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Electron —acoustic-phonon scattering rates in rectangular quantum wires
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Electron-acoustic-phonon scattering in a rectangular quantum wire is studied. The Hamiltonian

describing the deformation-potential interaction of confined acoustic phonons with carriers is derived by

quantizing the appropriate, experimentally verified approximate compressional acoustic-phonon modes

in a free-standing rectangular quantum wire. The scattering rate due to the deformation-potential in-

teraction is obtained for GaAs quantum wires with a range of cross-sectional dimensions. The results

demonstrate that a proper treatment of confined acoustic phonons may be essential to correctly model

electron scattering rates at low energies in nanoscale structures.

I. INTRODUCTION

A number of proposed applications of mesoscopic elec-
tronic structures involve carrier transport at low temper-
atures and low carrier energies; frequently, the regime of
interest is one where dimensional confinement modifies
the phase space substantially. It is well known that in
this low-temperature, low-energy regime, ' acoustic
phonons play an enhanced role in carrier scattering and
may dominate over the scattering of carriers by optical
phonons. In addition, in nanoscale structures it is possi-
ble that phase-space restrictions may weaken or forbid
optical-phonon scattering processes that would normally
dominate in bulk structures. Recently, there has been an
extensive literature on the role of dimensional
confinement in modifying longitudinal-optical (LO) pho-
non modes and their interactions with charge carriers in
nanoscale and mesoscopic semiconductor structures (see,
for example, Refs. 7-12 and the numerous papers refer-
enced therein). On the other hand, there are relatively
few treatments dealing with the role of dimensional
confinement in modifying acoustic-phonon modes and
their interactions with charge carriers. ' ' In spite of
the fact that there is an extensive literature on the theory
of acoustic modes in conventional waveguides, resona-
tors, and related structures, few efforts have been report-
ed on formulating a theory of acoustic phonons in nano-
scale structures, where both phonon confinement and a
quantum-mechanical treatment of phonon normalization
are essential. The necessity for such theoretical treat-
ments has been demonstrated recently by experimental
studies providing both direct and indirect ' evidence of
the importance of acoustic-phonon confinement in re-
duced dimensional electronic structures.

In this paper, we have obtained the normalized expres-
sions for acoustic phonons confined in a free-standing
rectangular quantum wire by appropriately quantizing

the acoustic-phonon displacements. As is well known,
there are no exact solutions for the complete set of pho-
non modes for a rectangular quantum wire; nevertheless,
as for the case of LO phonon modes, the approximate
modes presented in this work provide simple and useful
expressions, which are well suited for modeling the in-
teraction of carriers with acoustic phonons. As a basis
for investigating the role of reduced dimensionality on
the coupling between acoustic phonons and carriers, we
have formulated the interaction Hamiltonian for the de-
formation potential associated with confined acoustic-
phonon modes in rectangular quantum wires. The result-
ing scattering rates (based on the golden rule approxima-
tion) are compared with those obtained from the bulk-
phonon modes. For numerical calculations, GaAs is used
as the material of choice throughout this study.

II. QUANTIZATION OF COMPRESSIONAL
ACOUSTIC-PHONON MODES

FOR A RECTANGULAR QUANTUM WIRE

The compressional, or dilatational, acoustic-phonon
modes in free-standing rods of rectangular cross section
have been examined both experimentally' and theoreti-
cally' ' by Morse in an extended study. Morse has de-
rived an approximate set of hybrid compressional, or di-
latational, acoustic-phonon modes, ' ' which are found
to accurately approximate the experimentally observed
modes over a wide range of conditions. ' Specifically,
Morse has found that the approximate hybrid modes de-
rived by assuming separable boundary conditions' '
have simple analytical representations and provide con-
venient approximations for the rectangular geometry
when the cross-sectional dimensions have aspect ratios of
approximately 2 or greater. For smaller aspect ratios
(i.e., close to I), Morse has argued correctly that it is
necessary to turn to numerical solutions since exact
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with p being the density of the medium. Substituting
Eqs. (4)—(6) into the conditions that the T„,T „,and T,„
stress components vanish at x =+a, it follows that simul-
taneous equations for the amplitudes 3, B, and C are
given by

-a
-d

FIG. 1. Schematic drawing of a free-standing rectangular
quantum wire considered in the analysis of electron-acoustic-
phonon scattering.

analytical solutions for the compressional acoustic-
phonon modes in a rectangular structure are not expressi-
ble analytically. In this paper, we shall restrict our
analysis to rectangular quantum wires with aspect ratios
of 2 or greater.

As depicted in Fig. 1, we consider a free-standing rec-
tangular rod of infinite length in the z direction having an
x-directed height (or thickness) 2a, and ay-directed width
2d; the origin of coordinates in the x-y plane is taken to
be at the geometric center of the rectangular cross sec-
tion, and the x-, y-, and z-directed acoustic-mode dis-
placements are represented, respectively, by

2 Ah sink, a +Bh sink2a +Ck2sink2a =0,
—A(y +h —kz)cosk((I+28k, kzcoskza =0,

2A(h +y )sink(a+8(y +h —kz)sinkza=0 .

(12)

(13)

«nkziz 4klkz(h'+y')
tank, a (h +y —k )

(14)

which serves as the dispersion relation; this result is simi-
lar to the corresponding dispersion relation for the case
of a slab. ' Using Eq. (13) to solve for 8 in terms of A

and applying the resultant expression in conjunction with
Eq. (11) to solve for Cin terms of A, Eqs. (3)—(6) maybe
written as

u I
= A {sink, x+a sinkzx I cos(hy )e'r' (15)

When kzAO, the condition that the determinant of
coeScients vanishes requires that

u, =u(x,y)e'~'

( x y )eiy(z —ct )

w, =w(x, y)e'~'

(2)

(3)

where y=2Ir/A, , A, being the wavelength, y is the z-

directed free wave vector, and c is the phase velocity.
Adopting Morse's form for the approximate separation-
of-variables solution, the compressional waves for the
"thickness" modes may be represented by

v, = A cosk, x+Pcoskzx sin(hy)e'r'h

k,

w, =i A — cosk, x+ —(kza+hP)coskzx ., —y
1

Xcos(hy )e'r'

where a and P are defined by

(16)

(17)

u = [A sink, x+8 sinkzx]cos(hy),

h
A cosk, x+Ccoskzx sin(hy),

(4)

(5) and

Sink(Q 2(hz+yz)B=- A =ad,
»nkz(z (y +h —kz)

(18)

w =i — A cosk, x+ —(kzB+hC)coskzx .cos(hy),1
k2h sink ) a 2k2h

hz+yz sinkza (yz+hz —kzz)

(6)

where

k ( +h =y [(c/cq ) —1],
kz+h =y [(c/c, ) —1], (8)

cd =(A, '+2p)/p,

c, =pip, (10)

and the compressional, or dilatational, sound speed cd, as

we11 as the transverse, or shear, sound speed c„are ex-

pressed in terms of the Lame, constants A,
' and p:

Following the quantization procedure of Ref. 14, the nor-
malization constant may be determined by quantizing the
phonon modes so that,

I dx I dyIuu'+vv*+ww*] =, (20)
4ad —a —d 2Mcor

where co is the radial frequency of the mode with waver
vector y. Performing the indicated integration, Eq. (20)
yields the amplitude A in terms of the following equa-
tions:
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.f, (h, d)[f2(k, , a)+2ag, (k„k2,a)+a f2(k2, a)]—f, (h, d) 2 f, (k„a)+ g2(k„ki, a)+P f, (ki, a)h 2Ph

1 1

+f, (h, d) f,(k„a)— (kza+hP)g2(k„kz, a}+ f, (k2, a)y'

+2d fi(ki, a}+ g2(ki, kz, a)+P f, (k2, a}h 2Ph
2 1 2 (21)

fi

2M+) r

f, (h, d)=d 1+ sin(2hd)
(2hd)

fz(h, d) =2d —f, (h, d),
sin(k, —kz)a sin(k, +k2)a

g, (k„k~,a)=
(k, —k~) (k, +k2)

sin(k, —k2)a sin(k, +k2)a
gi(k„k2, a =

(k, —k2) (k, +k2

Henceforth, A is written as

2A

Mcor8r

(22)

(23)

(24)

(25)

(26)

tan(~V'q' —y'} 4g~q'
tan(n &ey' —i'') (2f' —y'}'

where

(28)

y =s (c/c, )

g =s +(ah/a)

s =ay/n, .

e=(c, /cd ) =(1—2o )/2(1 —o ),

(29}

(30)

(31)

(32)

I

k =0 is considered for the width modes.
We have calculated acoustic-phonon frequencies as a

function of wave vector y for the thickness and width
modes in GaAs quantum wires. For this purpose, Eq.
(14) may be written as

where 8„ is defined straightforwardly by Eqs. (21) and
(26).

In accordance with the solutions of Morse, ' the
boundary conditions at y =+d determine the value of h;
however, the adjustment of h alone is sufficient to make
T, T„„, and T, vanish at y=kd. For aspect ratios
where the width of the rectangular cross section (2d) is
greater than or approximately equal to twice the height
(2a}, this problem can be circumvented since the two
shear stresses T„~ and T,~ become negligible. According-

ly, Morse chooses h so that the extensional stress TB'
vanishes; this condition requires

and 0 is Poisson's ratio. Due to the periodic nature of
trigonometric functions, the phonon frequency co (=cy)r
has multiple solutions for a given y and n (i.e., fixed h or
k). Thus, an additional index m is needed to distinguish
difFerent modes. Figures 2 and 3 depict dispersion curves
of the six lowest thickness modes (h =ir/2d,
m =1, . . . , 6) and the corresponding width modes (k =0,
m =1, . . . , 6). The quantum wire cross-sectional dimen-
sions are chosen to be 28.3X56.6 A for Fig. 2 and

o 250X200 A for Fig. 3, respectively. As expected, the
width modes tend to have lower energies than the thick-

hd =(n+ —,
' }m, n =0, 1,2, . . . . (27)

16 I I I I s &

(
I I I

The principal propagation inode (i.e., n =0 or h =n/2d)
has no nodal surfaces parallel to the length. Motivated
by the analysis in Sec. III, as well as by Morse's experi-
mental observation that the principal mode is dom-

15
j.nant, the present paper considers the n =0 case for the
thickness modes in numerical calculations. In addition to
the thickness modes, another set of acoustic modes is ob-
served experimentally. ' ' These modes correspond to
"width modes" and are determined in a manner similar
to that used to determine the thickness modes. By satis-
fying the boundary conditions on the stress at y =+d, the
solutions for the width modes show expressions analo-
gous to Eqs. (15)—(17) with the roles of x and y as well as
k and h interchanged, respectively. For these modes, k is
then determined by approximate boundary conditions at
x = a. ' The dispersion relation for the width mode is
identical in form to Eq. (14), and the normalization pro-
cedure for proper quantization is as described in Eq. (20).
As for the thickness modes, only the principal mode with

14

28.3 A x 56.6 A
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Phonon Wave vector (10 crn ')

FIG. 2. Dispersion curves for the six lowest width and thick-
ness modes (m =1, . . . , 6) of a 28.3X56.6-A GaAs quantum
wire. The solid lines are for the width modes and the dashed
lines are for the thickness modes.
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conserving 8 function in the golden rule. In Eqs. (33) and
(34), the sum over y represents the usual integration over
wave vector, while the sums over n and m represent the
addition of the various acoustic-phonon modes. For the
normalized compressional, or dilatational, modes of Sec.
II, it follows that

Q)r
H~, r

= g E, A cos(k, x }cos(Ity )

r, n, m cdk 1

X[c„(y)+c„(—y)]e' ', (35)

0
0

1 t s i I

Phonon Wave vector (10 cnt ')

where co =c y . Assuming the extreme quantum limit,
the ground-state effective-mass electronic wave function
is given by

FIG. 3. Dispersion curves for the six lowest width and thick-
0 2

ness modes (m = 1, . . . , 6) of a 50X200-A GaAs quantum wire.
The solid lines are for the width modes and the dashed lines are
for the thickness modes.

g~(x,y, z) = cos cos e
1 7l'X iqz

ad 2a

and the eigenenergy is

(36)

$2

2m

2 2
lT + K +

(2a ) (2d )
(37)

ness modes, since the width is greater than the thickness
for each of the cases represented in these 6gures. Hence, the matrix element & q'~H&, r ~q ) is given by

III. EI,ECTRON-ACOUSTIC-PHONON SCATTERING
RATES IN A RECTANGULAR QUANTUM WIRE

The deformation-potential interaction of the thickness
mode is describable in terms of the Hamiltonian HQ f,

H~,r=E, V' u(r}

=E, g [c„(y)+cJ (
—y)]

m sink&a
&q'~H„r~q)= g E.W

cqk, kta(n —k,a )

v+r
[(n+ —,')n. [1 (n+ —,

'—
) ]]

X[c„(y)+ct (
—y)] . (38)

r, n, m

X + +iytc e'r',
r}x By

(33)

(34)
r, n, m

lk)
The time-dependent factor e ' is not included in Eqs.
(33} and (34), since it will be included in the energy-

I

where c„(y) and c„(—y) are the usual annihilation

and creation operators and

u(r) = g [c„(y)+c„(—y)]u(x, y, y}e'~' .

An examination of the n-dependent terms in Eq. (38)
makes it apparent that they contribute to the matrix ele-
ment squared in such a way that these terms for n = 1 are
only —,', of their magnitude for n =0; a similar reduction
occurs in going from n =1 to n =2 and it is clear that
only the principal mode contributes signi6cantly to Eq,
(38), which was derived on the assumption that the car-
riers remain in the ground state of the extreme quantum
limit, x-y potential.

Hence, the Fermi golden rule scattering rate corre-
sponding to the matrix element of Eq. (38) is given by

2

m. sink(a

k, a(~ —k,a )

2 g2
(X+—,'+2 )5 (y +2qy)+%co

(n+ —')m[1 (n+ —,') —] ' ' 2m

where A has been written as Ar to indicate the y depen-
dence of A, I. is the normalization length along the axisr'
of the quantum wire, and N is the usual temperature-
dependent Bose-Einstein occupation number for the
acoustic phonons. Introducing 8 through Eq. (26) and
defining factors Zt and Z2, Eq. (39}may be written as where

X5 (y +2qy)+fico
2pl

t

3

2pab+ (cek& )

(4O)
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m sink)a
Z]

kta(m —kta )
(41)

13
I

I
I I I I l I I

100 A x 200 A

T=77K

and

1

( n +—,
' )n.[ I (n—+ —,

'
) ]

(42)

IV. NUMERICAL RESULTS

The "width-mode" scattering rate may be readily formu-
lated by following the procedure described above.

O
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Deformation-potential scattering rates have been cal-
culated in GaAs for two different quantum-wire aspect
ratios. In the first case, the quantum-wire aspect ratio of
width to height is taken as 2 and the dimensions of the
rectangular cross section are taken as 28.3 X 56.6 A (i.e.,
10X20 ML) and 100X200 A . In the second case, the
corresponding aspect ratio is taken as 4 and the wire di-
mensions are taken as 50X 200 A . In these calculations,
an isotropic cubic medium has been assumed and the
compressional, or longitudinal, sound speed has been tak-
en to be that of GaAs; it should be noted that imposing
both of these constraints makes it impossible to have a
transverse sound speed matching that of GaAs. This is a
consequence of the fact that GaAs may be treated as hav-
ing an isotropic elastic tension only in a very rough ap-
proximation. In this paper, Poisson s ratio 0 is taken to
be —,'; this choice fixes the value of s as given by Eq. (32).

Scattering rates for emission and absorption as func-
tions of electron energy are plotted in Fig. 4 for a quan-
tum wire with a 28.3X56.6 A cross section; these
scattering rates are calculated at 77 K for both bulk

10 I

0
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5 10 15
s I t I i I
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Electron Energy (meV)

FIG. 5 ~ Deformation-potential scattering rates for bulk and
0 2

confined acoustic-phonon modes in a 100X200-A GaAs quan-
turn wire at 77 K. Enhancements in the scattering rates for the
case of confined acoustic modes occur at the onset of emission
for the various width and thickness modes. These thresholds
are at 0.03, 0.65, 0.75, 1.39, 2.06, and 2.12 meV for the width
modes, and at 0.59, 1.26, 1.68, 2.80, 4.11, and 4.28 meV for the
thickness modes. As in Fig. 4, the plotting resolution is limit-
ed.

acoustic modes and for the hybrid compressional modes.
Figures 5 and 6 present results analogous to those of Fig.
4 but for different cross-sectional dimensions. Two dis-
tinct and important features are obvious from Figs. 4-6,
which present related results for different dimensional pa-
rameters. First, the appearance of structure is prominent
in the scattering rates (for confined phonons), which re-
sults from the energy threshold for the different mode
values m of the thickness and width modes. As can be
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FIG. 4. Deformation-potential scattering rates for bulk and
0 2

confined acoustic-phonon modes in a 28.3X56.6-A GaAs
quantum wire at 77 K. Enhancements in the scattering rates for
the case of confined acoustic modes occur at the onset of emis-
sion for the various width and thickness modes. These thresh-
olds are at 0.03, 2.36, 2.55, 4.90, 7.30, and 7.40 meV for the
width modes, and at 2.06, 4.44, 5.90, 9.87, 14.5, and 15.1 meV
for the thickness modes. The plotting resolution depicted is not
fine enough to illustrate fully the importance of the density-of-
states effects in the rectangular quantum wire.

Electron Energy (meV)

FIG. 6. Deformation-potential scattering rates for bulk and
0 2

confined acoustic-phonon modes in a 50X200-A CxaAs quan-
tum wire at 77 K. Enhancements in the scattering rates for the
case of confined acoustic modes occur at the onset of emission
for the various width and thickness modes. These thresholds
are at 0.03, 0.65, 0.75, 1.39, 2.06, and 2.12 meV for the width
modes, and at 0.61, 2.58, 3.05, 5.56, 8.24, and 8.43 meV for the
thickness modes. As in Figs. 4 and 5, the plotting resolution is
limited.
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seen from Figs. 4—6, each of these modes makes a notable
contribution to the density of states and to the scattering
rate. In particular, the scattering rates at low energies
show pronounced peaks and are strongly enhanced due to
the dominance of selected compressional modes in the
emission process. Thus, it is essential to retain a number
of acoustic modes for an accurate estimation of scattering
rates. The results shown in Figs. 4—6 have been obtained
by including the six lowest-order thickness modes as well
as the six lowest-order width modes. Due to the limited
resolution in plotting, the details of one-dim. ensional na-
ture (such as the number of peaks and their heights) are
not illustrated fully in these figures. The second impor-
tant feature of Figs. 4—6 is that the scattering rates for
the case of the hybrid compressional modes are higher
than the corresponding bulk scattering rates. These
enhanced scattering rates provided an indication that
conceptual designs for mesoscopic devices need to be
based on an awareness of the fact that confined acoustic
modes may play a significant role in carrier transport in
these devices. As shown in Fig. 5, for the case of a
100X200-A cross section we find similar scaling of the
scattering rates with energy as for the case of Fig. 4; how-

ever, the rates are approximately an order of magnitude
lower than those for the 28.3X56.6-A quantum wire of
Fig. 4.

The hybrid modes considered in this paper contain
both longitudinal and transverse components as is evi-

dent from Eqs. (15}—(18); as expected, only the longitudi-
nal components contribute to the deformation potential
of Eq. (35}. The appearance of a hybrid-mode dispersion
relation, Eq. (14), similar to that for the dilatational
modes of a slab' is entirely reasonable, since the flexural

modes are similar to the shear modes. ' Such modes have
strong transverse components and they make little contri-
bution to electron —acoustic-phonon interaction through
the deformation potential.

V. CONCLUSION

The results in this analysis suggest that it may be im-
portant to consider carrier —acoustic-phonon scattering
processes when designing mesoscopic devices containing
quantum-wire elements. Based on what appears to be the
most complete set of approximate compressional modes
available for a free-standing rectangular quantum wire, '

it is demonstrated that the details of the modal structure
need to be taken into account if deformation-potential
scattering is to be modeled accurately. Further analysis
is necessary to rigorously show that deformation-
potential scattering rates by confined acoustic phonons
exceed the corresponding rates obtained from bulk pho-
nons in quantum wires; however, these results provide an
indication that acoustic-phonon scattering may be
enhanced considerably in some nanoscale structures.
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