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Excitonic superradiance has been predicted to induce a rapid decay rate of coherently excited
excitons in thin quantum wells and microspheres. In this paper we revisit this problem and derive
the enhancement factor of the radiative decay due to superradiant effects. In a GaAs quantum well,
the excitonic superradiant radiative decay can be roughly 320 times faster than the decay of a free
electron-hole pair. The exciton decay rate depends strongly on the lateral size of the wave function
when the size is smaller than the inverse of the wave vector of the emitted light. In a GaAs quantum
well this corresponds to a distance of 365 A. Therefore, it is predicted that localization and elastic
phonon scattering may lead to decay rates substantially smaller than that predicted for an ideal
quantum well. It is also shown that if the quantum well is placed inside a microcavity, the decay
rate can be enhanced even further since the cavity modifies the available density of radiation states
in a way that matches the superradiant emission. It is predicted that in a matched dielectric cavity
the decay rate can be enhanced by an additional factor of 100, but that inhomogeneous broadening
may in practice limit the possible enhancement.

I. INTRODUCTION

The dynamic response of quantum wells has been ex-
tensively studied, both experimentally and theoretically,
for the last few years. Much of the incentive for these
studies is the technological impact the quantum well

has on quantum electronics and photonics. In spite of
the advances made over the last years we feel it is safe
to say that on the microscopic scale, the quantum-well
exciton-field coupling is still not perfectly understood.
This is in sharp contrast with two-level atomic interac-
tion, where most of the physics was explored in the years
between 1960 (the year the laser was invented) until the
mid 1970s. Presently some of the ideas kom that time
are put to work in beautiful ways in diverse applications
such as laser atom cooling, quantum noise squeezing, and
Ramsey-&inge spectroscopy.

In this paper we will attack the problem of thin film

superradiance, originally put forth by Lee and Lee and
later extended by Hanamura as an explanation for the
rapid decay of quantum-well excitons. Hanamura sug-
gested that this phenomenon could account for radia-
tive decay times as short as 2.8 ps in GaAs quantum
wells. However, such short decay times have never been
observed. A little later Andreani et a/. qualitatively
confirmed Hanamura's results, but predicted that the ra-
diative decay time is 13 ps (Ref. 3) (more precisely, in
the reference the exciton-field amplitude is predicted to
decay in 25 ps). This estimate was later confirmed by
Citrin. The value also roughly coincides with the most
rapid decay times measured. In this paper we revisit
the problem and extend it to include the interaction of
the exciton with a single microcavity quasimode. In our
model the microcavity is incorporated by a modification
of the density of states. Hence the cavity mode is treated
as a quasixnode, and the treatment is valid for all cavity

decay rates larger than the system Rabi kequency. This
enables us not only to compute the temporal character-
istics of the decay, but also the corresponding radiation
pattern. We show that for a bare quantum well, de-

pending on the quality and the excitation conditions, the
decay rate may vary over about two orders of magni-
tude. More importantly, we show how the superradiant
decay time can be shortened, quite substantially, by em-

bedding the quantum well in a planar resonant micro-
cavity. This has recently been suggested by Citrin, and
although our model difFers substantially &om that em-

ployed in (Ref. 8), we qualitatively arrive at the same
results. In his analysis, Citrin employed a rather ideal-
ized model of a microcavity. In this paper we show that
with some amendments, this very same idealized model
cavity can in fact predict what will happen in a dielectric
Bragg-mirror cavity, which is rather "leaky. " We show
that the decay rate depends strongly on both cavity size,
mirror reHectivity, and the inhomogeneous linewidth. To
maximize the decay rate some optimization must be un-

dertaken, and calculations are presented for this purpose.
In this paper we limit ourselves to predicting the

purely radiative decay of Wannier excitons. Hence
the photon decay rate is assumed to be suKciently
fast so that (quasi) stationary spatiotemporal exciton-
polariton modes cannot form (we stay in the weak cou-
pling regime). While other decay processes are often im-

portant in experiments, radiative decay is the major de-

cay channel in high quality samples at low temperatures.
We also limit ourselves to studying excitons that have
been excited optically. Hence we exclude the nonradia-
tive exciton-polariton modes propagating in the plane of
the quantum well since, in the absence of scattering, they
cannot be populated by optical excitation.

In Sec. IIA a model for superradiant decay is devel-

oped. The derivation of the model relies heavily on re-
sults for two-level atom superradiance originally put forth
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by Rehler and Eberly. In the paper, the authors as-

sume that initially the collection of atoms is completely
inverted. In tbis work their treatment is generalized
to the case when the initial excitation is small, e.g. , of
the order of one quanta. In this weak excitation regime
(to be rigorously defined below), where phase-space fill-

ing, and hence Pauli s exclusion principle, is not impor-
tant, bosonic and fermionic superradiant systems can be
treated identically. In Sec. III we discuss the effect of
inhomogeneous broadening on the decay. In Sec. IV, the
main result of this paper is presented. It is shown that
the radiative decay of the quantum-well excitons should
be signi6cantly enhanced in a microcavity. In Sec. V,
6nally, some of our results are summarized.

W(0) = N—/2+2: (2)

where x is the mean number of initially excited atoms.
The equation of motion for R' was shown by Rehler

and Eberly to be

dW )(d (N l fN'1l
dt ro )), 2 ) (, 2 p)

This equation assumes that the four conditions enumer-
ated above hold. Furthermore non-radiative decay and
inhomogeneous broadening of the atoms have been ne-
glected. In Sec. III the latter effect will be reinstated.

The parameter p in (3) is a "shape factor" defined by

II. SUPERRADIANT DECAY

A. Superradiant decay of two-level atoms

(1/N + pp)Ip = f Ip(k)l'(k, kp)dBp

and Ip is given by

Ip= Ip k dOg =ho 7p

(4)

In this section we will adopt a model of superradiance
due to Rehler and Eberly. In order to conserve space, we
will omit the derivation of the model which is well de-
scribed in Refs. 10 and 12. The notation in this section
will closely follow that in Refs. 10 and 12. The under-
lying approximations Rehler and Eberly made to derive
the equations below are that (1) the atoms are modeled
as two-level atoms with nonoverlapping wave functions.
(2) After the excitation, which is assumed to be instan-
taneous (e.g. , by a short pulse having a wave vector ki),
every atom is assumed to be in the 8ame superposition of
ground and upper state, i.e., the state of every atom can
be described by a single number 8. An alternative way of
looking at this initial state is to assign a collective wave
function for all the atoms. The collective wave function is
essentially an atomic Bloch state. (3) Stimulated emis-
sion and absorption is assumed to be negligible. This
amounts to assuming that either there is no, or little,
optical feedback (i.e., the atoms and the field are in the
weakly coupled regime) or the system is very weakly ex-
cited. (4) Atom-atom interaction, apart from exchange
interaction, is negligible.

Following the notation of Rehler and Eberly, the to-
tal energy of the system (in units of Ru) following the
excitation pulse is given by

N
W(t) = ——cos 8(t)

2

where N is the number of atoms and sin [8(t)/2] is the
probability of finding any one atom in the upper state at
time t. The total energy W' is normalized in such a way
that if all the atoms are in the ground state, W = N/2—
and if aH the atoms are in the upper state then W = N/2.
Note that 8 can be interpreted as the pseudodipole tip-
ping angle. If all atoms are inverted the pseudodipole
vector points to the north pole of the Bloch sphere 8 = m

which, semiclassically, is an unstable equilibrium point.
This is the initial condition in the usual treatment of
atomic superradiance. We are interested in the more gen-
eral case where

where Io(k) is the radiated power per unit solid angle in
the k direction at t = 0, and 7 p is the radiative decay time
of an isolated atom. The energy difference between the
excited and ground state is Aced, and dOg is the differential
solid angle. The quantity I'(k, ki) is the average phase
of the far-6eld emission in direction k of the radiating
atoms. It is de6ned by

I'(k, ki) = ((exp[i(k —ki) r]) „~

where the average is to be taken over the positions r of
the atoms. Hence I' contains the information about how
well the atomic dipole moments cooperate in the k di-
rection. I' is unity in the directions in which the atoms
all emit in phase. However, for extended samples I' is
smaller than unity in most directions. The factor p, is
usually referred to as a "shape factor" and is the inte-
grated cooperativity over the entire solid angle weighted
by the radiation pattern of the single atom. The shape
factor hence contains the information on how well the
atoms cooperate as a whole. For small samples in which
all atoms are contained in a vol@me (& A3 the factor is
always unity since retardation effects are negligible and
therefore all the atoms can radiate in phase in every di-
rection. In larger samples p, is always smaller than unity
and in order to get a smaller decay time than 7 p, that is,
any 8upenadiance, one needs an atomic density greater
than the "threshold atom density. " The atomic thresh-
old density is roughly (2m/A)", where n = 1 in needlelike
samples, n = 2 in planar samples, and n = 3 in spherical
or cubic samples. The fact that p, is smaller than unity
in geometrically extended samples means that the sample
operates under less than optimum cooperativity. Rehler
and Eberly ascribe this effect to "a serious impedance
mismatch between [the radiation modes of] free space
and a geometrically large system of spontaneously emit-
ting atoms. " In Sec. IV we shall see that for planar sam-
ples it is possible to "impedance match" using a planar
micro cavity.
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Equation (3) can be solved analytically. Inserting the
initial condition (2), the solution is

W(t) = z(2+ pN) exp( —t/r) —N[l + p(N —z))
2[1+p(N —z) + pz exp( —t/r)]

Noting that in the absence of nonradiative decay the total
emitted power I(t) must equal the rate of change of the
system energy, or I(t) = ~dW(t)/dt, one gets

exp( —t/7)(1+ pN)2[1+ p(N —z)]
[1+p(N —z) + pz exp( —t/r)]2

We see that only one time constant ~ defined by

r = ~p/(1+ pN)

exp( —t/r)(1+ pN)2

[1+pN exp( —t/r)]2
(10)

This is the equation derived by Rehler and Eberly in Ref.
10. It can be rewritten

I(t) = —(1+ pN) sech [(t —to)/2r]
4p

where tp = 7 ln(pN) as shown in Ref. 10. For large values

of pN, which is the typical case, the total radiation inten-

sity at t = 0 is equal to ION, i.e., there is no superradiant
"enhancement" at the start of the pulse. In contrast to
ordinary spontaneous emission decay, the emission in-

tensity then grows to reach a maximum of IopN2/4 at
t = to Hence the .decay cannot be described by a simple
exponential. It is important to note that only if I(t) has
a positive time derivative at t = 0 it is possible to have

an emission power maximum at a time t g 0. Di8'eren-

tiating (10) with respect to time, this condition can be
shown to be

is explicitly involved in the emission process, and that
it is independent of x. In the customary treatment of
superradiance this equation is solved in the limit z -+ N.
In this case (8) simplifies to

cay independently of each other. However, as seen from

(13), a monotonic exponential decay follows. It must be
stressed here that this case is substantially different from
the usual superradiance where the decay always starts
noncooperatively. In this sense "superradiance" may be
somewhat of a misnomer for this decay process, since
the decay in the weak excitation limit difI'ers fundamen-
tally in its qualitative temporal behavior &om the decay
we usually associate with superradiance. On the other
hand, the decay even in the weak excitation limit is a
cooperative phenomenon. In this sense the term super-
radiance is justified. Integrating (13) over time we get
the total radiated energy E as

dtIo z exp( —t/w)(1+ yN)

= Ip z v.(1 + p,N) = z h u)

where Is is given by (5). This confirms that our solution
is self-consistent.

B. Superradiant decay
of coherently excited excitons

We shall now try to apply the theory outlined above
to a system of excitons in a quantum well. The fact
that the derivation above was made for a collection of
two-level atoms does not play any role in the weak exci-
tation regime where phase-space filling is negligible. We
make no prediction about what will happen in the strong
(z = N) excitation regime. We also note that only ra-
diative decay has been included in the model, so inter-
pretation of experimental results using our model must
be done with caution. In order to use our theory we

must compute p and I"(k, ki) for our sample and asso-
ciate some "exciton number" with N and some decay
time (or matrix element) with vo. The sample geometry
we assume is depicted in Fig 1. For the time being the
two mirror planes spaced a distance I apart can be ig-

J)~ jr
N 1

~ & —+—
2

Since it has already been assumed that pN )) 1, it fol-
lows that 1/y, « N and hence (12) above can be simpli-
fied to z & N/2.

If, on the other hand, the initial excitation is weak so
that z « N/2, the decay follows an exponential law. To
show this we take (8) in the opposite limit, z -+ 0, where

(8) is approximated by

I(t) = Ioz exp( —t/r)(1+ IJN) (13)

We note that in. this limit the pseudodipole vector is al-

ways close to the south pole of the Bloch sphere (8 0).
In this case, at t = 0, the radiative decay is enhanced
by a factor of 1 + pN over the case when the atoms de-

FIG. 1. Schematic drawing of the assumed geometry. The
two rectangular planes represent in6nitely extended mirrors
forming a planar cavity. At time t = 0 the system is prepared
by, e.g. , a short light pulse in an almost plane-wave mode with

ki [f z.
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3 ( sin H)
2~'(+ a )~

(15)

where H = kh = 2z h/A and A = ka = 2z'u/A. Implicitly
in (15) lies the assumption that the excitation pulse wave
vector is perpendicular to our quantum-well plane.

For a typical quantum well, H (& 1 and A )& 1. Hence
the factor p, is simplified to

3 3
A2 (ku) s

nored. The quanti~m well is assumed to have a thickness
h && A and a radius a && A. The finite radius can either
be due to a finite physical size of the quantum well, or
associated with a finite excitation pulse beam radius, if
the radius is much smaller than the lateral extent of the
quantum well. The latter is usually the case in experi-
ments. At time t = 0 the system is assumed to be excited
by Bashing a short pulse of light with constant intensity
across the sample. The excitation pulse wave vector is
assumed to be perpendicular to the quantum-well plane
(ki ~~ z), but for excitation angles not too far from the
normal, the treatment below still gives a very accurate
result, essentially the only change is the angle of emission.
Since transverse momentum is preserved in the decay in
absence of scattering, the emission will be emitted into
the same directions as the quantum-well (QW) surface
reBection and transmission of the excitation pulse.

As derived in Ref. 10, for a thin disk, p, can be ex-
pressed explicitly, using (4), as

however, there are numerous unexcited unit radiators to
accommodate the excitation, so that the "force" due to
the Pauli exclusion principle is negligible. If, on the other
hand, the unit radiators obey Bose-Einstein statistics,
so that any unit radiator can accommodate any number
of excitations, then the system is linear for any x. No
"force" due to the Pauli exclusion principle exists in this
system. As can be guessed &om the above discussion, a
system consisting of Fermi-Dirac unit radiators and a sys-
tem consisting of Bose-Einstein unit radiators will behave
similarly in the low excitation limit . We believe that this
regime, z & N/2, is quite general for any particle-field
coupling although it was derived for the specific case of
superradiance. This will be the topic of future work.

At this point, it is also useful to brie6y discuss cases
in which there is less than optimum cooperativity. In
Fig. 2 (a) we have schematically depicted an ideal quan-
tum well, kee from defects and well-width Buctuations.
In such a quantuxn well, the exciton wave function ex-
tends over the entire area of the excited well. In real
samples, however, impurities and well-width Buctuations
may trap the excitons and slightly shift the exciton en-
ergy levels. However, even if the exciton is trapped lo-
cally, a coherent pulse may set up a coherent superposi-
tion of excitation over several such trapping sites. This
is completely analogous to atomic superradiance where

To estimate the factor N, we may count the possible
nonoverlapping excitonic "sites" at the same energy in
the quanta' well. Since h ab, where ab is the excitonic
Bohr radius, one gets

Ei(

era~ a~
N=

crab ab
(17)

This is electively the number of excitons in the quantum
well at the Mott density. However, due to the deforma-
tion of the exciton wave function in a quantum well, a
better estimate of N is

Sa2N=
Gb

(18)

where as is the value of the exciton Bohr radius in a
bulk crystal. Before moving on we shall brieBy explain
why even such a crude estimate of the cooperativity num-
ber as (17) gives almost the correct result. The reason
is that the superradiantly enhanced radiative decay is
linked only to the size of the system wave function (the
number of "unit radiators") and is independent of the
excitation level, as long as x (N/2. Under the assump-
tions made, the system has only one internal degree of
freedom, the excitation coordinate W. If the system unit
radiators (e.g. , two-level atoms) obey Fermi-Dirac statis-
tics, i.e., can only accommodate one unit of excitation
per @nit radiator, the system is strongly nonlinear when
almost all unit radiators are excited. In this limit the
system will oppose additional excitation. If z (( N/2,

Ejt
%N

Bb

FIG. 2. Schematic drawings of the quantum-well potential
function and the exciton wave function. In a perfect sample
(a), the wave function extends over the entire well, whereas
in (b) the excitation shows partial localization. In (c) a fully
localized exciton is depicted.
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1 pN 6 (A) 1

] as)
(19)

where A is the transition wavelength inside the quantum
well. At this point we make the identification

7p

4ne ur ~M]

3Acp
(20)

where n is the quantum-well re&active index, e is the
unit charge, and M is the electron-hole transition matrix
element. Hence 7.p is the radiative decay time of a Bee
electron-hole pair, or a bulk crystal exciton. For a GaAs
quantum-well Wannier exciton, the emission wavelength
is about 800 nm, the re&active index is about 3.5, and
as = 100 A. Hence the ratio of the decay rates between
an electron-hole pair and the superradiant quantum well

exciton is about pN = 6%2/(eras) 320. Combining

(19) and (20) we arrive at the decay rate

(21)

This decay rate essentially agrees with the expression de-
rived in Ref. 2. Our rate is a factor 2/n smaller.

each atom is distinct, but the temporal evolution may
be collective. It should be stressed that the number of
excited. quanta in the well can be less than unity and
still cooperatieity between the tmpping sites mill be main-
tained. In this case it is a matter of convenience if one
wants to describe the system as a collective motion of
localized excitons, or as an extended. mode with a non-
monotonic wave function [Fig. 2(b)]. The superradiant
effect will be smaller in this case than in case (a), roughly
in proportion to the ratio of the localization site areas to
the entire excited well area. In the following we will refer
to cases (a) and (b) as coherently excited superpositions
of excitons, although they may equally w'ell be called ex-
tended excitons. Finally, a truly localized exciton may
emerge, i.e., as a result of phonon scattering. In prin-
ciple each scattering event measures the position of an
exciton and reduces the spatial extent of its wave func-
tion. After a few scattering events the exciton wave func-
tion will be extended only over small area, approaching
a Bohr radius, aad the radiant decay is correspondingly
slower [Fig. 2(c)]. Phonon scattering leads to a tempera-
ture dependent radiative decay constant which has been
observed. A signature of the localized wave function is
that the radiation is emitted more or less isotropically
in space. This is in sharp contrast to cases (a) and (b)
where, if the exciton is extended over distances larger
than or equal to a wavelength, the radiation. is highly
directional.

To calculate the radiative enhancement rate for a
weakly coherently excited superposition of excitons we

use (13), (16), and (18). The result is

The identification of N and. vp with quantum-well pa-
rameters is somewhat arbitrary. In all cases where super-
radiance is important the decay rate 1/7 is always pro-
portional to %/7p. Therefore any constant factors can
in principle be incorporated either in N or in vp. The
shape factor p, on the other hand, is a purely geomet-
rical factor and is independent of the choice of the unit
radiator of the system, provided that it is much smaller
than a wavelength squared. An important point to no-

tice, however, is that if only the ratio N/rp is correctly
chosen, the decay rate saturation behavior for large a:s
will always be correctly described. The only difference
redistribution of constant factors between N and 'Tp will

lead to is the behavior when a & ag, or in more general
terms, when the system dimension becomes comparable
to or smaller than the unit radiator. In this limit the
decay of the system is given not by the ratio K/7p, but

by 7p alone. In atomic systems the natural assumption
is that the minimum system size is that of a single atom
and therefore it is natural, not to say obvious, to asso-

ciate vp to the free space spontaneous decay rate. In au.

excitonic system there is not any such clear minimum

system size. The interpretation of ~p is therefore some-

what arbitrary, but for a given interpretation, there is

only one corresponding choice of interpretation for N.
To make a connection between our theory and that in

Refs. 3 and 4 we can reexpress the decay rate in the
quantum-well oscillator strength per unit area f2D
16mp~~M~2/(~ha[, ), where mp is the free electron mass.
Using this expression together with (19) and (20), the
expression for the decay rate is

(22)

This rate is twice as large as that derived in Ref. 3 for

the longitudinal and transverse mode excitons with wave

vectors close to the quantum-well plane normal. The fac-

tor of 2 discrepancy is explained by the fact that in Ref.
3, the exciton amplitude decay was computed, whereas
the expression (22) refers to the decay of the energy.

The enhanced decay rate (19) is independent of the
sample size as long as u » A/27r. When this condi-
tion is fulfilled the decay rate per unit solid angle in the
quantum-well normal direction is proportional to a as
shown by (25) and (27) below. One interpretation of this
enha, ncement is that the superposition of (partially) ex-

cited excitons creates a giant dipole moment. However,
as a increases, the giant dipole emission will be more and
more confined to angles close to the quantum-well nor-

mal. This narrowing of the radiation lobe (coupling to
fewer and fewer modes of the radiation continuum) can-

cels the enhanced rate per solid angle (i.e., per mode)
so that the emission rate saturates. To demonstrate this
point we consider the spatiotemporal evolution of the ra-
diation. The radiation intensity in the k direction can be
written

1(k, t) = 1 —cos8(t)+ —sin'8[t)[I'(k, k ) —1/X])Ip(k) N N
2 2

~pI[I exp( t/7-) ( 2N(l + p—X) —pI)Ix exp( —t/7. )=I() k 1+ 1 k, kg —1N
2(1+ pN)

(23)
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where we used (1) and (7) to derive the second line. In the
following we will model the "unit radiator" (essentially
a localized exciton) as a dipole radiator with the dipole
vector lying in the quantum-well plane. If the lateral
extent of the "unit radiator" wave function is &( A the
radiation pattern Io(k) is the familiar doughnut shape

to zero (or z) when A is large. In Fig. 4 (27) is plotted
for three values of A. It is seen that already for a =
A, I'(k, kq) is substantially narrower than the emission

pattern of a localized exciton, Fig. 3. The full width at
half maximum (FWHM) of the emission lobe is found

from (27) to be approximately

3(cosz rp+ sin rpcos $)Io
Io I'i

8m
(24) +A%'HM +V V/3

A 2a
(28)

with the emission zero in the direction of the dipole mo-
ment vector. The radiation pattern Io(k) is pictured
in Fig. 3. The nnmerical factors in (24) are such that

f Io(k)dAg = Ip. In the case we are interested in, x ~ 0,
pN )) 1, we can approximate (23) by

Ip(k)I'(k, ky)xN exp( —t/7 )
2

(25)

In addition, I'(k, kq) for a thin disk is approximately
given by

(sin[H(1 —cos @)/2) l
H(1 —cos g)/2

t' 2Jq (A sin Q) l
A sing

(26)

where Jq is the first Bessel function of the first kind. One
notes that for all g: s, the first factor on the right hand
side of (26) is close to unity due to the smallness of H
(for a 100-A.-thick quantum well, using the parameters
above, H 0.27, and the first factor is larger than or
equal to 0.97 for all angles), and in the second factor one
can use the approximation sin Q Q due to the largeness
of A. Hence we get

r(k k ) I

, , ( ~)i
Ag

(27)

From this equation it is clear that I'(k, kq) and hence
I(k, t) only takes on appreciable values when g is close

where in the last step we used (16). Hence it is clear that
the emission in the quantum-well normal direction is en-

hanced by a factor of N oc a2, but only within a solid
angle proportional to p oc a 2. Therefore the total emis-

sion is enhanced by a factor proportional to p,¹ This
must of course be the case since we already know that the
system dissipates the excitation energy with the charac-
teristic time constant Tp/(Np). The continuous narrow-

ing in the emission angle as a becomes larger can be
viewed as an e6ect of excitation delocalization. The co-
herent superposition of excitons becomes more and more
delocalized as a increases and as a consequence its trans-
verse momentum becomes more and more well defined
(centered around zero).

To see how rapidly the decay rate saturates with a,
we have solved (4) numerically, neglecting the term 1/N.
This term is only important if a ( ap, and in this regime
our model is not very good anyhow. In Fig. 5, p and
b,@FTHM are plotted versus the normalized transverse
size of the quantum well a/A. The dashed line is the ap-
proximation (16). As long as p is approximately unity,
the decay rate which is proportional to p, lV increases
quadratically with a. However, when a ) ~k~, the
shape factor p, starts to decrease as a 2, indicating a
saturation of the decay rate. In Fig. 6 we have plotted
the calculated normalized radiative decay time 7/vo us-

ing (9), (18), and the numerically computed value for p.
It is seen that when a/A & (2z') ~ 0.16 the decay rate
tends to the value given by (19). Hence in, e.g. , a GaAs
quantum well with a re&active index of 3.5, emitting at
about 800 nm, the sample, or rather the radial dimen-

0.75.

0.5 .

0.25.

-0.25.

-0.5

-0.75.

FIG. 3. The radiation pattern of a vill localized dipole
transition. The dipole moment vector is parallel to the y
axis. The radiation pattern is rotationally symmetric about
the y axis.

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

FIG. 4. Plot of the function I' for three values of A, namely,
0.275, 1, and 2s, corresponding to a = 100 A, A/2s —364 L,
and A 2290 A..
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FIG. 6. The normalized radiative decay time versus the
normalized quantum-well radius. The curves are the same,
but they have different horizontal and vertical scales.

sion of the coherently excited superposition of excitons,
must exceed 365 A to approach the optimum decay rate.
If, on the other hand, the exciton is confined to areas
smaller than A/2', then the decay rate is larger than the
value in (19) or (21). In Ref. 4, such efFects were cal-
culated for localization due to quantum-well monolayer
thickness Huctuations. Qualitatively the results are sim-
ilar to ours, but since a monolayer Buctuation only can
localize an exciton weakly, the decrease in decay rate was
not as dramatic as the one predicted in Fig. 6. Strong
localization, due to impurity binding or dynamic localiza-
tion due to repeated phonon scattering can decrease the
decay rate by approximately two orders of magnitude.
This may be one of the explanations that experimental
data of excitonic decay rates scatter quite substantially.
In Ref. 16 decay rates difFering by one order of magni-
tude were reported for samples in which the lateral sizes
of InAs quantum wells were made to difFer from )& 100
A. to about 35 A. A similar scattering of the decay time
(about one order of magnitude) as a function of size was
also reported in Ref. 17 for excitons in CuCl microcrys-
tals. It is worth noticing that in a good sample, an ex-
citon created by optical excitation will initially always
be sufIiciently delocalized to decay at the maximum rate
since essentially no light beam can be focused to a size

smaller than a wavelength squared. Therefore, in most
experiments, one is operating in the regime where the su-
perradiant decay is saturated. For the same reason, the
transverse mode profile of the excitation pulse is unim-
portant, since any significant fiuctuations across a beam
take place over a lateral scale longer than a wavelength.

III. INFLUENCE OF INHOMOCENEOUS
BROADENING AND EXCITON LOCALIZATION

In Sec. II A above, the decay rate was derived assuming
a homogeneously broadened exciton line. It is well known
&om experiments that excitonic transitions usually are
accompanied by a relatively large inhomogeneous broad-
ening mainly due to quantum-well thickness Buctuations
and excitons binding to impurities. To include inhomo-
geneous broadening in our model, a factor H(t) (not to
be confused with the quantum-well normalized thickness
H = 27rh/A) should be included in the analysis. The
inhomogeneous broadening factor is de6ned by

2N

H(t) = —) exp(iA)t)
l I

(29)

where A~ is the angular &equency detuning ~~ —~ of the
1th exciton site. The time evolution of H(t) can be ap-
proximated by exp( —2~t~/T2 ), where 1/T2 is the FWHM
of the inhomogeneous detuning. The approximation is
exact if the inhomogeneous detuning is described by a
Lorentzian. To account for the inhomogeneous broaden-
ing in the system, p, in (3) and [I"(k,kq) —1/K] in (23)
should be multiplied by H(t). (In Ref. 12, p. 181, it is
stated that H(t) should multiply only I'(k, kq) in (23).
This is incorrect as the consequence would be that the
decay effectively stops as soon as the excitons become
dephased, and that the 6nal state of the system is not a
vacuum state [W(t ~ oo) g —N/2]. ) A consequence of
including H(t) in (3) is that the equation can no longer
be solved analytically.

Solving (3) numerically, the solution, quite expectedly,
shows difFerent behavior at times 4 (& T2 than for times
t » Tz. At early times, before the excitons have had
time to dephase appreciably, the decay is exponential,
governed by the decay time r = ro/pN. In this limit
the excitonic superradiance is in full swing. At later
times, when the dipoles have dephased completely due
to their slightly detuned frequencies, all the superradiant
enhancement of the decay has vanished, and the decay
follows that of a localized exciton. The decay is still expo-
nential but with a decay constant 7.O. In between these
limits there is a transient where the decay changes its
rate rather abruptly, see Fig. 7. This behavior is quali-
tatively difFerent from ordinary superradiant decay. In a
totally inverted system the initial radiative decay is not
enhanced, and therefore, if the dephasing due to inho-
xnogeneous broadening is more rapid than the buildup of
the superradiant pulse (T2 ( to), there shrill be no trace
of suIierradiance. In the weak excitation case treated in
this paper enhanced decay will ahaays be seen for times
shorter than T2. In the figure wo and N are chosen to
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FIG. 7. The normalized total emitted radiation as a func-

tion of time. The parameters are N = 10, p = 4 x 10
x = 10, 70 = 1 ns, and T2 ——100 ps. p, corresponds to a thin

GaAs quantum well with a = 10 pm. x corresponds to an

exciton density of about 3 x 10 cm

IV. SUPERRADIANCE ENHANCEMENT
IN AN OPTICAL MICROCAVITV

A. The ideal planar cavity

Now we proceed to see how a coherently excited ex-
citon might decay in a cavity. These results must be
interpreted with some caution since one of the underly-
ing assumptions in the theory is that radiation reaction
could be neglected. This condition will certainly be bro-
ken if the system is highly excited (the cavity mirrors
then assure substantial optical feedback). For weak ex-
citation and for cavity decay rates greater than the Rabi
frequency the results should still be valid, however.

Most of the mathematics will remain the same even
with the inclusion of the microcavity. Essentially the
microcavity will only change the system "shape factor"
p. To calculate the decay in this case, we take into ac-
count that the microcavity modifies the effective density
of states. Hence the intensity as a function of time can
be expressed

model the exciton decay time going from Tp/pN = 25 ps
to Tp = 1 ns. Again, (19) indicates that the slowing of
the radiative decay can be substantial. As in the homo-
geneously broadened case, the behavior outlined above is
independent of x, as long as x ( N/2

The change in rate outlined above may possibly be
the explanation for the results reported in Refs. 5—7 and
in Ref. 17 although other explanations cannot be ruled
out. In these reports the authors see a rapid initial
exponential decay followed by a much slower decay at
later times.

pk (1 —R){l+R —2v Rcos[~k[Leos(@)]) 31
(1 —R)2 + 4Rsin [[k~Lcos(g)]

where [k[cos(Q) = k i and it has been assumed that
the waves undergo a phase shift of x upon re6ection
from the mirrors. In general R is wavelength depen-
dent, and furthermore, R of a dielectric mirror depends
on the incidence angle. Initially we will neglect both
these effects and assume that R is a real number such
that 0 & R & 1. With minor amendments this assump-
tion is reasonable even for a dielectric mirror cavity as
shall be demonstrated below. Since p(k) is a local func-
tion [the expression (31) is only correct at the center of
the cavity], it is not normalized as one might expect, but
depends on cavity length and cavity re8ectivity. ' In
the following it wi11 be assumed that the microcavity is
one half, or seven half wavelengths long with "cos-type"
cavity modes, Fig. 8. For these specific cases one can
demonstrate that

f

ear
2'

p(k) dOtt —— d(pdg sin t/r p(k) = 4vr, (32)
0 0

independent of the mirror re8ectivity. Inspection of (31)
also reveals that

sing p(k) = 2m[8(Q) + b(Q —x)] if R 1, (33)

where b is the delta function. That is, the effective den-

sity of states takes out 2' times the sum of the radiation
pattern in the positive and negative z direction. Figure 9
is a polar plot of the effective density of states without
a cavity (R = 0) and for a A/2-long microcavity with
R = 0.8.

In addition it is useful to define the quantity Io given

by the relation

Io = I(k, 0)p(k)dOt, ——27r
2(3Io) 3Io

Sx 2

where (24) and (33) have been used, and it has once

(34)

ry

Mirror
gr

Mirror

density of states at a given position and direction k in
the microcavity and the density of states in the absence
of cavity mirrors. If the quantum well is located in the
center of a planar microcavity of length L and with equal
mirror reflectivity R (see Fig. 1), the effective density of
states p(k) can be written~

I(t) = f I(k, t)p(k)dttt (30)
Position

where p(k) is the effective density of states at the po-
sition of the quantum well in the cavity. The effective
density of states is defined to be the ratio between the

FIG. 8. A schematic drawing of a half-wavelength-long

(top) and 3.5-wavelength-long (bottom) planar microcavity
with "cos"-type longitudinal modes.
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vr AL

8a2 (40)
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(35)

1 1
p= ——+ —, I(k, 0)p(k) dpi,

Ip+ —=II (37)

This provides the Anal preliminary to l ul hcac ate t e tem-
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y an &13& but '

en y
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1+pN 3(1+pN) 3N
27 p 2Tp

12a
7p ag

(38)

r(k k) = —'+
H(1 —cos Q)/2

(2Ji(Asinp)l '
1 N —1

A sing ) N

(36)
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2' Co
(41)

where V is the cavity volume. In matching the modes,
we have efFectively set the cavity mode radius to a by
assuming that the cavity refiectivity fulfills (40) with
equality. (In contrast to a cavity with three-dimensional
confinement the planar cavity mode volume is reflectiv-
ity dependent. 22 2

) The xnode volume of our cavity can
therefore be written ma~I. Using this relation and the
expression for the decay rate (38) in (41) we arrive at

6COA02
O~ ——

m2La2ro
(42)

It is interesting to note that in this specific case Oxx de-
pends only on the cavity length whereas in the general
case it depends on the cavity volume as seen in (41). This
is due to our mode-matching procedure above so that the
excitons only couple to a single transverse mode. There-
fore only the longitudinal mode density (proportional to
1/L) enters our expression. For a GaAs quantum well
with the parameters above the Rabi (angular) frequency
A~ is 3.6 x 10i s i and the Rabi frequency Q~/2x is
5.7 x 10i2 s i. The latter value corresponds to a decay
time of 175 fs.

To compute the appropriate cavity reflectivity to ob-
serve this rapid decay, we equate the Rabi frequency
Q~/2z' and the cavity decay rate 1/7„. The latter can
be expressed22

cp(l —R)
nL

This gives us the optimuxn cavity refiectivity (or rather
transmittivity)

3n2I.AO~

2m coa ro
(44)

6 &A) 1+~R
(ab) 'rp(1 —~R)

(45)

We shall see below that for low reflectivities the increase
of the decay rate follows (45) independent of a. For any
finite a, the decay rate saturates at a reflectivity given by

For a GaAs quantum well and a half-wavelength-long
cavity this leads to refiectivity of about 99% which cor-
responds to an excitation spot (or quantum well) radius
a of 1.2 pm or about five wavelengths (in GaAs).

If the quantum-well (excited spot) radius is larger than
five wavelengths, the excitonic emission is more direc-
tional than the normalized density of modes for all re-
fiectivities smaller than or equal to that given by (44).
In this case I'(k, kx) in the integral (35) will only have
appreciable values very close to the forward direction.
Therefore we can replace p(k) in the integral by its value

at f = 0 which is (1+~R)/(1 —~R). The decay rate
becomes

(44) to a value given by (38) provided it is smaller than
the Rabi frequency.

In Fig. 10 we have solved (35) numerically as a function
of the mirror refiectivity using (26) and (31) and plotted
the ensuing decay rates. To get some feeling for the nuxn-

bers we have assumed that ro = 8 ns so that the optimal
superradiant decay rate becomes 25 ps. We stress that
the decay rates in the plot all scale with this number,
which may be somewhat optimistic. However, the rel-
ative enhancements predicted by the analysis above are
independent of ro. The cavity decay time r„is also plot-
ted and the small dashed line is Eq. (45) above. The
result qualitatively agrees with those for the correspond-
ing cavity in Ref. 8 although in that reference the de-

cay rate was derived for a fixed refiectivity (R = 0.95)
and with the lateral size as a variable. We see that the
solid lines representing the exciton decay rate and the
photon decay rate for large spots cross approximately at
the Rabi frequency. This is no coincidence. Since for
large pumped spot sizes the excitons only interact with
one cavity mode, the decay rate and the Rabi frequency
are essentially equal. It is therefore safe to say that our
model holds for points where rz is smaller than the exci-
ton decay time. For points to the left of the photon decay
time curve, quasistationary exciton-polariton modes will
appear in which the excitation energy oscillates period-
ically between the excjtons and the field. ' In this
regime the present theory is not valid.

Furthermore, as explained above, the cavity accep-
tance angle given by (39) imposes a restriction on how
small areas we can excite by simply focusing a coher-
ent light beam. The cavity filters the incident excitation
pulse and reflects light with incidence angles larger than
the cavity acceptance angle. The maximum reflectivity
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101 &

~ W

O
V

1P Q

1p10
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Mirror transmittivity
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FIG. 10. The decay time as a function of the mII'ror re8ec-
tivity for a half-wavelength-long cavity. The cavity photon
lifetime 7„is also indicated. The circles indicate the highest
reSectivity where it is still possible to form an excitation spot
with the given radius by optical means. To the left of the
circles the lateral exciton con6nement must be achieved by
other means. The dashed lines correspond to the decay time
of an inhomogeneously broadened exciton transition line with
a 2.5 nm linewidth. In 1;he region to the left of the vertical
dash-dotted line it is not possible to excite the entire spectral
range of the exciton line due to the chromatic 6ltering of the
cavity.
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permissible for each plotted quantum-well radius a has
been indicated by a circle in the figure. The permissi-
ble points lie on the curve to the right of the circle. For
a given cavity length and reQectivity it is of course still
possible to create a coherent area smaller than the one
indicated by a circle, but in this case this must be done
by means other than by focusing an optical excitation
pulse. The obvious way is to make the physical lateral
size of the quantum-well smaller than the size given by
(40). It is seen from the figure that the fastest nonre-
versible decay we can achieve in the assumed system is
about 10is s i (r = 100 fs), which roughly coincides with
the value predicted above. The corresponding reflectiv-
ity is about 0.98. Increasing the excitation radius much
beyond 5A will not make the decay substantially faster.
This agrees with (45) above. We remind the reader that
our predictions should be interpreted with caution since
they all rely on an assumed optimum cooperativity (no
exciton localization). However, using the formulas above
it should be relatively easy to derive the results by scal-
ing or recomputation for other system parameters. We
should also briefly remark that although retardation ef-

fects are absent in our treatment, we believe the derived
results are correct. Since the optimum decay rates are
obtained coupling the cavity modes and the quantum-
well excitons over distances less than ten wavelengths,
retardation eEects should be negligible.

In real samples, the excitonic luminescence peak of-
ten has substantial inhomogeneous broadening. En the
following we will assume that the broadening is due to
weak localization so that the transition energy is slightly
shifted from place to place within the sample. The broad-
ening enters our calculation in two ways. First, as demon-
strated in Sec. III, the dephasing with time of the cor-
responding exciton states will lead to a finite duration
under which superradiant decay can play a role. Below
it will be assumed that the inhomogeneous broadening
has a half-width of 2.5 nm. This half-width corresponds
to a dephasing time Tz of about 1 ps. In this case only
if the initial decay (which is what is plotted in Fig. 10) is

faster than 1 ps will one see any substantial effect of su-

perradiance. The second eÃect is that the cavity will act
as a spectral filter for the pump pulse (which is assumed
to be short and have a broad spectrum), so with increas-
ing reflectivity„only some of the energy states within the
luminescence peak will be excited. This leads to nonex-
cited "islands" in the quantum well, extended regions
where the transition energy is larger than the energy of
the transmitted excitation light. These nonexcited is-

lands, in turn, will reduce the initial dipole moment of the
coherent superposition of excitons and lead to a longer
radiative decay time. In our model we include this eKect
through a normalized overlap integral between the cav-
ity transmission function Iwhich can be obtained from

(31) if (k~ is expressed in A or vice versa] and the in-

homogeneously broadened luminescence peak, which is
assumed to be a Lorentzian. The two half-widths are
equal when R = 0.99 as indicated by the vertical dashed
line in Fig. 10. The ensuing decay rates are plotted in
dashed lines in the figure. It is seen that a must be larger
than about 2A before the decay rate is faster than the de-

phasing rate. For quantum-well radii larger than about
10% we arrive at decay rates almost as large as in the
homogeneously broadened case, and most of the exciton
population will decay before the excited superposition
has dephased.

B. The dielectric Bragg-mirror planar cavity

The expression was derived noting that I'(k, ki) is effec-

tively zero everywhere but in the forward (and backward)
directions, and that in the forward direction the integral
over Io(k)I'(k, ki) takes out 4m/7 times the value of the
integrand at Q = 0. Plugging this result into the expres-
sion for the decay time we arrive at

7p
(47)

We see that this predicted decay rate is about an order

In this subsection we shall briefly discuss how our pre-
dictions are modified when a dielectric mirror microcav-
ity is used instead of an ideal microcavity with a fixed
reflectivity. The major diH'erence between a dielectric
Bragg-mirror microcavity and an ideal microcavity is
that the field is less well confined in the Bragg-mirror
cavity since the reHection is distributed. The field there-
fore penetrates into the Bragg mirror, and the e6'ective
cavity is no longer simply the physical distance between
the two mirror surfaces. 2 For an epitaxial GaAs/AlAs
Bragg mirror designed to be highly reQecting at 800 nm,
the penetration depth is about 1.5 wavelengths, render-
ing a cavity with a mirror separation of half a wavelength
effectively 3.0—3.5 wavelengths long. For such a cavity the
effective density of states will no longer be "compressed"
only into the forward and backward directions, there will

also be modes at intermediate angles. In an ideal cav-
ity these modes will be discrete, as seen in Fig. 11(a).
In a Bragg-mirror cavity these modes will instead form a
mode continuum in what is called the "open window. " '

This is pictured in Fig. 11(b), where the normalized den-
sity of states is averaged over the S and. P polarization.
The plot was computed using the method described in
Ref. 9. What is important for our problem is the effective
density of states in the forward and backward directions
since these are the directions the superradiance preferen-
tially couples into as manifested by Fig. 4. In the forward
direction the normalized density of states function is al-
rnost identical for the dielectric and the ideal cavity, pro-
vided that the penetration depth is correctly accounted
for, as seen from the figures. It can be deduced f'rom

(31) that the integrated effective density of states in the
forward and backward lobe is 4m/7 for a 3.5-wavelength-
long microcavity. The total integrated density of states
is still 4vr. Performing the integral (34) one finds that
Ip = Ip in this case, and therefore the decay time con-
stant 7 T'p. Hence the expression for the shape factor
becomes
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our treatment is that it naturally incorporates the cou-
pling with the &ee space mode coatinuum aad therefore
gives iaformation about the radiation pattern.

Using the model we show that collective behavior of a
coherent superposition of excitons, or "excitonic superra-
diance, " will indeed shorten the decay time considerably
compared to the decay time of a &ee electron-hole pair.
In thick (150-200 A.) GaAs quantum wells the optimum
decay rate of the Wannier excitons is about 320 times
larger than that of a &ee electron-hole pair. Our ex-
pression for the decay time agrees exactly with that of
Aadreani et al.

The efFect of inhomogeneous broadeniag is also dis-
cussed. It is predicted that excitonic superradiance will
only be seen in high quality samples. In low quality sam-
ples the excitons will dephase before any significant su-
perradiant decay has had time to come into play. How-

ever, even in high quality samples, two distinctly difer-
ent decay times are predicted to be seen, a rapid decay
for times short compared to the inverse of the inhomo-
geneous linewidth, and a slower decay at longer times.
This predictioa qualitatively agrees with recent measure-
ments.

Finally, and most importaatly, it is shown that the de-
cay rate (or equivalently, the exciton-field coupling) can
be increased by at least an additional two orders of mag-
nitude by embedding the quantum well in an optimized
planar microcavity. If one tries to increase the decay
rate beyond the optimum valu" one enters the regime of
(quasi) stationary exciton-pols. iton normal modes which
decay slowly. The eKect of the microcavity is to redis-
tribute the effective density of states in such a way as
to "impedance match" the superradiant excitoas to kee
space. This is aa exciting 6nding that may be used in
future high-speed high-quantum-eKciency optoelectronic
devices.
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