parameter. Strongly asymmetric Fano line shapes are
familiar for inelastic autoionizing resonances in atoms;
however, Simpson and Fano explicitly noted their oc-
currence in spherically symmetric elastic scattering in
1963. In fact this line shape is implicit in much ear-
lier work in nuclear scattering where strong asymmetries
were measured in elastic neutron scattering. ' To be
precise one finds that the elastic scattering partial cross
section near a resonance in angular moment»m channel
l (neglecting spin) has the form
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FIG. 1. The Fano line shape Eq. (1), for various values of
the parameter q.
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with p denoting the particle momentum and 8~ the back-
ground phase shift in the absence of the resonance. Hence
0.

~ is proportional to the Fano function with q = —cot 8~.
The only assumption needed is that 8~ is roughly con-
stant with energy across the resonance. Here we see
explicitly that in the limit 8~ m 0 (q -+ oo) of small
background phase shift one recovers the Breit-Wigner
line shape, whereas q m 0 yields a symmetric antires-
onance (BW dip, known in photoabsorption as a window
resonance~~). Note that in the spherically symmetric case
o ~ varies between zero and 2m FP (2l+ 1)/p2, the minimum
and maximum values allowed by unitarity of the S ma-
trix. In particular, the cross section vanishes at r = —q.

In the inelastic case, the characteristic asymmetry with
an absorption zero has the well-known interpretation of
interference between transition amplitudes &om a bound
initial state to an unbound final state either directly or
via a quasibound (autoionizing) intermediate state. A
similar interpretation applies for asymmetric elastic res-
onances in which scattering via a quasibound level in-
terferes with direct (potential) scattering. An important
feature of elastic Fano resonances is that the asymmetry
parameter depends only on the background phase shift
and not on the strength of the coupling to the quasi-
bound level; i.e., if one could tune this coupling with-
out changing the background scattering the resulting line
shapes should all scale onto the same curve given by Eq.
(1). Such an experiment has not been done yet, but may
be possible for the first time in a solid-state device.

We can categorize the previous work on Q1D resonace
phenomena according to the two main goals that are be-
ing pursued. First, it is of interest to establish a con-
nection between the line shape and physical parameters
deterxnining the actual mechanism that gives rise to the
resonance (such as matrix elements of the scattering po-
tential). Second, one may seek general statements about
possible line-shape features (e.g. , regarding the limits
within which the transmission can vary) which are in-
dependent of details of the underlying model. The latter
is of particular value in microstructures where a complete
knowledge of the potentials is often unattainable. Both

goals could be reached simultaneously if all QlD reso-
nances were describable by a single generic model sys-
tem in which only a few parameters are unknown. Solv-
ing that model would then be tantamount to solving the
general problem.

In a recent paper, Tekman and Bagwell used a two-
band model with a b function coupling potential to repro-
duce asymmetric resonances of the type seen in numerical
simulations. The line shape derived in that model calcu-
lation is indeed well approximated by Eq. (1). A more
general two-band approach for arbitrary coupling poten-
tials has been used by Gurvitz and Levinson, but only
symmetric line shapes were considered. These models
do not describe resonance phenomena in structures with
more than one propagating subband per lead, or with
more than two leads. We explore in Sec. II the max-
imum range of validity of the two-channel model used
by Gurvitz and Levinson, which we recognize as a re-
formulation of Feshbach's theory of coupled scattering
channels. The microscopic expressions that we obtain
for the Fano line-shape parameters in a generalization of
that approach indeed lead us to some predictions that
do not depend on the actual potential. But we also
show that there are real two-band systems which display
Fano resonances and still defy a satisfactory description
in terms of the coupled-channel approach of Sec. II.

This suggests that general predictions for $1D reso-
nance line shapes require a model-independent formal-
ism. A powerful tool in this situation is the S-matrix
method, which is also used to derive Eq. (2). In work by
Biittiker and other authors, various special cases
of QlD scattering are treated by exploiting the analyt-
ical properties of the S matrix. All except the study
by Shao et al. z4 consider exclusively symmetric (Breit-
Wigner) line shapes. The latter reference, in turn, re-
stricts itself to a single-mode two-probe structure. More
than two leads were treated only in Ref. 22 (but only
resonant tunneling was considered there).

In Sec. III we provide a general QlD S-matrix theory
for multiprobe, multisubband structures. We first ob-
serve that the usual textbook approach leads to wrong
predictions, so we have to scrutinize the way in which the
connection between quasibound states and resonance de-
nominators in the S matrix is made if there are no contin-
uous symmetries. In the presence of discrete symmetries
we derive rigorously the resonance line shapes for a mul-

tilead structure in the single-subband regime. Then we

investigate the e8ects of symmetry breaking in two-probe
structures with arbitrarily many subbands and finally
treat the multilead, multisubband case. Finally, Pano
resonances in microstructures have not yet been clearly
seen experimentally (although some data taken on quan-
tum point contacts is suggestive ); we propose in Sec.
IV two experiments for observing such resonances and
compare numerical model calculations on these systems
with the results derived in the previous sections.

II. FESHBACH APPROACH

The most obvious difference between $1D and three-
dimensional scattering is the subband structure that ex-
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ists in a quant»m wire. At a given energy, particles in the
asymptotic region of the wire leads can have diff'erent mo-
menta, depending on their subband index. In particular,
a bound state in one subband (imaginary wave number
in the leads) can coexist with an unbound state in an-
other subband. In three-dimensional scattering Rom a
potential that vanishes outside of some scattering region,
all incoming and scattered particles have a momentum of
the same magnitude if their energy is the same —unless
incoming and outgoing particles are of a different kind.
The latter case is referred to as multichannel scatter-
ing. Although we are dealing with elastic scattering, it is
possible to consider the quantum wire as a multichannel
system if we treat the difFerent subbands as "channels. "
The resonances considered in this section are analogous
to those arising in multichannel scattering when a closed
and an open channel are coupled, the channels in our
case being the propagating and cut-off' subbands. For
completeness and to point out the modi6cations we have
made to the theory, Sec. IIA contains some material al-
ready covered in Ref. 19. Feshbach's approach has in fact
been employed earlier to describe resonances in a wave-
guide geometry, but nonresonant transmissicz was as-
sumed to be absent. The Fano function will be derived
in this microscopic approach and an even stronger pre-
diction for the line shape is given in Sec. IIB by making
use of inversion symmetry.

A. Coupled-channel equations

We consider a nonuniform quantum wire described by
the Schrodinger equation

h2 V'+ U(x) + W(y) + V*" @(x,y) = E @(x,y)2m

choose an energy in the single-subband regime Eq & E C
E2. Provided that the diagonal elements V„„vanish far
away &om the scattering region, only channel n = 1
will then have unbound solutions in the absence of off'-

diagonal coupling:

K+U(*)+V„+E, Q(x) =EQ(x),

where the index p =1,2 distinguishes scattering states
according to the direction &om which the incident wave
comes. Speci6cally, y~& has the asymptotic form

t'& e+*" (x ~ +oo)
+k( ) e+ike + r&gePika (x ~ +~)

with the upper signs for p = 1 (incident wave from the
left). The superscript in the transmission and reflection

amplitudes t~~,r+~ emphasizes the fact that these scat-
tering states describe the background (i.e. , nonresonant)
scattering in the open channel. 2~ Let E be close to the
energy of a bound state of the uncoupled channel n = 2)

K + U(x) + V22 + E2 4o(x) = Eo C'o(x). (9)

E —Eg —K —U(x) —Vll'41(x) = V12 P2(x) &

E —E2 K U(x) V22 @2(x) = V21 "ll 1(x)

is solved in Appendix A using the ansatz~~

If no other channels exhibit bound states in the neigh-
borhood of Eo, we can make the approximation of trun-
cating the sum in Eq. (6) at n = 2. The resulting system
of equations

$2(x) = A@o(x). (12)

In the absence of the coupling operator V ", the problem
is separable and the transverse potential W(y) gives rise
to modes P„(y):

d
&, +W(y) 4(y) =E-4 (y). (4)

Unlike Ref. 19, we do not assume V*" to be a real lo-
cal scalar function. This will enable us to investigate
whether the present approach is applicable to the case of
magnetic-6eld-induced coupling. Expanding

This is slightly more direct than the procedure in Ref.
19 because it leads to an exact solution of Eqs. (10) and
(11) without approximating the Green's function for the
second channel and subsequently summing a Born series.
The result obtained by the latter method is the same.
This ansatz has the physical interpretation that the prob-
ability amplitude of the metastable state is dominated by
the original bound-state wave function. Prom the asymp-
totic form of the resulting vga for x m oo, we can extract
the transmission

s, 2 (E —E~+ ~)'
(E —E~)2+ I'2

we obtain the coupled-channel equations for @ (x),

E —En —K —U(x) vga(x) = ) Vni @i(x)~

Instead of the original bound-state energy Eo, a shifted
quasibounkstate energy E~ = Eo + 4 appears in this
expression, due to the real part 4 of the self-energy ac-
quired by the bound state. The real quantity b deter-
mines the asymmetry of the line shape. De6ning reduced
variables

where K = —(h /2m)d2/dx~ and the coupling matrix
element V i

= fdygi(y) V "P (y) still acts on x. Now we arrive at the Fano function

(14)
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This implies that the symmetric peak can occur only if
t g ~ 0 and that the Breit-Wigner line shape constitutes
a special case of the Fano function that results when the
transmission zero occurs infinitely far &om resonance.
The constant c in Eq. (16) is only constrained to be
less than. unity. However, in the next subsection we show
that c2 = 1 if the system has inversion symmetry because
then q an.d t g are related to each other with no additional
&ee parameters. The preceding discussion already shows
that the Fano function with an exact transmission zero is
the general line shape for resonances in the two-channel
Feshbach approach.

B. Inversion symmetry

In this subsection, we extend the approach of Ref. 19
in a di8'erent direction in order to make contact with
the predictions of the S-matrix theory to be developed
later. Not all the parameters ItsgI2, b, I', and ER in
Eq. (A17) are independent if the problem has inversion
symmetry. We shall see in particular that in this case
T not only goes through zero, but also through unity at
resonance. Further, q will be shown to be independent
of the coupling matrix elements.

To this end, it is convenient to consider the re6ection R
and then use current conservation R+ T = 1 to deduce
relations between the parameters. Inversion symmetry
in the Hamiltonian of Eq. (3) implies that the potentials
U(z) and W(y) must be symmetric, so that the trans-
verse modes have a definite parity. Since V*" has to be
invariant under inversion, it follows immediately that the
diagonal coupling matrix elements V„„aresymmetric un-
der z + —z. But this implies that the bound state 40(z)
in Eq. (9) has a definite parity and that the scattering
states in Eq. (7) satisfy r+g ——r—:r g. The unitarity of
the S matrix for the uncoupled channel n = 1 then makes
(& g)'r purely imaginary. These observations are used
in Appendix B to deduce that b and F are now related
by

$2

I'2
rbg 2

tbg
(17)

The asymmetry parameter q therefore depends only on
the background transmission t and not on the two pa-
rameters characterizing BW resonances E~ and I'. These
three are the only parameters needed to determine the

(~ + q)
+ 1

If the asymmetry parameter q vanishes, we obtain a
Breit-Wigner dip. Only this case received further atten-
tion in Ref. 19, although the Fano line shape is implicit
in that work. A symmetric peak in T arises if we take
the limit IqI ~ oo with q It ~I = c, where c & 1 (as
required by T ( 1),

This explicit relation also confirms that Eq. (15) yields a
Breit-Wigner dip when. the nonresonant transmission is

unity, while the other extreme of t g ~ 0 leads to a peak
of the form

1
T

2 + 1
(19)

cf. Eq. (16) with c~ = 1.

C. Failures of the coupled-channel model

One assumption on which the preceding analysis hinges
is that the two-channel approximation is valid. But this
will break down if the bound state can couple to the
scattering state indirectly by way of a transition to one
or more intermediate closed channels. In Appendix C
of Ref. 19 this case is discussed and it is found that for
one additional channel (e.g. , n = 3) the coupling matrix

element Vj2 simply has to be replaced by

Vi.2 + V~3 G'3 V32 (20)

in Eq. (10) and likewise for V2i. For additional inter-

mediate channels, terms of higher order in V & appear.
Thus the formalism can accomodate this complication.

However, we discovered that the crucial ansatz of Eq.
(12), which was successfully employed in Refs. 20, 26, and
17 and is equivalent to the treatment in Ref. 19, breaks

down for certain types of coupling operators. The exam-

ple we consider is scattering in a quantum wire with a
transverse magnetic Beld, which was studied in Ref. 9.
First let us discuss to what extent we have succeeded in

keeping the preceding treatment suKciently general to be
applicable to this model system. Assuming a harmonic
quantum wire potential W(y) with force constant moro

and choosing the Landau gauge A = —Byx to repre-
sent a magnetic Beld B along the z axis, the Schrodinger
equation becomes

((p —mu, y) + p„)

+ —muroy + U(x) @(z,y) = Eg( yx). (21)
1

Here ~ = —is the cyclotron frequency and U(x) is an
additional longitudinal potential describing a finite-depth
square well of length L,

/I
U(*) = —Us 0

I

——I*I I
. (22)

line shape in a symmetric structure, instead of the four
required in the general case of Eq. (13), which now takes
the form

1 (E —ER+ qI')'
1+q' (E —ER)'+ I'
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Since U(x) is symmetric, the Hamiltonian in Eq. (21) has
inversion symmetry. The coupling operator of Sec. II is
now the perturbation due to the magnetic field in Eq.
(21),

V~= —u yp + —mu y. (23)

Due to the parity of the transverse harmonic oscillator
eigenfunctions, at most one of the terms in this sum can
contribute to the matrix elements V„~. In particular, one
has

A A

V12 V21 c p+ 9

2mhpp
(24)

Il

whereas the diagonal elements V11 and V22 simply yield a
constant proportional to ur2. Equation (24) shows why we
needed to generalize the Feshbach approach to coupling
operators that are not scalar potentials. Note that V12
satisfies the criterion of Appendix A, so that we might
hope to apply the previous results to this case. This will
be done by comparing the ~, dependence of the resonance
position as obtained &om exact numerical calculations
with that predicted by the approximation. First note
that only matrix elements between transverse subbands
that difFer by exactly 1 in their mode index [like the one
in Eq. (24)] have a linear dependence on io, . All others
either vanish due to parity or go as ~, .

A resonance occurs in our model system when the well
potential U(x) causes bound states to split ofF from a
subband n & 1 which lie in the continuum of the lowest
subband. The bound state becomes metastable when a
magnetic field is switched on, so the resonance linewidth
depends on ~,. The same is true for the energy shifts
b., b', and rl. From their definitions in Eqs. (A9), (A10),
and (B2) it follows that b, , b, rj oc A&2 if the quasibound
state occurs in subband n = 2, whereas 4, b, g oc cu4 for
resonances originating &om higher subbands n & 3. This
conclusion holds irrespective of the number of intermedi-
ate closed channels we take into account because that
simply adds to V1„ terms containing two or more ma-
trix elements, cf. Eq. (20). It is in fact necessary to in-
clude more than two subbands in the calculation because
a bound state in subband n = 3 cannot couple at all to
the propagating subband n = 1 if only these two channels
are taken into account. But a resonance does arise in this
case;s see the inset to Fig. 2(b). The numerical results
show that the n = 3 resonance is narrower than the one
arising &om a bound state in n = 2, which is consistent
with the weaker coupling expected for n = 3. We con-
sider here a structure of the same dimensions as in Ref. 9
and record the resonance position as a function of ~ . In
Fig. 2(a), the quadratic law is confirmed for the n = 2
resonance of Fig. 3 in Ref. 9. However, the n = 3 reso-
nance does not shift with id, as seen in Fig. 2(b). If we
do not truncate the coupled-channel equations Eq. (6),
but instead take intermediate channels into account by
substitutions of the kind shown in Eq. (20), then all the
formal steps in the Feshbach treatment are valid for the
present example, except the ansatz Eq. (12). The notion
of the metastable state wave function as a slightly medi-

fied bound state wave function cannot lead to the correct
solution here. The reason is that the magnetic field not
only couples bound state and continu»m, but modifies
the continuum itself. The special property of V*& in Eq.
(23) is that it is not localized in the x direction. The
propagating subband far away &om the scattering region
has a transverse wave function that is no longer given

by P„(y), but by a shifted harxnonic oscillator function.
To construct the correct wave function in the asymptotic
region, one therefore needs a superposition of diferent
P„, which xneans that their respective coefficients g„(z)
in the expansion of Eq. (5) cannot in general decay with

~x~. In particular, the ansatz r/i„= A 4o for a quasibound
state in subband n is not justified when io, g 0, unless
the admixture of P„ in the true transverse wave function
of the propagating subband happens to be negligible.

The example treated here matches the qualitative
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FIG. 2. Positions of the transmission minimum (solid dots)
and maximum (open dots) versus u, /uo for resonances due to
a bound state in subband (a) n = 2 and (b) n = 3. The system
consists of a quantum wire with a rectangular well of length
L = 3.5 QA/rnuo and depth Uo ——2M0. The n = 3 resonance
is much narrower than the one with n = 2, so minima and
maxima are almost indistinguishable on the energy scale in

(b). In both plots the curves start out linearly in u, /wo,
indicating a quadratic energy shift at small co, although the
coupled-channel model predicts an uy, law in case (b). Insets:
the corresponding resonance line shapes at u~/uo = 0.002.
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III. S-MATRIX APPROACH

The Feshbach approach enabled us to relate all the pa-
rameters determining the resonance line shape and po-
sition to properties of the original Hamiltonian. The
linewidth I' is obviously a measure of the coupling that
renders the originally bound state metastable (note that
in this paper I' is the half width of the Breit-Wigner res-
onance, whereas sometimes I' is used to denote the full
width). As is well known for the case of Breit-Wigner
resonances, 21'/5 is the decay rate of this quasibound
state. Instead of starting from a bound state and in-
troducing a coupling to the continuum, we could equiv-
alently start with a metastable state whose decay rate
is given by 21 and derive the resulting transmission be-
havior. This procedure is in fact more general because it
makes no assumptiuons about the number of subbands
participating in the metastable state. We shall see in this
section that the results derived previouly are con6rmed
and extended if we make use of the relation between qua-
sibound states and poles of the S matrix, established in
Sec. III A.

The S matrix relates the amplitudes of the incoming
and outgoing waves in all the subbands of all the leads.
If the total number of subbands in all leads is N, we can
specify the incoming and outgoing amplitudes by com-
plex N vectors I and O and write

0= SI, (25)

where the N x N matrix S is unitary at real energies E,
due to current conservation. We have to address here a
point that might cause confusion. If S is the unit matrix,
that does not imply the absence of any scattering as it
does in conventional scattering theory. Instead, S = 1
corresponds to perfect regection of all incoming waves,
without intersubband transitions. The representation in
Eq. (25) is convenient for extracting measurable quan-

description given at the beginning of this section-
quasibound states in one subband lying in the contin-
uum of a propagating subband —but cannot be mod-
eled with the present approach. Still, the resonance line
shapes found numerically are of the Fano type and ex-
act transmission zeros persist, as do the points of unit
transmission expected due to inversion symmetry. The
explanation for this will be given in the next section.
One might ask whether all resonances in @1D systems
can be described in terms of quasibound states splitting
off &om nonpropagating subbands. The answer is nega-
tive; examples are the resonant stub structure and the
Aharonov-Bohm ring with two leads attached. In both
cases one 6nds resonances of the Fano line shape even
when the motion between all junctions occurring in the
geometry is treated as purely one dimensional, i.e. , no
subband structure is taken into account. Those reso-
nances display zero and unit transmission if the system
is symmetric, even though the derivation that led us to
this phenomenon above does not apply. A more general
treatment is thus called for and that is the task we take
up now.

tities from S when dealing with multilead structures.
The quantities of interest in a multiprobe experiment
are the conductance coeS.cients relating the current in
a given lead to the voltages of all the attached reservoirs.
The I andauer-Biittiker formula allows us to calculate
these coeKcients Rom the matrix elements of S as de-
6.ned above.

In Sec. IIIA we brie8y review the connection be-
tween quasibound states and resonances and show that
the standard approach of multichannel scattering theory
in the absence of symmetries does not correctly reproduce
the statements derived in Sec. II because one arrives at a
line shape expression that contains too many parameters.
This raises the question of whether S-matrix theory in-

trinsically provides too little information to make strong
predictions, e.g. , about the existence of transmission ze-
ros. To prove that this is not so, we start by considering
scattering geometries with symmetries that reduce the
number of &ee parameters in the problem. In Sec. IIIB
we discuss $1D structures with a discrete rotation sym-
metry and derive a multiprobe line-shape formula. The
differences between the multilead system and a purely
two-dimensional problem will be discussed in Sec. III C.
In Sec. IIID we proceed to the most general multisub-
band and multilead structures. Finally, the special case
of multisubband two-probe structures is addressed in Sec.
III E.

A. Poles of the S matrix

(E) 2i&~ 2isi —2is
2 (26)

where 8 is the phase angle of E —E (E real),

A resonance that arises from the coupling between a
bound state and a continuum can be associated with
a metastable state that has an exponentially decaying
time dependence. Since that time dependence is e 'E ~"

for time-independent Hamiltonians, such a quasibound
state is a solution of the Schrodinger equation for com-
plex E = E~ —il" with I' & 0. At that E, a set of
outgoing waves with exponential growth in the leads ex-
ists in the absence of any incoming waves (referred to
in nuclear physics as Gamow statesss). This means that
the determinant of S vanishes there and consequently
at least one eigenvalue of S must be zero. The corre-
sponding eigenvalue A~ of S thus has a pole at E, This
pole will appear in the matrix elements of S too if they
contain contributions from this eigenvalue. Therefore,
one can speak of a pole of the matrix S. This is pre-
cisely the phenomenon which occurred in Sec. II, as can
be seen from the resonance denominators in Eqs. (A16)
and (84). Thus the results of that section are a special
case of the conclusions to be derived later.

For real E, A~ is unimodular and can be written as
A~

= e ' & with 6I~ real. The linear approximation to
A~ in the complex plane near resonance that; maps real
energies E onto the unit circle and has a pole at E is
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and 8~ is an arbitrary phase that we assume to be slowly
varying with E. This leads to

r
8~ 8~ —arctan E —E~

so that we now have the energy dependence of the res-
onant eigenvalue A~ in terms of E~, 1, and the phase
8&. We assiime that the zero of det(S ~) is a simple one
so that only a single A~ is resonant and all others vary
slowly with E.

The problem is how to deduce the reQection and trans-
mission coefBcients &om a knowledge of just the eigen-
values of S. This is possible only if the number of inde-
pendent matrix elements in S does not exceed its dimen-
sion. Being an N x N unitary matrix, S in general has
N2 independent parameters, so that it is not uniquely
determined by its N eigenvalues. Another N(N —1)
parameters must be ixnplicit in the transformation that
diagonalizes S, unless there are unitary or antiunitary
(time-reversal) symmetries in the problem that imply ad-
ditional relations between elements of S. If this is not the
case, we are faced with a situation faxniliar from the the-
ory of multichannel scattering. The approach commonly
taken there ' is to make the ansatz that each S-xnatrix
elexnent S „will itself exhibit a resonance denominator
as in Eq. (26):

Qg ~ PmS~„—S~„zE E ) (29)

1 1 —i8
ER + I Q(E —EIt)2 + I'2

'

where S g is the background scattering matrix in the ab-
sence of the resonance and p, h are complex vectors which
must satisfy j= S sh and ljl = lhl = 2I' so that S is
unitary. The individual lp l2, lh„l2 are then interpreted
as partial widths for leaving and entering the resonance.
However, Eq. (29) contains more than N2 parameters
since S~g is itself a general unitary matrix. It turns out
that the parametrization in Eq. (29) underconstrains the
S matrix, allowing line shapes that cannot arise in real-
ity &om a nondegenerate, simple and isolated resonance
pole. For instance, according to Eq. (29) a 2 x 2 S matrix
with Szz ——S2&

——1 gives rise to a transxnission Sq2 that
never goes to zero if lpq l2 P I'. To see this, note fu'st that
h'2 ——pq so that pqhz

——lpql . According to the definition
in Eq. (27),

nances in QlD structures with time-reversal symmetry.
With this further approximation we no longer have too
many parameters, but too few of them. The results in
that case are consistent with our work, but one always
arrives at symmetric resonance line shapes. This is all
that is needed in the resonant t»nneling regime on which
Ref. 21 focuses, because we have already seen in Sec. II
that the Breit-Wigner line shape results when the non-
resonant transmission is negligible. But as pointed out
in the Introduction, we wish to understand the implica-
tions of interference between resonant and nonresonant
scattering in the general case.

B. N-fold rotational symmetry

y(e) (p)
e-2 *~~/)v (p, q = 1, . . . , N).

Here p labels the elements R of the rotation group and q
enumerates the representations. From the N degenerate
scattering states corresponding to an incoming electron
in exactly one of the leads, we can form symmetrized
eigenfunctions by taking the incoming waves as I«& with
components

Low-dimensional systems always break full rotational
symmetry because leads are attached to the sample.
However, we can perform the analog of the preceding
partial wave analysis if the scattering geometry still is
invariant under a /mite rotation group. The inversion
symmetry considered in Sec. II for the two-probe case is
a special case of this, the rotation group being C2. The
fourfold symmetry of the cross junction has been used by
Schult et al.4 to perform a nuxnerical phase shift analysis
of the resonances found in that systexn. There is one com-
plication that does not arise in purely two-dimensional
systems, namely, the possibility of more than one prop-
agating subband in the leads. In that case, symmetry
alone does not suffice to diagonalize the S xnatrix be-
cause it is impossible to transform different subbands of
one lead into each other by means of a syxnmetry oper-
ation. Therefore we 6rst consider the case where each
lead supports exactly one propagating subband. Each
component of the amplitude vectors I and 0 then refers
to a different lead. For a general N-lead geometry in the
single-subband regime with syxnmetry group CN, there
are N one-dimensional irreducible representations with
characters

so that we can write

, + l~~l' (,-2;e,
)2I'

Across the resonance, 28 varies by 2m and lSq2l = 0
can only occur if lpqlz = I'. However, we show below
that transxnission zeros are present in the most general
two-probe (2 x 2) /ID resonant S matrix. A simpli6ed
version of Eq. (29), which assumes the background S ma-
trix to be diagonal, is often used and in particular was
employed by Buttiker to derive the line shape of reso-

For any rotation R„, one then has R I«) = ~(~) (p) I(v).
But since R„ leaves the system invariant, a rotation of the
incoming wave amplitudes R I leads to outgoing waves
R„O. For the symmetrized waves this means

SR Z(e) —&(e)(&) SZ(v) —&(&)(p) O

This ixnplies that O transforms under the rotations in
the same way as I«~. Since the representations are one
dixnensional, it follows that O oc I& ~, so that the I«& are
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an eigenbasis of S. The unitary transformation relating
the matrix elements of S between incoming and outgoing
waves in leads m and n to the diagonal elements A~ is
then given by

N

S .= —„).x(-)(~) ~;x(")(~)
j=1

(35)

(36)

This shows that S „only depends on the angle 2n (m-
n)/N between leads m and n, and it is an exact expres-
sion for the multiprobe scattering amplitude. Now as-
sume without loss of generality that HN is the resonant
eigenphase, while all other 8~ are slowly varying with en-
ergy. Then we abbreviate the sum over the nonresonant
eigenvalues by

N —1
~ ~ ~ ~2~g(~ —~)i/N—= one

2=1
(37)

where clearly p & N —1. With this one obtains, for
the scattering probabilities (which determine the conduc-
tance coeRcients),

2

+4 "sin 8 „———8~).

sin (8+ 8~) = sin 8+ arctan E —E~
E —ER + I' cot 8

=sin 8
(E —ER)2+ r2

(39)

(40)

The factor sin 8 is just the value that sin (8+8~) would
assume in the absence of any resonant contribution to the
phase shift. The resonant behavior is described entirely
by the second factor, which takes on the form of the
Fano function if we set e = (E —ER)/I' and q = cot 8.
We see that the asymmetry parameter in these units is
again solely determined by the backgound phase shift.
As noted in Sec. I below Eq. (2), the Breit-Wigner peak
arises for negligible nonresonant scattering sin 8 = 0.
Equation (38) implies that the effect of a resonance on
any matrix element of S decreases as the number of leads
N increases. More precisely, we can deduce

(38)

The factor sin ( ) in the above expression in fact leads to
the Fano line shape, as we now show. Denote the slowly
varying phases by 8 and use Eq. (28) for HN. Then

allowed by»»tarity unless N = 2. On the other hand,
both zero and unit transmission are reached on resonance
if N = 2. The reason is that N = 2 implies p „=1,
which is the necessary and sufEcient condition for a zero
in ~S

~

because it makes the first term in Eq. (38)
vanish. In that case we get

The special role of N = 2 is illustrated in Fig. 3.
The general line shape given by Eq. (38) has the Fano

form superimposed on a slowly varying base line; cf. Eq.
(39). The transmission for N = 2 can be written using
the definition Eq. (28) as

2

T=(S„) =)
(

( -'"")
(E —ER)2+ I'2' (44)

where we have identi6ed

~t
~

= sin (Hi —82) (45)

as the (slowly varying) transmission in the absence of the
resonance and introduced the energy shift

h = I' cot(Hi —82). (46)

This is the Fano line shape Eq. (1), with e = (E —ER)/I'
and q = b/I' = cot(8i —82). From Eq. (36) with N = 2,
we can also conclude S11 ——S22, S12 ——S21, and

i = cot(82 —Hi).
~ S11

S21

This relation also holds in the absence of any resonances
and in particular for the nonresonant S matrix S ~ with

81 ——81. This allows us to write, for the asymmetry
parameter,

Im S
JE

(a)

Im S

(b)

~~ = ReS = RBS

~ sin (8~ —Hi) (m g n)
1 —4 ~, sin (8~ —Hi) (m = n),

which varies by unity for N = 2. We still get this ex-
pression for N ) 2 provided that p „=1 for m g n
This occurs when all the nonresonant eigenphases are the
same:

P~~ ( (S
—1 +1

(41)

Thus ~S
~

varies exactly by 2/N if p „)1 and by
2p „/N otherwise. The maximum variation in IS „I is
therefore 2/N and ~S „~2 varies by no more than 4(N—
1)/N2. The latter is stricly less than amity for N ) 2, i.e.,
the transmission probabilities cannot assume all values

FIG. 3. Variation of the S-matrix elements in the complex
plane as the resonance is crossed for two symmetric struc-
tures in the single-subband regime: (a) four-probe and (b)
two-probe geometry. All 8 trace out a circle (thin line) of
radius 1/N lying entirely inside the unit circle (bold line). As
shown in (b), the case N = 2 is special because all S „must
describe circles that go through zero and unit modulus.
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h pbg

q = —= cot(82 —8) = a (48)

where res = Szsz and tss = Szf. Whereas Eq. (17) only
determined the magnitude of q, this expression gives the
sign too.

We have thus provided a generalization of the result
derived in Sec. IIB without any assuxnptions about the
mechanism creating the resonance. These considerations
are also valid if a homogenous magnetic field is applied
perpendicular to the plane of the structure, because that
has no effect on the rotation symxnetries. The quantum
wire structure with magnetic Seld discussed in Sec. II C
can therefore be described in the present formalism.

C. Comparison between continuous
and discrete symmetries

As is to be expected, there is a strong formal similarity
between the systems with continuous and discrete rota-
tional symmetries, respectively. The S-matrix element in
Eq. (36) can be rewritten as

N
isi ~

8 2+i (m ra)j/N—
j=l

(49)

Compare this to the scattering amplitude f(P) in a ro-
tationally invariant two-dimensional system (where P is
the angle with the beam direction). Since f(P) is ex-
tracted from the asymptotic form of the scattering state
by subtracting out the unscattered plane wave compo-
nent (leaving only the radial outgoing wave) it is related
to matrix elements of S —1. One finds, for particles with
momentuxn p,

f(P) = —) e' & sin8ie'~~,25

harp
2

(50)

der 2 2h,—= ~f(P)~' = —) ) e'l ~ "l sin8, sin8„e'l' "&~.
d4 harp

where the eigenphases 8~ now have the interpretation of
phase shifts in angular momentum channel j. Except for
the prefactors in the definition of the scattering ampli-
tude, Eqs. (50) and (49) are identical in form. In particu-
lar, one can obtain the 2D limit from the Q1D expression
when N ~ oo.

However, the scattering properties of a Q1D structure
are measured in a different way than those of a purely
2D system. Whereas the latter is characterized by cross
sections, the former requires us to determine the conduc-
tance coef6cients g . The difFerential cross section is
obtained from f(P) through

While S must account for all of the incident flux, f(g)
only represents the scattered portion of the incident Sux.
Flux conservation in two dimensions is satisfied because
the radially outgoing Hux measured by the total cross sec-
tion 0 is canceled by the interference terms between the
scattered radial and the»»scattered plane wave, which
is just the content of the optical theorem o oc Im f(0)
(since this interference is important only in the forward
direction). On the other hand, flux conservation in /ID
simply means that T—:1 —~S„„~ is equal to the total
transmission. Both T and the total cross section vanish
when S = 1. The similarity goes further, in that the
two-dimensional expression

4hg= —) sin 8i
p

(52)

D. Multisubband, multilead structures
without symmetries

For the multilead structure with discrete rotation sym-
metry and a single subband per lead, we were able to de-
rive the inequality (41). As a consequence, the resonant
variation ET of the total transmission from one lead into
all the others satisfies

bT & 4(N —I)/N . (53)

In the absence of symxnetries, we no longer know the
transformation that brings S to the diagonal form A,

predicts a zero in o. on resonance whenever the phase
shifts in all nonresonant channels are zero or multiples of
w; under the same conditions, Eq. (42) yields a zero in
the total transmission, not the reflection (except for the
case N = 2 where both occur). But one also observes
that T goes to zero on resonance even if the nonresonant
eigenphases (mod m) are not zero, as long as they are all
equal. This difFerence is caused by the way in which the
background phase shifts enter into cr and T, respectively.
In Eq. (38), 8 „contains all nonresonant phase shifts
whereas the partial cross sections in Eq. (52) only contain
a single eigenphase. This implies that the asymxnetry of
the resonance line shape in two dimensions gives us infor-
mation about a single background phase shift, whereas
the asymmetry in Q1D is infIuenced by all background

phase8 aimuttaneouaty. In other words, channels with dif-

ferent symmetry labels do not interfere in the total cross
section, but do interfere in the total transmission. As a
corollary, the N ~ oo limit of the total transmission T
cannot be directly identified with the total cross section
of a systexn with continuous syxnmetry. This can also be
seen from Eq. (38) for the reflection ~S„„~2,which shows
no resonant variation at all if we let N + oo.

(51) USUt =W, (54)

In contrast, the conductance coeKcients are not related
to the absolute square of Eq. (49), but instead to ~S
directly. These difFer only for m = n, but this difference
has physical consequences.

unless we solve the scattering problem itself. Therefore,
the constraints on AT will become weaker.

For a two-probe structure with tixne-reversal symme-

try, various authors showed for the special case
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of Breit-Wigner resonances in the resonant tunneling
regime that the conductance cannot vary by more than
ez/h on resonance, independently of the number of prop-
agating subbands per lead. Since the more general Fano
line shape occurs in the presence of significant back-
ground transmission, it is worth asking what the max-
imum conductance variation will be in this case. In par-
ticular, if complete destructive interference between reso-
nant and background transmission could still occur even
for a total background larger than unity, this would im-

ply a resonant conductance variation that exceeds ez/h
according to the two-probe Landauer formula

(55)

The first term is just the nonresonant transmission Sb&~.

Using Eq. (27), this can also be written as

Sb ——S~g —2il U1bV1 e ' '--
E —ER+ ~I'

This has the same form as Eq. (29), but gives us an ex-

plicit expression for the partial decay width: one can set

= b„' = v 2I' e' ' Ui„.

Clearly, this no longer contains too many independent pa-
rameters because we have simply reexpressed S in terms
of its eigenvalues and eigenvectors. It is useful to define

~' —= ).IUi I' (64)
This equation relates the conductance G to the total
transmission T. The generalization of this quantity to
a structure with arbitrary number of subbands and leads
is the transmission Rom all subbands of one lead into all
the subbands of all other leads. We first want to prove
the following theorem:

dT& & (56)

T = ).ISs-I'.
ab

(57)

According to Eq. (54), we can express S in terins of its
eigenvalues

N

Ss = ) U;sA~ U~s.

independent of the number of subbands or leads in the
structure and independent of the nonresonant transmis-
sion. This means that complete destructive interference
in T is impossible if the background is larger than one.

In terms of the S matrix of dimension N as defined
in Eq. (25), we can define the total transmission by as-
signing different labels to the subbands in the incoming
and outgoing leads, respectively. Let a run over all the
subbands in the incoming lead and b enumerate all the
subbands in all the other leads, so that all N subbands
are indexed either by a or b. Then

B' -=) IU„I'
b

Returning to Eq. (61), the total resonant transmission
becomes

T = ) IS~I +4sin 8 ) IUisI IUi I

ab ab

+ $ Se U, eU; e " ' (e ' —1) +c.c.I. (66)
ab

The first cross term (curly brackets) can be written more
explicitly as

) ~ ) U6t 2i86 U U U6 —2i8y
(

2is 1)
ab j=1

so that A +B = l. Then I':—2I'A2 is the partial decay
rate of the quasibound state into the incoming lead and
similarly I'b —= 2I'B2 measures the decay into all other
leads. Since I' = (I' + I'b)/2, we can also write

Now assume without loss of generality A1 to be resonant
so that its phase is given by Eq. (28),

2i81 —2i8
1 ——e e

(
28 1) ) IU I2IU I2+ — 8

(
28 1)

ab

N

x ) e ' ' ) U*sUisU~~Ui .
j=2 ab

(67)

Here 20 varies by 2m on resonance. The other eigenvalues
are assumed constant and will be written as

Now we note that the unitarity of the transformation U,

2i 8~3— (60) ) U;.sUig+ ) U,
* Ui ——b,. i,

b a

In order to compare with the ansatz in Eq. (29), we split
off the resonant term in Sb to obtain

implies, for j g 1,

N
U.~ 2i8~ U + U.* U 2i8g —2i8 2i8g

~ be -
1b 1 e e —e ) U'sUii, ) U~ Ui = —) U~ Ui

—= —Q . (69)

(61) Using this and the definitions of A,B in Eq. (67) and
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Substituting this into Eq. (66), the total transmission is
now

N

T = ) ISs I

—4) q~ sin (8 —Hi)
ab 2—2

N

+4) q sin (8+ 8~ —Hi).
j=2

(71)

Using the definition of 8 as in Eq. (39) we see that the
last term is a superposition of Fano line shapes, but in
general with diKering prefactors and asymmetry param-
eters. It can be shown that such a sum again yields a
Fano function plus some constant. This is then added
to the constant terms in Eq. (71). The question now is
what the maximum variation in T can be. As 28 varies
by 2z' in Eq. (71), T shows the largest variation if and
only if the nonresonant phase shifts satisfy

sin (8~ —Hi) = C (72)

for all j & 2 (with Qz g 0). Then one can use the
unitarity of U to derive

which leads to

N

) g'=A'B'
j=2

(73)

T = ).IC'. I' 4A B sin -(82 —Hi)
ab

+4A B sin (8 + 82 —Hi). (74)

Still assuming Eq. (72) is satisfied, some further alge-
bra leads to the following result for the total background
transmission:

T s = ) IStsI = 4A B sin (82 —Hi).
ab

(75)

This cancels the second term in Eq. (74). The total trans-
mission therefore has the pure Fano line shape and goes
to zero at some energy

T = 4A B sin (8+ 82 —8i). (76)

This holds whenever the nonresonant eigenphases are
such as to maximize the variation in T. The magnitude of
this variation AT now still depends on A B . Recalling
the defiiiitions in Eq. (64), we observe that A2 B & 1/4
and consequently AT & 1. We have thus shown for the
most general line shape that the resonant transmission
never varies by more than unity, independent of the num-
ber of subbands or leads.

The resonant tunneling transmission constitutes a spe-
cial case of Eq. (76) because Eq. (72) automatically
holds there: when the background transmission vanishes,

adding the complex conjugate, the cross terms in Eq. (66)
now take the form

N
—4A B sin 8+4) qua[sin (8+8~ —Hi)

j=2
—sin (8~ —Hi) j. (70)

E. Multisubband two-probe structures

The quantum constriction is a two-probe structure and
we now specialize the discussion to such systems to ex-
plore if further statements can be made when there are
only two leads, but arbitrarily many subbands. In this
case A and B measure the decay probabilities of the
quasibound state into the left and right lead, respectively.
A strong statement that has been proved in the resonant
tunneling regime (T s -+ 0) is that symmetric two-probe
structures always exhibit AT = 1 on resonance. ' This
theorem is no longer valid in general when there is more
than one propagating subband in the leads and nonres-
onant transmission is appreciable, because in that case
one can have T ~ ) 1 and the above discussion applies.
In fact, as Eq. (71) allows Breit-Wigner line shapes even
if Eq. (72) does not hold, M S-matrix theory alloiss Breit-
Wigner line shapes that do not vary by unity in symmet-
ric systems. Whether there exist potentials that actually
produce such resonances is an open question.

We do recover the resonant tunneling result, however,
if the condition in Eq. (72) is satisfied. To see this, note
that if the system has inversion or re6ection symmetry,
the rows of U (being eigenvectors of S) satisfy

U~ = +U~s (j = 1, . . . , N), (78)

where a and b refer to the same subband in the left and
right lead, respectively. This implies A2 = B2 = 1/2 and
thus AT = 1 in Eq. (76). We note two special cases of
Eq. (72). One is the resonant tunneling limit. One can
use Eq. (65) to write Eq. (77) in the form known from
the asymmetric double barrier

rl r.
(E —EJi) + (I')+ I'„) /4

(79)

Here we have identi6ed l = a and r = b since r~,r„are
simply the partial decay rates into the left and the right

S~s ——0 for all a,b, so that the cross terms in Eq. (66)
actually have to vanish. Thus Eq. (70) must yield zero,
which requires that Eq. (72) hold with C = 0. We there-
fore can use Eq. (76) with 82 —Hi ——0 and obtain the
Breit-Wigner line shape for the total transmission, inde-

pendently of the number of subbands or leads,

r2
T=4A B (77)

A further implication of the above calculation is that
if T s ) 1, then Eq. (75) cannot be true, so that Eq.
(72) must be violated. But then the maximum varia-
tion AT = 1 is impo88ible. This happens, e.g. , in quan-
tum point contacts above the second conductance step.
Whereas resonances on the 6rst quantized plateau dis-

play unit variation in T as shown in Ref. 19, this cannot
occur on higher plateaus. It is worth emphasizing this
because a naive generalization of the two-channel result
of Ref. 19 would state that antiresonances on the nth
conductance plateau drop to a minimum value of (n —1)
times the conductance quantum.
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lead, respectively.
The resonant tunneling structure, however, is not the

only example in which Eq. (72) is satisfied. Another spe-
cial case in which Eq. (76) must hold is the two-probe
structure with only one propagating subband per lead.
There the sums over j in Eq. (71) contain just a single
term because N = 2. This confirms our result in Sec.
II that the Fano line shape with exact transmission ze-
ros will occur invariably if the S matrix is of dimension
X = 2, but unit transmission need not be reached on
resonance if there are no symmetries.

IV QUASI-ONE-DIMENSIONAL
MODEL SYSTEMS

One result derived in the preceding section is that the
Fano function is the generic resonance line shape for any
S matrix of dimension 2, under the condition that the
only rapid variation in energy occurs in one of the eigen-
phases. The distinction between quasi- and purely one-
dimensional systems did not enter that discussion since
a 2 x 2 S matrix can describe both cases.

To understand why the Fano function is never seen
in purely one-dimensional scattering, we have to come
back to the general physical difFerences between Q1D and
strictly one dimension. In the latter case, exemplified by
a double-barrier resonant tunneling device, the back-
ground transmission ~tsg~2 and the decay rate I' of the
metastable state are not independent. Well-defined res-
onances with small I' require low background transmis-
sion, which simply gives the Breit-%igner line shape. In
a QID system, on the other hand, an electron entering
the region where the quasibound state is localized does
not necessarily enter that state itself because the exis-
tence of a second scattering channel allows resonant and
nonresonant transmission to occur in parallel as two dis-
tinct processes. The background transmission can still be
large even if the coupling to the quasibound level (which
determines I') is small (e.g. , due to approximate symme-
try).

Since the energy shifts 8 in Eqs. (B6) and (44) are pro-
portional to I', the asymmetry parameter q defining the
line shape is actually independent of I'. If I' can be varied
while ~t s~ is roughly constant across resonance, a series
of Fano line shapes will be obtained which can be col-
lapsed onto a curve characterized by a single asymmetry
parameter q by rescaling the energy axis. This scaling
property may be tested for the first time in transport
experiments.

In addition to the quantum wire structure studied in
Ref. 9 and discussed in Sec. IIC, we have explored two
difkrent systems which might exhibit Fano resonances
when appropriately perturbed to create a quasibound
level in the continuum. Since we desire external control
over the resonance lifetime, it is necessary to minimize
broadening due to inelastic scattering or disorder. The
aim must therefore be to fabricate such structures with
atomic precision, which has not yet been achieved with
quantum wires suitable for transport measurements.
We thus consider Fano resonances in a three-dimensional

heterostructure with a tilted magnetic field and in a
two-dimensional electron gas with an in-plane magnetic
field. These systems can be realized purely by crystal
growth (e.g. , molecular beam epitaxy). Furthermore,
they can be mapped onto the quantum wire problem al-
ready solved in Ref. 9 and discussed above in Sec. II |I

A. Quantum well in tilted magnetic field

One way to achieve ideal parabolic quantum wire con-
finement is by applying a homogenous magnetic field B to
a three-dimensional &ee-electron gas. The motion along
the field lines is kee, whereas the transverse orbits are
quantized into Landau levels (LL's) which in the Lan-
dau gauge yield harmonic oscillator wave functions. The
calculation is described in Ref. 18. Here we describe the
proposed experiment and present the predicted results.

Consider a layered structure of the type shown in Fig.
4. The emitter and collector regions are degenerately
doped and the spacer layers are of the same composition
as the contacts but undoped. The central part consists
of a single undoped well with a band gap that is lower
than in the contacts. In the region made up of the well

and spacer layers transport is assumed to be ballistic.
There will be some band bending at the well interfaces,
but we neglect this effect in the numerical calculation
because it only aÃects the exact resonance energies but
not their shape. Since the structure contains no tunnel
barriers, it is possible to drive a current without large
voltage drop. We can therefore use the linear response
approximation in which the net current is determined
only by the transmission at the Fermi energy E~. At a
given carrier concentration in the contacts (determined
by the doping), we can vary Eg by changing the magnetic
field. Since the I L degeneracy is proportional to B, one
can make E~ approach the the bottom of the lowest I I
Eq by increasing B. At the same time, Eq itself increases
with B so that Ey will eventually be pulled up together
with Eq. The calculation has to include the effect of spin
splitting, which is done in Appendix C. The result for

Ep as a function of B is shown in the inset to Fig. 5.
The scattering problem at EJ; is described by the

Hamiltonian

FIG. 4. A finite quantum well (shaded region) in a mag-

netic Beld B that is tilted with respect to the vertical direction
x. We measure the current across the well as a function of
B. The undoped well is separated from the doped contacts
by undoped spacer layers of the same composition as the con-
tacts.
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1.5

1.0

B/Bs 1.0

sion behavior of the heterostructure at low bias voltages
in a tilted magnetic field follows straightforwardly from
the numerical results of Refs. 9 and 39.

The resulting transmission curves for the material
system Ga Inq Sb-InSb-Ga Inq Sb and a particular
choice of parameters are shown in Fig. 5 for a particu-
lar resonance at various small tilt angles a. The scaling
property of the resonances (due to the independence of
the asymmetry parameter q on tilt angle) is found to be
well satisfied in this system.

6.58
B [T]

6.61 B. Two-dimensional electron gas with a groove

FIG. 5. Transmission of a finite well as a function of mag-
netic field B in units of Bo. The tilt angles are sina = 0.12
(dash-dotted line), 0.1 (dashed line), and 0.08 (solid line).
We chose a Ga Inq Sb-InSb-Ga Inq Sb structure with well

width L = 25.9nm and depth V = 168meV. The large elec-
tronic g factor and small effective mass of this compound com-
bine to give Ii 1/3; cf. Ref. 43. Inset: dependence of the
Fermi energy on magnetic field B for B ) B&h. The straight
dashed lines show the Brst (n = 1+) and second (n = 2—)
spin-split Landau levels and the dotted line represents the
position of a resonance. The Fermi energy at Bo is Eo.

1
H = (p —mv, y) +p„+ (p, +me y)

Extremely high precision fabrication has been reported
using the technique of cleaved edge overgrowth. We
propose to apply this method to create a two-dimensional
electron gas (2DEG) divided by a thin straight groove in
the conduction band bottom as shown in Fig. 6(a).

The conductance is measured in linear transport &om
one side of the trench to the other, with a magnetic field

B applied parallel to the trench. The Fermi energy E~
of the 2DEG is varied by means of additional gating and
the conductance as a function of E~ will be a convolution
of a one-dimensional density of states and the Fano line

shape, with a decay width determined by the magnitude
of B. We neglect spin for the sake of clarity because it
does not affect the proposed mechanism. If the 2DEG

1 ~+U(z) 6 g'pgyB, —
2

where we defined

eB
mc

eB
mc

(80)

(81)

3 +++++++++
2DEG

and chose the gauge A = —B,yx+ B yz to describe
the tilted magnetic field B = B x+ B,i. We denote by
U(x) the efFective potential due to the conduction band
modulation in the growth direction z. In the Zeeman
term, we introduced the electronic g factor g' and the
Bohr magneton p~ = eh/2m, c, which involves the bare
electron mass instead of the effective mass.

Since [H, p, ]j = 0, we use the ansatz

110

100

I I I I
i

I I I I

@(x,y, z) = Q(x, y)
e'"*' (82)

to obtain a two-dimensional Schrodinger equation for Q.
Comparison with Eq. (21) then shows that the result-
ing equation is precisely the Schrodinger equation of a
parabolic quantum wire, shifted by "",with a trans-
verse magnetic field

0.5 1.0
EF [hu0]

1.5

B' = V' x (—B,yx) = B,z. (83)

The current I Bowing through a y-z plane of the het-
erostructure (area A„,) is obtained by integrating the x
component of the current density over y and z and sum-
ming over all k . The result is I = A~ B &, I', where
I' is the current fiowing through the equivalent quantum
wire (this has no k, dependence). In the following, we
divide out the (known) degeneracy equal to As B &, . If
one assumes U(x) to be a rectangular well, the transmis-

FIG. 6. (a) A 2D electron gas forms at the interface be-
tween the n+ doped high-band-gap region (3) and the un-

doped lower-gap material (1) with a quantum well. The band

gaps must satisfy E~ ( E~ ( E . The efFect of the well at
the edge is to create a trench of lower efFective potential in
the 2D electron gas. A magnetic field B is applied parallel
to the trench, i.e., pointing out of the page. (b) Conduc-
tance as a function of Fermi energy for a groove of length
L = 3.5 /It/mtup and depth UII = 2 huo. The magnetic Seld
is such that u, = 0.2cuo.
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is in the x-z plane and the depression in the conduction
band extends along the z axis, we choose the Landau
gauge A = —By 2 to represent the Geld B = Bz. The
trench potential is denoted by U(x) and the vertical con-
finement potential creating the 2DEG subbands is W(y).
Since z is a cyclic coordinate in the Hamiltonian, we use
the ansatz

@(x,y, z) = g(x, y) e*"" (84)

to obtain a two-dimensional Schrodinger equation for Pi:

2 &max

G = — dE g(E) T(Ey —E),6 p
(86)

where R, = Bw —hwo/2 and g(E) = z„V z, & is

the one-dimensional density of states, which is peaked
at E = 0. In Fig. 6(b) we plot the resulting transinission
for a structure with the same values of (c)p, I., and Up as
in the models discussed above. The asymmetries are still
recognizable, although the original Fano line shape does
not occur here. In particular, one can decide from the
convoluted line shape whether the corresponding Fano
resonance has a positive or negative asymmetry param-
eter: if the minimum in T occurs for E lower than the
maximum, then G also shows a dip before the bump. If

is measured as a function of E~ over a sufBciently wide
range, then the convolution in Eq. (86) can be unfolded
by Laplace transformation to get back T(E).

V. CONCLUSION

%e have attempted to shed light on the general proper-
ties of resonance line shapes in systems where the asymp-
totic motion of the scattered particle is conGned. The
Feshbach approach was applied to scattering in a quan-
tum wire without time-reversal invariance and provides

Far away from the trench, where U(x) = const, this is
just the Schrodinger equation of a quantum wire with
confining potential W(y) in a transverse magnetic field,
so Q(z, y) are the scattering states of this wire at energy

h kE' = E—
2 . This means that the y motion is quantized

into modes (namely, the subbands of the 2DEG), whereas
one has reHected and transmitted plane waves in the z
direction. In the absence of a magnetic Geld, x and y
degrees of freedom are decoupled. This situation is again
very similar to Eq. (21) if we specialize to a harmonic
confinement W(y) = zmur02y2, except for the fact that k,
no longer labels degenerate eigenstates and thus appears
in the dispersion relation. If we solve Eq. (85) to obtain
the transmission probabilities T(E') across the potential
well V(z), then the conductance is

microscopic expressions for all line shape parameters. In
agreement with previous work, it predicts that there is
always a transmission zero on resonance whereas a re-
Qection zero is a consequence of additional symmetries.
To reconcile this result with the more globally valid S-
matrix formalism, we had to abandon the ansatz used
in Refs. 21, 34, 35, and 23. A more careful treatment
then leads to a theory of multilead geometries with or
without symmetries, which reproduces and generalizes
the results of Sec. II. The Fano function arises as the
most general resonance line shape, under the assumption
that the background can be considered constant over the
width of the resonace. The Breit-signer line shape ap-
pears as a special case when the nonresonant channels
with which the resonant scattering can interfere suer
no phase shifts.

As a result of our comparison between scattering in
two-dimensional rotationally invariant systems and sym-
metric Q1D structures in the single-subband regime, we
saw that in both cases we could classify resonances ac-
cording to the irreducible representations of the respec-
tive symmetry groups. For continuous symmetry, the
asymmetry of the resonance line shape depends only on
the phase shift for direct (nonresonant) scattering in the
angular momentum channel that exhibits the resonance.
The phase shifts in all other angular momentum chan-
nels simply give rise to a base line in the total cross
section, but do not interfere with the resonant scatter-
ing. The situation is different for discrete symmetries in
that the nonresonant phase shifts of all channels inQuence
the line-shape asymmetry through interference. The rea-
son for this is that we measure cross sections in two and
three dimensions, but conductance coefficients (or trans-
inission probabilities) in QlD systems. These quantities
do not become equivalent in the limit of inGnitely many
leads. In fact, the e8'ect of a resonance in QlD vanishes
with increasing number X of leads. More precisely, both
the total transmission and individual S-matrix elements
vary by at most 4(N —1)/N2, which is less than unity
for X&2.

More generally, we find. that independent of the num-
ber of subbands or leads, the total transmission of a Q1D
structure cannot vary by more than unity when a res-
onance is crossed. But the well-known result for res-
onances in resonant-tunneling structures, that the
total transmission of a two-probe structure varies exactly
by one if the system is symmetric, does not remain valid
in general. As an example for this consider a ballistic
constriction. If there is only one propagating subband,
Gurvitz and Levinson predict the occurrence of exact
transmission zeros (antiresonances) on the conductance
plateau close to the second subband threshold. This does
not generalize to higher plateaus, i.e. , an antiresonance
on a higher quantized plateau cannot dip all the way
down to the level of the previous plateau. We were able
to derive this because our approach allows us to consider
two-probe structures with more than one propagating
subband as well. Our predictions are consistent with nu-

merical calculations. Moreover, we can now state that
the line shape will be of the asymmetric Fano line shape
if the plateau is not well quantized or if the resonance
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occurs in the step region.
The elastic Fano resonance obeys a scaling property in

that line shapes with difFerent width I' fall onto a sin-

gle curve when plotted in reduced units e, provided the
background transmission is the same. This efFect can be
tested in transport experiments if one has a means of
varying I' without significantly altering the background
transmission. The two model systems we discuss (quan-
tum well and quantum groove in a magnetic field) have
this property, but direct observation of the Fano line
shape is possible only in the quantum-well corLguration.

and finally

(~'oIV» lxs)-z —(elv Gv Ic)
(A5)

Using the explicit form of the retarded Green's function
in one dimension

G, „xk(~)xk(*') (» *')
(A6)"(**)="~t""x,(-)",(*) (*&*), ' "
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4i(*) = xs(*) +,.q, q,„
((x')'Iv, le )(c'olv» Ixs)xxi z A A A

E —Ep —(4 p IV2i Gi Vi2 IC'p)
(A7)

APPENDXX A: SOLUTION
OF THE COUPLED-CHANNEL EQUATIONS

and, for x ~ —oo,

In this appendix we solve the coupled-channel equa-
tions Eqs. (10) and (11) with the ansatz of Eq. (12),
namely, $2(x) = A@p(x). Inserting this into Eq. (10),
we get an inhomogenous equation for I@i) which can be
solved with the retarded Green's operator (no label is
necessary to distinguish it &om its advanced counterpart
since the latter is not used here)

2 ((xs)'IV» IC'o) (Colv» Ixil)

E —Eo —(C'olV2i Gi V» I@o)

The xnatrix element in the denominator of Eq. (A7) is a
self-energy due to the coupling between the bound state
and the continuum and will be denoted by

G1 = E —E1 —K —U —V11+i 0+ (A1)
(CplV2i Gi Vip I@o):—b, —iI', (A9)

I41) —Ixgg) + +Gi vi2 IC 0). (A2)

With this, Eq. (11) becomes

&(E —Eo) I@o) = V2i Ixs) + & V2i Gi Vi2 IC'o) (A3)

which can be closed with (@pl to get

(4'oIV» lxs)
& —&o —(Oo IV2i Gi Vi2 l@o)

(A4)

Acting with this on Eq. (10), the general solution to that
inhomogenous equation is found to be

where 6 and I' are real. It is of crucial importance for the
existence of exact transmission zeros that the numerator

,.$,$,„((x')'IV I@')(@oIV Ix') =—b- I'

has the same imaginary part —I', but in general a dif-
ferent real part h. The proof cannot proceed as in Ref.
19 when we admit a more general V ~, as is needed for
magnetic-Beld-induced coupling. Here we provide a gen-
eralized proof that requires the hermiticity of V " and
the additional property V„&

——+V„~. This is sufficient for
the application we investigate in Sec. II C.

Using the definition of the Green's function Eq. (A6),
we can rewrite the left-hand side of Eq. (A9) as

2 5 dxdx'Xk x V1*2 eo x eo x V21 Xk x

d~ d*' + d*d*
I

Oo(*) V2i xs(*)xa(*')Vi2 @p(*')ih'ktss )
= (OoIV2i Gi Vj2 lc'o) + ~2 s dade @p(x) V2i xs(x) xs(x )Vi2 @p(x )ih2kt~g

dudx Cp(x) V2i xs(x) xs(z )Vj2 @p(x )ih2ktag

=(OolV.1Glv121@o)+ . 2 s dxdx'4o(z) V2i x„(x)x„(x)—xs(x)x&(x') Vi2 e'o(&).
ih2kt~g

(A11)
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The difference in square brackets can be written with the
help of Eqs. (A14) of Ref. 19 as

&k(x) &k(z')' —~k(z) ~k(x')j

f(x, x'), (A12)

where f (x, x') = 2 Im yk(x)* yk(x')] is real and satisfies
f(z, x') = f(x—', x). We therefore have to show that

we get, for x —+ ac,

gi(x) = t g e' 1+ z —z, —~+ir
which leads to the new transmission coefFicient

I' = lt"f' 1+ s —ir
F —Ep —4 +iI'

, , (Z —Eo —a+~)'
(E —Eo —E}2+ I'2

(A15)

(A16)

dz dz'4o(z) V2i f (z, x') Vi2 4o(x')
+~+I

(A13}

is real. This is immediately clear if Vzz and V&z are either
both real or both imaginary. The latter happens if they
are proportional to p = ibad/Bx, —e.g. , and this is the
case in the example studied in Sec. IIC. Therefore, we
conclude, for the matrix elements occuring in Eq. (A7),
that

((~'„)'lv„ le, ) (4', lv„ lx'„)

= (4 olV2i Gi Vi2 l@o) + h, (A14)

where b is real. Using Eq. (8) for the scattering states,

APPENDIX B:REFI ECTION ZEROS
IN SYMMETRIC STRUCTURES

The scattering state given by Eq. (A5) is normalized
to the same incident fiux as leak) because Gi(x, z') only
adds outgoing waves originating &om point sources at
x' in the region of the bound state. Thus current con-
servation must hold for the re6ection and transmission
probabilities in the presence of coupling B+T = 1. I et
us now consider the refiection R. Using Eq. (A14) of
Ref. 19 and the asymptotic form of g2& we can rewrite
Eq. (A8) as

"+'/t '((&~)'Iv» I@o) + 1/(t ')*(&~lv» IC'o) (4'oIv» I&k)
( )

ikx + bg ika + — —ikx
+ ih2k & —&o —(4'o

I
V2i Gi V» l@o)

h —iI'+ m/[ih'kr+g(tbg)'](g'„IV„ IC o) (C,IV„ lg„')k + g —A: ~+ ',t

& =— ,~2~„ tbg .(xk IVi2 IC'o) (c'o IV2i Ixk) (B2)

is real because

(&klvi2 IC'o) = +(@olv2i leak)' (B3)

The reBection probability thus has the form

R = Irbgl' 1+ E —Ep —4+iV

l„bg ~ (E ER+ ~+ ~)'—
(Q E )2++2

(B4)

(B5)

where we have again used the shifted resonance energy
ER ——Ep + A. This shows that R indeed goes to zero in
the presence of inversion symmetry, implying T = 1. The
distance between the points of unit and zero transmission
is g, as can be seen from comparison with Eq. (A17).

where the definition Eq. (A9) was used.
In an inversion symmetric structure, the remarks in

Sec. IIB together with the hermiticity of V*J lead to
the conclusion that the remaining combination of matrix
elements in Eq. (Bl)

Imposing the condition B+T = 1 yields

I 2 = I,bg tbg I» (B6)

From this we obtain Eq. (17). Instead of q, we could also
use t g as the third line-shape parameter. For a given
resonance, ER and g can be read off directly kom the
positions of the miniinum and maximum, while Itbgl is
the transxnission base line away &om resonance. If It gl

is not exactly constant, one has to Gnd the best Gt by
interpolating between the values of It gl2 to the left and
the right of the resonance.

APPENDIX C: TUNINC THE FERMI ENERGY
WITH A MAGNETIC FIELD

Here we discuss the dependence of the Fermi energy
on the magnetic 6eld, neglecting disorder. Consider a
three-dimensional electron gas (effective mass m') in a
homogenous magnetic field along the z axis: the energy
eigenvalues are

h'k'E„=hu).
I

n ——
I
+ .' + —g'ya&

2) 2m* 2

(n = 1, 2, . . .) (Cl)
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and have a degeneracy per unit area (perpendicular to
the magnetic field) of

mechanism. In units of Bp, we can rewrite Eq. (C7) as

eB
hc

(C2)
(B & Bp)

We want to determine the Fermi energy at T = 0 for a
given electron density p, which is fixed by the doping.
First consider fully spin-polarized electrons in the lowest
LL. Only the low-energy Zeeman term in Eq. (Cl) is then
relevant, so that the minimum energy is

Ep
p = D g(E)dE (C4)

1 1, 1
Ep =——hu, — Ig'Ij, g—)BI = —hu, (1 —a),

2

where we defined g—:Ig'I m'/2m„which determines
the Zeeman splitting, and assumed B & 0. If n & 1, the
spin splitting is less than the cyclotron &equency cu, =
eB/m'c. The density must satisfy

(C10)

For InSb with its strong spin-orbit coupling, 3 one has

q = 1/3 so that we estimate Bp = 12T if the doping is

p = 10 cm . The Zeeman splitting is then hg~, =
hu, /3.

Now we consider how E~ behaves when B & Bo, so
that both spin directions are present. We still assume
that only the lowest LL is populated. In straightforward
generalization of the previous procedure, E~ must now
satisfy

1 eB 2m 1 1P= E~ ——Ku, + —g' pgBx hc h2 2
'

2

with the one-dimensional density of states
1 1

+ Ep ——Rdg ——g @galB
2 2

(Cl1)

h2
g(E) = — (E —Ep)2' 2m' (C5)

The integral yields

1
eB 2m'

a (" E')- (c6)

so that the Fermi energy as a function of magnetic Geld
becomes

1+453p2 1, m'~,
E — c 2+ 2 m33 89 &4/3 2

H

(C12)

The assumption that Ey is below the second LL thresh-
old will be valid for magnetic fields greater than the min-
imum value determined by

Here the two terms in square brackets count the number
of spin-up and spin-down electrons below E~, respec-
tively. Solving this for Ep,

1
(

52 & xphcl
2 2m'

g eB) (C7)
3 1 ~ 1

Eg = —~, — g'pgB = —h—u, (3 —q).
2 2 2

The solution for this threshold Beld is

(C13)

This relation is correct only if E~ is in the spin-polarized
lowest LL, so that the magnetic field has to be greater
than a threshold field determined by the condition

1 . /1
Ep = —hect + min

I
Ig'p, gyBI hu ——Ig'pgyBI I—

2 2 j
1= —hu, [1 + min(g, 2 —g) t .
2

(C8)

Equating this with Eq. (C7), one obtains an expression
for the threshold field

1
( np2 l ' hc

(4min(1, g) ) e

In view of the specific example treated in this paper, we
assume g ( 1 kom now on. This does not afFect the basic

l(hcl t' ll f 1
Bt = —p'

I

—
I I

—
I I

1 — n —Ql —n I
-(C14)

E e ) E&) )

At p = 10~ cm in InSb one obtains, for the threshold
Beld, the value Bqg 5.0T. Using the threshold Beld for
spin polarization Bo as a immit, one can write the Fermi
energy as

E&=-h .+-h.q I
I

+I1 1 (Bpl f'B l
2

' 4 ' gB) qBp)

(Btz & B & Bp). (C15)

The function given by Eqs. (C10) and (C15) is plotted in
the inset to Fig. 5.
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