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Charge fluctuations in the single-electron box: Perturbation expansion
in the tunneling conductance
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The average number of electrons on a small metallic island biased by an external voltage source
via a tunnel junction is investigated. The jumps of the electron number as a function of the applied
voltage are smeared by quantum Buctuations arising from the finite tunneling conductance of the
junction. A systematic expansion of the partition function in terms of the tunneling conductance is
given. The average island charge is determined for the realistic case where the electronic bandwidth
is large compared to the single-electron charging energy. It is shown that finite-temperature eBects
remain important for the lowest temperatures presently attainable experimentally.

I. INTRODUCTION

In recent years, Coulomb blockade phenomena in
nanostructured metallic films have attracted a great deal
of interest. ' Typically these systems consist of small
conductors interrupted by tunnel junctions and gate ca-
pacitors for external control. Single-electro~ effects are
observed in these systems provided two basic require-
ments are met. First, the charge on a small metallic
island between two tunnel junctions or between a tunnel
junction and a capacitor should be quantized in units of
the elementary charge. Second, the Coulomb energy of a
single excess electron on an island should surmount the
thermal energy k~T.

The simplest system showing single-electron charging
effects is the single-electron box. It consists of an ultra-
small tunnel junction with capacitance C in series with
an equally small gate capacitance CG. , where typically
C, CG & 1 fp. The device is controlled by an external
voltage source U,„(cf.Fig. 1). Provided the tunneling re-
sistance Rq of the junction exceeds the von Klitzing con-
stant RJt. = h/e 25.8kB, the charge q on the metallic
island between the junction and the capacitor is found
to be quantized, i.e. , q = —ne, where n is the number
of excess electrons on the island. A simple electrostatic
calculation gives for the ground state an electron number
n which is the integer closest to n,„=C~U,„/e. Hence,
n is a step function of the applied voltage as shown in
Fig. 1. By changing U,„electrons can be added one by
one to the box in a reversible way.

This simple picture of Coulomb blockade phenomena
in the single-electron box is modified by three kinds of
effects. First, at finite temperatures excited states are
available and the steps will be smeared. Second, the is-
land charge q is not strictly quantized. The coupling
between the Fermi liquids in the island and lead elec-
trodes by the tunnel junction allows for a hybridization of
their states which gives rise to a quantum smearing of the
steps. ' Finally, the external voltage source is attached
to the box by leads. The interaction with this electro-
magnetic environment modifies the simple electrostatic

energy considerations. However, in view of an earlier
examination, we expect only small environmental effects
for standard experimental setups. Hence, we shall focus
here on the efFect of the finite tunneling conductance and
finite temperatures on charge quantization.

In the following section, we first introduce an appropri-
ate Hamiltonian and relate the average number of excess
electrons in the box with the partition function of the sys-
tem. Using the tunneling Hamiltonian as a perturbation,
we then derive in Sec. III a series expansion of the par-
tition function. The perturbation theory is complicated

by the fact that the Fermi liquids in the island and lead
electrodes are correlated by the charging energy. We re-

strict ourselves to the limit of a large number of electronic
channels, which is realistic for metallic tunnel junctions.
Sections IV, V, and VI discuss the diagrammatic repre-
sentation of the perturbation series, which is condensed
step by step. Also, we take the limit where the electronic
bandwidth is large compared to the single-electron charg-

ing energy, as it is the case in real systems. In Sec. VII,
we then use the these results to determine the eÃect of
the finite tunneling conductance on the Coloumb stair-
case. Explicit results are given up to second order in the
tunneling conductance. Finally, in Sec. VIII, we present
our conclusions.

CG

1/2 3/2

FIG. 1. (s) The circuit diagram of the singlwelectron box,
consisting of a tunnel junction in a series with a capacitor.
(b) The number n of electrons in the box ss a function of
net = &a&ex/e.
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II. HAMILTONIAN AND PARTITION
FUNCTION

An appropriate Hamiltonian for the single-electron box
may be written as

H = Ho+a

Z = tr(exp( —PH)),

from where we obtain in terms of the free energy F =
—(1/P) ln Z

(1O)

where

2 - tHp Ec(& aex) + ) &lier as ako + ) &qcr aq~ aqo
kcr qcr

(2)

describes the system in the absence of tunneling.

Q
2

E, =
2(C+ CG)

is the single-electron charging energy, and n denotes the
number operator of excess electrons on the metallic island
between the tunnel junction and the gate capacitance (cf.
Fig. 1).

where ( ) denotes the thermal average. In view of
BH/Bn, „=—2E,(n —n,„) this gives for the average
number (n) of excess electrons in the box

1 OF 1 OlnZ

2E, Bn,„'" 2PE, Bn,„
Hence, we need to determine the partition function Z
as of function of n,„ to calculate the average number of
charges in the box.

III. PERTURBATION THEORY
IN THE TUNNELING HAMILTONIAN

n,„=Ca U,„/e (4)

is a dimensionless parameter characterizing the applied
voltage U,„. Hence, the 6rst term on the rhs of (2) de-
scribes the Coulomb energy in the presence of an external
voltage. Hereby we have omitted terms independent of
n that are irrelevant for the following considerations.

The remaining terms in (2) describe the Fermi liquids
in the island and lead electrodes, respectively. aA,. is the
annihilation operator of an electron state with energy

in the island electrode. Here, k denotes the longitu-
dinal wave number, and e denotes the transversal and
spin quantum numbers. Likewise, aqcr is the annihilation
operator of an electron state with energy eq in the lead
electrode, where q denotes the longitudinal wave number.
The transversal wave number and the spin quantum num-
ber, both denoted by cr, are conserved during tunneling
transitions described by the tunneling Hamiltonian,

Hp ——H, +) H (12)

where

H, = E,(n —n,„)2

To evaluate the partition function we shall treat the
tunneling Hamiltonian Hq as a small perturbation. We
first note that due to the charging energy, the Hamilto-
nian Ho does not imply a Wick theorem for the expecta-
tion values of time ordered products of electron creation
and annihilation operators. In this and the following
sections, we present direct thermodynamics perturbation
techniques for this case.

We first note that the unperturbed Hamiltonian may
be written

Ht, —) (tl,q ats aq A+H. c.).
A, qcr

(5) is the charging energy, and

Here, tyq is the transition amplitude for tunneling of an
electron from the state qcr in the lead electrode to the
state kyar in the island electrode. The operator A changes
the number n of excess electrons on the island by 1, i.e.,

~cr g kcr A.cr A:cr + g qcr qcr qcr

k

(14)

is the electronic Hamiltonian for channel o. Further, the
timneling Hamiltonian is of the form

AtnA = m+1. (6)

In terms of the phase p conjugate to n with the commu-
tation relation

[n, rpj =i,
the operator A may be written as

A = exp( —iy) .

At inverse temperature P = 1/k~T, the partition func-
tion Z of the single-electron box reads

where

h = t) t,'a~~a ~A
kq('

(16)

Here, we have replaced tj,q by a constant and real tran-
sition axnplitude t, which is sufhcient for our purposes.
The index ( takes the two values + and —,and we have
introduced the notations a~+ = at, a„= a„(p
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k, q), A+ = At, A = A for convenience. Note that the
various channels o are coupled by the charging energy
H, .

Since the n,„dependence of the partition function
arises from the charging energy only, we may put

tre-~Hz=
II tr e-~H-

A straightforward expansion in powers of Hq gives by
virtue of (12) and (15)

oo p ~en

Z= ) (—1) dn dn
rn, =0 0 0

tr, e .II tr e -Ii (n ). . h, , (ni)
dO,'1

II tr e-~H-
~12 ~ ~ )~rn

(18)

where tr, is the trace over all charge states of the box, and tr is the trace over all electron states in channel a.
Furthermore,

h (n) = e ' fi e

Inserting now the representation (16) into (18), and writing the trace over the charge states explicitly, we find

oo p a rri

Z= ) (—1) dn dn
m, =p 0 0

dni )
A'1q1~11.1

(',i(2" (',

x ) e ). ='I ' ' ' "
(aa~(a )a ~ (a ) aa' (ar)ar~' (ar)A~a~ ~ q~~~ k q (20)

Here, no ——n —P, and the n~ give the number of charges
in intermediate states with z=) l' f z)( "f dp &() Z, —pl

Further,

2 —1

n, =n+)
A:=x

(i »)
C1,",42~ ~=—~

2m j"). ) . ... & '...~)~ I

illilrzl )22ragzrrel22ra 2 —i l=1
E„=E,(n —n,„) (22)

is the charging energy in the presence of n electrons in
the box. Finally,

( '.
xa 'Q () Pg

l=1 0

Now, all nonvanishing contractions are of the form

(26)

Ii X
0 tr e

is a thermal average for a system with Hamiltonian

(23) e't2 (T2 —Tl )6pcr

(a,',.(r2)a,.'.(ri)) = ~~, .~, , +,~p... (& = I q) .

(24) Hence, only terms with

that is the unperturbed system in the absence of charging
eH'ects. Accordingly, the time-dependent creation and
annihilation operators are given by

a„+ (n) =e a„+ e - (p=kq).

Since the Hamiltonian 00 implies a %ick theorem, the
expectation values in (20) are readily evaluated. We first
note that nonvanishing contributions are only obtained
for m even. Furthermore, using cyclic invariance proper-
ties of the integrand, (20) may be written as

) (, =0
j=1

(28)

W=) 1 (20)

is typically very large. Then terms where four or more
channel indices coincide give only corrections at; most of

contribute to Z, and each channel index crz must occur
at least twice for difFerent signs of (j. In metallic tunnel
junctions the number of channels
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order 1/N and may be disregarded.
When evaluating (26) with the help of (27), we en-

counter products of terms of the form

Y(T2 Ty) = t ) (a& (r2)az (ry))p
A:i qi &2q2~

X Gq 72 G

((T2 T1 ) (6k+' Eqz )=t'
(] + e&P~a ) (] + e CP~&—

)
'

kqcr

Now, the metallic bandwidth D is very large compared
with the relevant energy scales E, and k~T. Later, we
will show that we can take the limit D/E, -+ oo. In inter-
mediate formulas, we keep the bandwidth finite whenever
necessary and assume symmetrical bands with exponen-
tial cutoff for convenience. Hence, we replace the sums
over longitudinal wave numbers by

&a = ) p, gg~, (38)

where O~q = 1 for time intervals P~ in between the two
vertices connected, and 0~I, ——0 otherwise. Inserting the
explicit form (33) of Y(r) and (38) into (37), we see that
the P~ integrals can be carried out explicitly yielding

+ pZ = ) — dEe'P
= 2x 2m

m=p
+oo —I&1 I/&

x d&y ~ ~

1 —e

). ):
n= —oo (1,"

+
g g e I+~ I/+

tnTll 1 P~

In view of (28) there are m positive and negative ver-

tices (~, respectively. The sum over pairs is over the m!
connections of + and —vertices in pairs, and

+oo) F(ego) m p dec I'I/ F(e) (31) pairs j=1

1

E-, + EV=io~s's+iE
(39)

and

+oo) F(e ) ~ p' doe I I/ F(e), (32)

This expansion of Z lends itself to a diagrammatic rep-
resentation discussed in the following section.

where p and p' are the densities of states per channel in
the island and lead electrodes, respectively. The function
(30) then takes the form

+oo
Y(r) = g doe I I/

1 —e
(33)

where we have introduced the dimensionless parameter

where Ra = h/e2 is the von Klitzing constant.
Upon inserting for the b function in (26) the represen-

tation
+oo

b(a) = — dE e '
2'

g = t'Npp'

and have performed one energy integral in the large band-
width limit;. In terms of the usual expression for the tun-
neling resistance R& of the junction, the parameter g may
be written as

1 Rg
4+2 Rg

'

IV. CIRCLE DIAGRAMS FOR THE EXPANSION
OF THE PARTITION FUNCTION

The series (39) may be written as a sum over diagrams.
For a diagram of order m, we put down a circle with 2m
points. Each point is a vertex carrying a sign (z. Since
in (39) two sequences ((q, . . . , (2 ) of vertices that are
cyclic permutations of each other give the same contri-
bution to Z, it is sufhcient to put down only diatinct
sequences of signs made up of m + and —signs, respec-
tively. Sequences that can be obtained by cyclic permu-
tation are not distinct. Sequences made up of d identical
subsequences have divisor d. For instance, the sequence
+ + + has divisor 3. Weighting a diagram with
divisor d by a factor 2m/d, we regain the full sum over

(q, . . . , (2~ in (39). For each sequence of vertices posi-
tive and negative vertices are connected in pairs in all
possible ways by tunnelon lines. Microscopically, such a
line describes the intermediate formation of a tunnelon
excitation, that is the creation of an electron-hole pair
where the electron and the hole are on different sides of
the junction due to electron tunneling.

Figure 2 shows all diagrams up to second order and
some higher order diagrams. The expansion (39) may
now be written as

and evaluating the expectation values in terms of (30)
and (33), the partition function becomes

+oo
g = — dEe'~ ) D(E) .2'

diagrams

(40)

(g, ...,(2 n, =—oo

~ P~(E„,+iE) y
pairs

~ 1

Ic=1
Y(~s) .

(37)

OO

p OO oo 1 +ooz=) dp, dp2 — dE e'p
2m p p 2' p diagram of order m and divisor d contains (i) a fac-

tor p/d, (ii) a sum over all charge states g„
(iii) an integration J des ~'" ' ~'.„.for each of
the m tnnnelon lines (k = 1,2, . . . , m), and (iv) a fac-

tor (E„+g™„~e & &~+eiE) for each of the 2m seg-
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ments of the circle (j = 1, 2, . . . , 2m), where n is the
charge quantum number of an arbitrary segment labeled
1. As one goes around the circle, say counterclockwise,
the charge quantum number changes at each vertex by
+1 according to the sign of the vertex. See diagrams
(d) and (h) in Fig. 2 for a possible labeling. Finally,
0~I,

——1 for the sequence of segments j connecting the
vertices of tunnelon line k, and t5I~y ——0 for the remain-
ing segments of the circle. Since the contribution of the
diagram can be shown to be invariant under the trans-
formation Hxt ~ 1 —Hxq, it does not matter which arc is
chosen to connect two vertices.

As a function of the energy E, a diagram D(E) has
poles in the complex plane arising from the energy de-
nominators associated with the 2m segments. These
poles give contributions to the integral in (40). Hence
Z may be written as

where the sum over segments runs over the 2m segments
of the circle of a diagram of order m, and S gives the
contribution of the pole associated with this segment.

A segment is of degree r if by cutting this segment and

(r —1) other segments the diagram can be decomposed
into r disconnected parts, such that the diagram falls into
pieces at each cut following the first cut. For instance,
the uppermost segments of diagrams (f) and (h) in Fig. 2
are of degree 2. Going &om one of the r cut segments to
a neighboring one along the circle, intermediate tunnelon
excitations are created and again annihilated, so that the
energy denominators associated with these r segments
coincide leading to a pole of order r.

The contribution of this pole to the integral (40) is
readily evaluated. The r segments of degree r are found
to contribute to the sum over segments in (41) the term

z= ) ) s, (41)
diagrams segments

+~

+~

a)

c)

b)

~ ~

q=l

Here, n is the charge quantum number of the r segments,
and the Tq describe the contributions of the r subdia-
grams. A subdiagram with 2t vertices contains an inte-
gration (iii) for each of the t tunnelon lines, and a factor
(iv) for each of the 2l —1 segments, where the nx and Hxx,

are defined by the rules given previously.
The expression (42) for S„contains difFerential opera-

tors with respect to E„acting upon the 2m —r energy de-
nominators, that are associated with the segments of the
r subdiagrams Tq Diagrammatically a di8'erential oper-
ator may be represented by decorating the corresponding
segment with a slash. We then find

) g(~)

8=0 decorations

(43)

where the sum over decorations runs over all possibilities
to distribute s slashes among the 2m —r segments of the
r subdiagrams, including multiple slashes. We consider
only diagrams with topologically distinct arrangements
of slashes. Then, a diagram where n„segments are dec-
orated with p slashes must be weighted by a multiplicity
factor

M(np) = s!
(pl) np

p=O

(44)

n+1 n+1 according to the various sequences possible in putting
down the

n+1
h)

FIG. 2. Diagrams for the partition function. (a) Ze-

roth-order, (b) first-order, (c)—(f) all second-order, (g) and

(h) selected third-order diagraxns. Diagraxns (e) and (f) have
divisor 2, (h) has divisor 3, all others have divisor 1. Charge
quantum numbers are shown explicitly for diagrams (d) and

(11).

s„=) ). ):
s=O decorations ~=—cxc

(46)

s=) pn„
p=o

slashes to produce this particular decoration.
Using these rules the contribution S„ofr segments of

degree r may be written as
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For a given decoration the r subdiagrams Tq carry s
slashes altogether, and the contribution of a subdiagram

Tq with 2l vertices contains the usual l integrations for
the l tunnelon lines and a factor

En,- + ~, ~,„&I, —En
(47)

for each of the 2l —1 segments, where qz is the num-
ber of slashes carried by the segment, while En,. and 8~A,.

are defined as previously. Combining (41) and (46), we

obtain the complete diagrammatic expansion of the par-
tition function.

To illustrate the diagrammatic rules let us evaluate the
contribution of some of the diagrams depicted in Fig. 2.
The zeroth-order diagram (a) gives

FIG. 3. Decorated subdiagrams describing the contribu-
tion of the segments of degree 2 of diagram (e) in Fig. 2.

The segments on the right and left of diagram (e) are
of degree 2. According to (46) the subdiagrams have
to be decorated with zero or one slash in all possible
ways yielding the diagrams depicted in Fig. 3. Their
contribution is found to read

+oo

Zo — ) e-~~-

and the first order diagram (b) yields

dere
Z, = ) e-~~-p

1 —e—~'
n= —oo —OO

1 1
X(-+E„+g —En + e E„g—En + t

(48)

(49)

+oo
g(~,2) ) PE„p —2

+oo
dydee ~'~/' +oo dg'g'e

X
1 —e-~' 1 —e-~"

X
(En —i —E~ + e)(E~—i —En + e')

(E~—i Eo + e) (En —i —E~ + e') (52)

+oo

Si —— ) e "pTi, (5O)

Note that both segments of this diagram are of degree 1.
In this case (46) simplifies to read

where the first term comes from diagram (a), while the
second term comes from diagrams (P) and (p) that give
identical contributions. To proceed it is advantageous to
pass Rom the circle diagrams considered so far to vertical
diagrams introduced in the following section.

I I/
( ]) ) pE 2 (kate

] e—P&
n= —oo —OO

+~ de&~& e
—l~'Il~ (

1 —e—~" (E„+i—E„+e)
1

X
~+pl (51)

where Tq is the subdiagram obtained by omitting the
segment in question. For diagram (b) the subdiagram
associated with the upper segment consists of the tun-
nelon line and the lower segment. If the charge quantum
number of the upper segment is n, the lower segment
carries n+ 1 charges, so that Tq contains one integration
factor from the tunnelon line and one energy denomina-
tor (E„+i+ e —E ) from the lower segment yielding
the first term in (49). Correspondingly, the second term
contains the contribution of the lower segment.

As an example for a second-order contribution to Z,
we consider diagram (e) in Fig. 2. This diagram has divi-
sor 2. The upper and the lower segments are of degree 1.
Both segments give identical contributions arising &om a
subdiagram with two tunnelon lines and three segments,
where the two outer segments have the same energy de-

nominators. The contribution Z2" of the upper and
lower segments is found to read

V. VERTICAL DIAGRAMS AND EFFECTIVE
CHARGING ENERGY

In the expansion of the partition function in terms of
circle diagrams there is a factor 1/d for diagrams with
divisor d. Mostly this factor cancels when the contri-
butions of all segments are summed. Consider a circle
diagram D with 2m vertices and divisor d. Then, the
contribution of a segment j (j = 1, 2, . . . , 2m) arises d
times, since the segments j+ (2m/d)l (l = 1, 2, . . . , d —1)
of the diagrams which are similar to D but "turned"
by 2vrl/d give the same contribution, except for the case
where the turned diagram is identical to D. However,
in this latter case the segment j + (2m/d)l of D gives
the same contribution as segment j, except for the case
where the diagram can be split into two parts by cutting
the segments j and j + (2m/d)l. Let lo be the smallest
value of l where the last situation arises. Clearly, D then
splits into f = d/lo identical subdiagrams. The various
possibilities discussed here are illustrated in Fig. 4.

So far we have considered circle diagrams that are
evaluated segment by segment. To proceed it is advan-
tageous to introduce an alternative type of vertical di-
agrams that describe directly the contribution of these
circle segments. According to (46), the contribution of r
segments of degree r is given in terms of r subdiagrams
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a) +

FIG. 4. (a) Three circle diagrams with divisor 3 that are
turned by 2m/3 with respect to each other Th. e three seg-
ments labeled explicitly give the same contribution. (b) A
circle diagram with divisor 3 that coincides with its versions
turned by +2m /3. The three segments labeled 1, 3, and 5 give
the same contribution. The segments 2, 4, and 6 are of degree
3 and the diagram splits into three identical subdiagrams.

Tq. Omitting the decoration with slashes for the time
being, each subdiagrarn consists of 2l vertices, & tunnelon
lines, and 2l —1 segments. We redraw these subdiagrams
in the following way. The arc in the counterclockwise
direction is drawn as a descending charge line. The tun-
nelon lines are drawn as arcs to the right (left) if they
start at a positive (negative) vertex. The signs (z of the
vertices may then be omitted. An arc curving to the left
will also be called the antitunnelon line in the sequel.

By way of example, Fig. 5 shows the subdiagrams de-
scribing the contributions of the segments of circle dia-
grarn (c) in Fig. 2. Note that in the circle diagrams the
charge line is curved and the tunnelon lines are straight,
while the opposite is true for the vertical diagrams. The
vertical diagrams are generated in the following way. For
diagrams of order m we draw a vertical charge line with
2m vertices. Then + signs are attached to m vertices
and —signs to the remaining vertices in all possible ways.
Finally, positive and negative vertices are connected by
arcs in all possible ways. An arc or tunnelon (antitun-
nelon) line where the upper vertex is positive (negative)
is drawn to the right (left), so that the vertex signs may
be omitted afterwards. A diagram is of degree r, if by
cutting the charge line the diagram can be decomposed
into r irreducible pieces, where irreducible diagrams are
those of degree 1. Diagrams which are cyclic permuta-
tions of the same sequence of irreducible subdiagrams are
not distinct.

A diagram has factor f if it is made up of a sequence
of f identical subgroups of irreducible diagrams. Notice,
a diagram with factor f is of degree r = f l, where l is an
integer. Now, the r irreducible subdiagrams of a diagram
of degree r have 2m —r charge line segments altogether,
that must be decorated with s (s = 0, 1,2, . . . , r —1)
slashes in all possible ways. In terms of this set of dec-
orated vertical diagrams the expansion (41), (46) of the
partition function may be rewritten as

diagrams n= —oo

(r —s —I )!
~ ~

Tq

where the erst sum is over all vertical diagrams. The
index cp indicates that cyclic permutations of the r irre-
ducible subdiagrams Tq of a diagram of degree r are not
distinct. The symbol [. . .]i'! stands for the sum over all
decorations of the diagrams between the brackets with s
slashes. According to the considerations at the beginning
of this section, the factor 1/d in (41) is replaced by 1/f
in (53), where f is the factor of the diagram. The contri-
bution of an irreducible subdiagram Tq with 2l vertices
is given by

+~
gq~ gqq e —l&1l/D

1 —e

(-1)"
;."; (E„—E„+P„,O, g g + E) '

(54)

that is an integration for each (anti-) tunnelon line k (k =
1, 2, . . . , I) and a factor of the form (47) for each charge
line segment j (j = 1, 2, . . . , 2/ —1), where q~ is the num-

ber of slashes carried by the segment. Numbering the
segments from above, we have nq ——n + 1 depending on
the sign of the uppermost vertex, and n~ changes by +1
at each vertex according to its sign as one descents the
charge line. The 0&y = 1 if the (anti-) tunnelon line k

passes to the right or left of segment j, and 0~A, ——0 oth-

FIG. 5. Subdiagrams for the contributions of the segments
of diagram (c) in Fig. 2. To the left (right) the circle (vertical)
diagrams are shown. (a) describes the contribution of the
upper segment, (P) of the lower segment, and (p) of the two

remaining segments that are of degree 2. Decorations with
slashes are not shown.
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erwise. For later purposes, we have introduced in (54)
an additional variable E. Of course, in (53) we have to
insert the expression (54) for E = 0.

Since a diagram of degree r and factor f has r/f cyclic
permutations, we may distinguish cyclic permutations of
irreducible subdiagrams and replace the factor 1/f in
(53) by 1/r instead. Then, introducing the quantities

1 B'I'(E)
s! BE' (62)

Furthermore, in view of the relation

tinguished in the sum over diagrams in (55). Inserting
(59) into (60), we obtain

- (s)

U( )(E) — ) Z'(E)
diagrams q= 1

(55)

B' I'+'(E) ) . p 1 B' I"+'(E)
~
)- (a+1)! BE' i

- p+ s s! BE'
y s=O / s=O

where the sum is over all diagrams of degree r with cyclic
permutations of the irreducible subdiagrams Tq now be-
ing distinguished, the partition function (53) may be
written as

+oo OO p OO

Z= ) e " 1+) —) ET' (0)I
n= —oo p=l s=o

which follows &om Lagrange's theorem, we have

(63)

oo oo p

U„(;&.(E) = ) '
U,",,(E), (64)

so that the partition function (56) may be written as

(56)

Note that the U„' (E) depend on the charge quantum
number n. This index will be suppressed temporarily in
order not to overload the formulas.

Now, introducing

where

+oo

Z = ~ e-~&~-+~-& (65)

I(E) = ) T(E),
diagrams

(57)

which is the sum over all irreducible diagrams without
slashes and coincides with U~ (E), we have

s=o

diagrams s=O

+y - (s)
1

Tq+ ] a s ~

q=1
(66)

(B/BE)'I(E) = ' ). [T(E)j" .
diagrams

(58)

Here, the irreducible subdiagrams Tq have to be evalu-
ated according to (54) with E = 0, and we have made
their dependence on the charge quantum number n ex-
plicit. Clearly,

(,) 1 B'I(E)
st BE' (59)

Further, U„' (E) may be written as

This is because a differential operator B/BE acting upon
the sum over all irreducible diagrams with s —1 slashes
generates each diagram with s slashes exactly s times,
since any of these s slashes may be the one added last.
Hence, we 6nd

(67)

may be viewed as an effective charging energy of the is-
land in the presence of n excess electrons. Apart &om
n and n,„, the correction 4 arising &om electron tun-
neling depends on the tunneling resistance and on tem-
perature. The diagrammatic expansion (66) may be rep-
resented in a more convenient form presented in the fol-
lowing section.

U (0)(E) ) II„' onpt
Enp}

8

U(s ) (E)
1 4 ~

p=o
(60) VI. DIAGRAMS WITH INSERTIONS

AND INFINITE BANDWIDTH LIMIT

where the sum is over all sequences fn„), n~ = 0, 1, 2, . . .,
with

flap r )

p=o
pn, = s. (61)

This is because U„' (E) is the sum over all products of r
irreducible diagrams carrying s slashes altogether. Dis-
tributing these slashes among the r factors in all possible
ways, we obtain (60) where the numerical factor arises,
since permutations of the irreducible diagrams are dis-

According to (66) the effective energy shift b is the
sum over all diagrams of degree s+1 (s = 0, 1, 2, . . . , ) car-
rying s slashes. Since permutations of the subdiagrams
are distinguished in this sum, each set of decorated sub-
diagrams occurs (s+ 1)!times. Now, a given set of s+ 1
irreducible diagrams decorated with s slashes altogether
may be combined into a single diagram by inserting other
subdiagrams at the positions of the slashes. This assem-
bling of a single diagram with insertions can be made in
s! ways. In terms of these diagrams the result (66) may
simply be written as
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) U„,
diagrams

(66)

since the factors (s + 1)! and 1/s! from the permuta-
tions and the assembling, respectively, cancel the factor
1/(s+ 1) in (67). Now, the perturbative expansion of the
effective energy shift A„may be written as

agram U„with index n and without insertions is eval-
uated in the following way. Each vertical line segment
represents a charge state, that may be labeled by the
number of excess electrons in the box. At the upper end
one starts out with n excess electrons, and each tunnelon
(antitunnelon) excitation increases (decreases) the charge
quantum number by 1. Now, Un contains an integration

)~ g(m}
m=1

(69)
+oe d —IpI /&

1 —e —~'

where 4„ is the sum of diagrams of order m.
The diagrams U of order m are obtained by drawing a

vertical charge line with 2m points and connecting pairs
by tunnelon lines that curve to the right or antitunnelon
lines that curve to the left in all possible ways. Diagrams
that can be separated into two disconnected parts by cut-
ting the charge line have to be excluded. In addition, one
has to draw all possible diagrams having one or several
insertions, including insertions into insertions. The be-
ginning and the end of an insertion is marked as a prolon-
gation of the tunnelon line across the vertical charge line.
Each insertion has to be an allowed lower order diagram
and the same must be true for the diagram remaining if
the insertion is removed.

All 6rst-order and second-order diagrams, as well as
some third-order diagrams are shown in Fig. 6. A di-

(2)

+ E +ej (70)

Likewise, the first second-order diagram in Fig. 6(b) gives

+OC
~(2,1) 2

n

—(I~1I+l~~ I)i&

(1 e —P&i ) (l e P~~ )—
1

X
(En+i —En + &i) (En+2 —En + &i + e2)

(71)

for each (anti-) tunnelon line, and an energy factor —1/E
for each charge line segment, where E is the excitation
energy, that is the sum of the charging energy and the
energies e of the (anti-) tunnelons present in the interme-
diate state minus the initial energy E . Note that there
is an odd number of charge line segments giving rise to
the —sign in (66). Accordingly, the contribution of the
first-order diagrams in Fig. 6(a) reads

+~ d —i&l/& (eee
~E„+, —E„+~

e)

(1) (2) (3) (4)

(5) (6) (7) (6)

(9) (10) (11) (12)

(6)

A diagram U„with insertions is evaluated in the follow-

ing way. The inserted part of a diagram is evaluated
exactly like the corresponding lower order diagram. The
contribution of the rest of the diagram is evaluated with
the rules given above. Note that, due to the insertion, the
intermediate state above and below the insertion occurs
twice. Finally, there is a factor —1 for each insertion.
For instance, the ninth diagrain in Fig. 6(b) gives the
contribution

+~ +~
~1 ~2 t

—(I&1I+I&~I)/'D
= g dE1 dE'2

(1 e '")(1 e '")
x , , (72)

(En+i —En + el ) (En+i En + e2)

and all other diagrams in Fig. 6(b) are evaluated accord-
ingly.

Let us investigate the first-order energy shift A( in
greater detail. The result (70) may be written as

~~ (g~~
—I~I/O

1 —e —~' 8+~
where

(7)

FIG. 6. (a) All first- and (b) all second-order diagrams for
the effective energy shift. (c) Some third-order diagrams.

-(i) dec r 2
1-,-' ~(E.+,

E„1—E„+~
(74)
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In this last expression, we have taken the infinite band-
width limit D/E, ~ oo. We note that the first term on
the right-hand side of (73) diverges in the infinite band-
width limit, yet, this term is independent of n and n „.
Hence, it leads to a factor in the partition function (65)
that does not contribute to the average number of elec-
tr@as (11) in the box. Consequently, we may discard this

term and replace 4 by 4„.Because of(~) —(~)

E„+g + E„g—2E„=2E, , (75)

the integral (74) converges for e -+ oo, so that b,„ is
- (~) .

I

E„g2 —2E„gg + E„=2E, , (76)

we obtain after some algebra in the infinite bandwidth
limit,

well defined in the infinite bandwidth limit. In practice,
D/E, is very large and this limit is appropriate to the
system under consideration.

To determine the second-order energy shift 6„,we(2)

have to sum the contributions of the twelve diagrams in
Fig. 6(b), two of which are given explicitly in (71) and

(72). Using the relation (75) and

+oo +OO

~(2) 2 E GIFTS 6] A@2 E'2

P~ 1 P

(ETL i —Erl+i)(&i + &2) (E1l+2 Erl)(En+1 ETa + &2)

En+i —Era + El) (En+1 —Era + E2)(En i —En + E2)(En+2 —En + el + e2)(61 + e2) )
(77)

where c.t. stands for the same term as the preceeding one
with E~„repl ca edby E„+~. The integral (77) is found
to converge for large ei and e2, so that the limit D/E, ~
oo is well behaved. Note that each single diagram of
Fig. 6(b) diverges in the infinite bandwidth liinit, while
the sum of all second-order diagrams remains finite.

One can show that this remains true for higher order
corrections. To see the convergence of the integrals over
tunnelon energies, it is su%cient to consider the zero tem-
perature limit. We first note that for E, = 0, the sum of
all diagrams of a given order m & 2 is exactly zero. This
is due to the fact that for E = 0 the Hamiltonian Ho im-
plies a Wick theorem and standard many-body perturba-
tion theory can be applied. However, when the diagrams
are redrawn as Goldstone diagrams, they are found to
consist of m unlinked parts with one loop each. In the ab-
sence of charging effects these unlinked diagrams cancel.
There are of course further Goldstone diagrams that are
connected to a higher degree, but they have less than m
loops. Since the channel index cr is conserved along each
loop, the contribution of these diagrams is not of order
g, but at most of order g /N, and they may be disre-
garded when the number of channels N && 1. Now, in
the case E, g 0 the Fermi liquids are correlated, and the
sum of all diagrams of given order m & 2 is nonvanishing.
On the other hand, the high energy behavior of the dia-
grams is independent of E and temperature. Hence, the
sum of all diagrams of a given order remains finite in the
infinite bandwidth limit and the factors exp( —

~
e

~
/D)

may be omitted.

VII. EXPANSION FOR THE AVERAGE
NUMBER OF ELECTRONS IN THE BOX

The charging energy depends on the applied voltage
U „via the dimensionless parameter n „ introduced in
(4). This dependence will be made explicit, henceforth.
We first note that (22) implies

E„(n,„)= E„+i(n,„+1) = E „(—n,„).

Hence, the shift in order m may be written as

b, ~ l(n, „)= g E,f (n —n,„), (80)

where the f (u) are dimensionless functions of u and the
diinensionless inverse temperature /3E, . Since under the
sum over diagrams tunnelon and antitunnelon lines may
be exchanged, we have f (—u) = f (u), and the rela-
tions (78) remain valid for the effective charging energy
E„(n,„)+ A„(n,„). Hence, the partition function (65)
has the symmetries

Z(n.„)= Z(n,„+1)= Z( —n.„), (81)

and it is sufBcient to consider the interval 0 & n,„& 2.

A. First-order term

Let us first consider the leading order effect of the tun-
neling conductance for small g. From (74) and (80), we
find

fl(u) = —Su f dT

1

(1+*)[(1+z) —4u ]
(82)

Now, at finite temperatures the excitation energies of in-
termediate states may be negative, and the integral in
(82) must be regularized. Since the integrand has poles
at 2; = —1 and x = —1+2u, the integral must be defined
by the principal part which coincides with the average
of the two contour integrals shown in Fig. 7. Collecting
the contributions of the poles at xg = i(2'/PE, )k (& =
jl, k2, . . .), we obtain

1

Furthermore, the n,„dependence of the effective energy

shifts E„arises through energy differences of the form

E„g„(n,„)—E„(n,„)= E, [p + 2p(n —n )]. (79)
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I Imx fr(u) = —(1+2u)»]1+ 2ul —(1 —2u) ln]1 —2u]

2 'll
p 4v +O(v).

3 1 —4u2 (86)

In the low temperature limit and in the basic interval
0 & n,„& 2 only the states n = 0 and n = 1 con-
tribute appreciably to the partition function (65). For
these states, u = n —n,„approaches 6 2 for n „m 2 and
the expansion (86) cannot be used in this limit. Since
fq(u) is an even function, it sufBces to investigate the
behavior near u = 2. For v && 1, we find

fr (u) = —(1+ 2u) ln(1 + 2u) +—1 u(1+ u)
3 1+ 2%i

V

—(1 —2u) Re {@[I+ i(l —2u)/v])
W

V2

+lnv ——+ O(v ),12
(87)

FIG. 7. Integration contours leading from (82) to (83). which remains valid for u = 2. In particular, we have

fq(z) = —21n2 + v /8 + O(v ), and the derivative is
found to read

where

27r
(84)

fru =4uv
(1 + ivk) [(1+ ivk) 2 —4u~] ' 83

f,'(~~) = —2[1+p+ ln(2/v)]+ v /24+ O(v ), (88)

where p = 0.577 is Euler's constant. Note that the
derivative diverges logarithmically for v ~ 0. We shall
see that this leads to a breakdown of the perturbative
expansion near n,„= 2 and T = 0.

Now, in the basic interval 0 & n,„(
&

and for low tem-
peratures the partition function (65) simpBSes to read

The sum in (83) can be evaluated to yield

fq (u) = (1 + 2u) Re {@(I+ i/v) —Q[1 + i(1 + 2u)/v]) where

Z(n, „)= Pp(n, „)+ Pg(n, „),

Pp(n, „)= exp( /3E, [n2„+gfg(n—,„)+O(g2)]) (90)+(1 —2u)Re {Q(1+i/v) —@[I+ i(1 —2u)/v]),

(85) and

where g(z) is the digamma function.
Here, we are mainly interested in the low temperature

limit where v (( 1. Provided ~1 + 2u~ )) v, we obtain
from (85)

Pg(n, „)= Pp(1 —n,„).
From (ll) and (89)—(91), we readily obtain for the aver-

age number of excess electrons in the box

1 gf~(n, „)Pp(n,„)—[2+ gfr'(1 —n,„)]Pp(1—n,„)
2 Pp(n, „)+ Pp(1 —n,„)

For n,„below ——&&, we have Pp(l —n,„)(( Pp(n, „),and (92) gives

(n) = —2gf~(n „)
(I+2n„& 2 n, , 4

(I —2n „) 3 (1 —4n2„)2

On the other hand, for n,„2,we find

(n) = —,'+ye+ O(e'), (94)

where e = n,„—2, and

x = ,'PE. + g PE fi( ') ——-'fr"(2)]+ O-(g')
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is the slope of the Coulomb staircase at the center of the step. Here, fz(z) has been introduced in (88) while

ff(-) = —2 —v /12+ O(v ). In (95), the small dimensionless t~m~eling conductance g is multiplied by f~(z), which

diverges logarit&apically for T -+ 0. Therefore, as mentioned above, the perturbative expansion breaks down at T = 0
near the center of the step. In experiments k~T/E, is at least of order 10 2, so that

~
ln v

~

remains of order 1. Hence,
logarit~mically divergent terms near n,„=2 and T = 0 do not cause problems for 6nite order perturbative results of
practical interest.

B. Second-order term

Let us briefly discuss the next order correction. From (77) and (80), we obtain

fi(u) = g~(u) +»(-u) (96)

where

»(u) = 8 dx
z

u(x+ y) —(1 —u)(l —2u+ y)
(x + y) (1 —2u + x)~(1 —2u + y) (1 + 2u + y) [4(1 —u) + x + y]

(97)

These integrals must again be regularized. From an evaluation by contour integration we obtain

)kt) [iv(k+ l) u —(1 —2u+ ivl) (1 —u)]
g2(u) = 2v4 ) i v(k + l) (1 —2u + ivk)z(1 —2u + ivl) (1+2u + ivl) [4(1 —u) + iv(k + l)]

la+I +0

3 +oo k2 4 +oo k27rv ) v ) ~

2 (1 —2u+ ivk)z(1+ 2u —ivk) 8(1 —u) (1 —2u+ ivk) (1 —2u —ivk)

4 +oo k2 4 +oo k2
+—) + —):4 (1 —2u+ ivk)2(l + 2u —ivk) 2 (1 —2u+ ivk) (1+2u —ivk)

A:=—oo A:=—oo

(98)

In general, these sums must be evaluated numerically. However, at T = 0, the sums in (98) reduce to integrals and
we and

=x' (5
gs(u) = —(1+2u y Su ) —

~

——4u+ 2u ln,
6 '(2 ) '(4(l —u) )

,), , (1-2u&
+ —+ u + u ln + (1 + 2u) ln

&'+2") &'+'")
(1-2u&, . (3-2u &—4(l —u) lnl —(5 —Su+ 4u )Liq i (99)

where Liz(u) = —f dz ln(1 —z)/z is the dilogarithm function. Using (96) and (99), we obtain for the average number
of excess electrons in the box at zero temperature

where

( ) = --.' .gf'( -) + g'f'( -) + o(g').
&1+2n.„l= g ln

~

'"
i + g [cz(m,„)—cz(—n „)]+ O(g ),1 —2nex j

4~2 z (1 —2ul 16(1+2u —2u )c2u = —u +ln ln 1 —2u
3 (1+2u& (3 —2u)(1+ 2u)

(4(1 —u) ) g4(1 —u) ) (1 —2u)(3 —2u)

(100)

(101)
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po(n, „'( = exp] ps, (n— +,g„f~ (n,„j

~g'f*(~ )+.*o(a')(I (102)

Close to the step finite-temperature efFects become im-
portant. To second order in g the low temperature par-
tition function is given by (89) and (91) with

perature behavior, one has to introduce cutofF dependent
efFective parameters. In contrast, we give results explic-
itly in terms of the charging energy and the tunneling
conductance measurable at high temperatures in the clas-
sical regime. This is essential for a detailed comparison
with experimental data. Moreover, we have shown that
finite-temperature efFects are still important at the low-

Evaluating (85) and (96) with (98) numerically, we read-
ily obtain &om (102) and (91) the low temperature parti-
tion function (89) as a function of n,„Th.e average num-
ber of excess electrons in the box then follows by virtue of
(ll). Figure 8 shows the resulting form of the Coulomb
staircase for various values of Rt/B~ The . curves for
Rt/BIr = oo show the smearing of the staircase function
solely due to thermal fluctuations. Clearly, for tunneling
resistances of the order of B~ or smaller, quantum charge
fluctuations give a significant contribution to the broad-
ening of the step already for PE, = 10. For PE, = 100
the zero-point charge fluctuations dominate except for
voltages very close to the center of the step where finite-
temperature efFects remain important. This becomes ap-
parent from Fig. 8(c), where various approximations are
compared for a relatively large tunneling conductance.
The first-order and second-order approximations differ
only little. This indicates that the explicit second-order
results given above should be sufFicient for most practical
purposes. The zero temperature result shown in Fig. 8(c)
includes a resummation of the most divergent logarith-
mic terms near n,„=2. The resummation ensures that
the correct value (n) =

2 for n,„= 2 is approached. 4 s

Except for the region near the center of the step, the zero
temperature result is given by Eq. (100), which gives a
reasonable approximation for the low temperature charge
fluctuations in this voltage range.
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VIII. CONCLUSIONS
~ ~ ~

In summary, we have calculated the average charge on
a voltage biased small metallic island for the realistic case
of an electronic bandwidth D that is large compared to
the single-electron charging energy E,. It was shown that
for temperatures and tunneling resistances that are typ-
ical for current experimental setups the effect of charge
fluctuations on the Coulomb blockade effect can be calcu-
lated by means of a finite order perturbation expansion in
the tunneling conductance. A more sophisticated treat-
ment is only necessary at T = 0. On the basis of the
present approach, the zero temperature behavior was al-
ready discussed in an earher paper. The extended theory
presented here includes finite-temperature efFects.

Our work is distinguished from other attempts '

by two main features. First, we do not truncate the prob-
lem to an e8'ective two-state system. Second, we elimi-
nate the electronic cutofF by taking the infinite band-
width limit which is well behaved in our approach. While
a two-state approximation suKces to extract the low tem-

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 ~ ~ 0th Order(n&
1st Order . i
2n.d Order
T=O

0.5

~8+

0
0.3 0.5

FIG. 8. (a) Average electron number (n) of the sin-

gle-electron box as a function for the applied voltage in di-
mensionless units n „ for k~7 = 0.1 E and various values
of Rt/RIc. (b) Same quantity for k&T = 0.01E . (c) A

comparison of various approximations for k~7 = 0.01E, and
B = 0.5B~.
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est temperatures presently attainable experimentally, in
particular, near the center of the step.

Finite-temperature results are also of substantial in-
terest for scanning tunneling microscope (STM) systems
showing Coulomb staircase patterns. ' In these sys-
tems a tunnel junction is formed between the tip of a
STM and an ultrasmall metallic particle isolated &om the
substrate by an oxide barrier. Interestingly, under appro-
priate conditions Coulomb charging eKects may be ob-
served even at room temperature. Setups where the re-
sistance of the particle-substrate junction is much larger
than the resistance of the particle-STM-tip junction are
feasible. The metallic grain then behaves like the island
of an electron box, where the tunneling conductance can
be modified by moving the tip. This system may be well
suited to test the theoretical predictions made here.

Finally, our results demonstrate that for tunneling re-
sistances of the order of B~ or larger the assumption of

a quantization of island charges made in standard the-
oretical treatments of Coulomb blockade phenomena~'2
is very reasonable. On the other hand, the deviations
&om a strict charge quantization should be large enough
to allow for a detailed experimental investigation of the
effect of the finite tunneling conductance on the average
charge in the single-electron box.
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