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Difference frequency mixing in p-type Si-Si& Ce heterostructures
via intersubband nonlinearities in the far infrared
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We report full-scale psuedopotential calculations concerning the difference frequency mixing in
Si-Siae quantum-well structures. We predict the line shape, the magnitude, and the microscopic
origin of the second-order susceptibility. In particular, we establish a link between the strength of
the spectra and the degree of asymmetry in the quantum-well system.

I. INTRODUCTION

Si-based semiconductor heterostructures are becom-
ing increasingly important for applications in optoelec-
tronic devices, primarily due to the possibility of de-
signing the valence-band structure where the presence of
band mixing effects enhances the optical transitions. '

In fact, the nonlinear effects resulting from virtual exci-
tations between minibands in Si-SiGe structures can be
utilized to Gnd applications in the wavelength region of
2—5 and 8—15 pm simply by controlling structural pa-
rameters such as well widths and the composition of the
SiGe alloy. For example, large second harmonic genera-
tion in the mid-in&ared to far-in&ared range of &equen-
cies has been recently reported. 4 In general, nonlinear
second-order susceptibilities associated with transitions
within the valence minibands can be strongly enhanced
compared to those of bulk semiconductors. Therefore,
alternative technologies such as difFerence &equency mix-

ing can provide additional Bexibility for tuning the rel-
evant optical &equency. In this paper, we predict that
strong difference-&equency mixing should be observed in
narrow p-type SiGe quantum-well structures. The &e-

quency range required for such experiments is well within
the reach of a C02 laser facility available in most estab-

lished optics laboratories. Such nonlinear effects have
been studied extensively in other materials. 5 %e wish

to examine in detail the microscopic origin of the opti-
cal mixing in connection with the band structure of such
materials. Our model quantitatively takes into account
the change of symmetry in the crystal, the relativistic
spin-orbit effect, and also the strained-induced momen-
tum mixing which are all important to determine new se-

lection rules for optical transitions between valence mini-
bands. This enables us to stud. y the magnitude, direc-
tional and &equency dependence of the optical response
as well as to hint on designing optimized structures.

II. THEORY

Since the full details of our approach for calculat-
ing electronic band structures and evaluating optical re-
sponse functions are given in the literature, ' here we

only focus on the features that difFer for this calculation.
The process of difference &equency mixing is described.

by the second-order susceptibility tensor in our calcula-
tions. Using the density matrix theory, the following
expression for yi &(—us', uq, —u2) is obtained:
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where the component y„&(—ups, ui, —uz) describes the(2)

difference-frequency (i.e. , ws ——&ui —u2) polarization in-
duced in the, ~ direction by incident optical fields at
&equencies ui and uz polarized in the a and P direc-
tions, respectively. In the equation, P ~ represents the
summation of a, b, and c over all possible states (mini-
bands) at a particular wave vector k. Each combination
of abc represents the contribution from the virtual process
a -+ c ~ b m a. 0;~ is the transition &equency between
minibands i and j, and p; is the momentum matrix el-
ement in the h direction between i and j. Clearly, for a
semiconductor system, the miniband energy separations
and momentum matrix elements wiD have a wave vec-
tor dependence, and the expressions for the susceptibili-
ties include a summation over a set of randomly chosen
sampling points in the superlattice Brillouin zone g&.
The Fermi distributior function f represents the ther-
mal equilibrium popuiations of the states. Relaxation
processes have been included phenomenologically in the
form of the damping terms I';~ in the &equency denomi-
nators of the equation.

III. RESULTS

A. Asymmetric Si-SiGe quantum-vrell structure

18 Si0.sGe0, 40 Si

The proposed structure is shown in Fig. 1. The quan-
tum weQ is made up of 18 SiosGe02 monolayers and
2 monolayers of Sio 9Geo q to form an asymmetric step.
The asymmetric structure ensures a large second-order
mixing effect due to the lack of inversion symmetry. s

The barrier of the system consists of 40 monolayers of
Si and this layer thickness should be enough to isolate
the quantum well. The resulting material is treated in
a tetragonal unit cell and the symmetry group is C2„.
The structural parameters of the system are chosen for
&equency mixing in the range of 30—50 pm. For most
applications the pump fields in the optical ~ixing pro-
cess lie around the conventional 10.6 pm, therefore, one
of the optical transitions involved in the mixing should
fall in such a frequency range. In order to have exci-
tations between valence minibands, the system is doped
p type to fill the ground state with holes. The charge
carriers should be sufficiently dense in order to achieve
large second-order nonlinearities. Here we have consid-

ered a doping density of 1 x 10 cm which results in a
Fermi energy lying 74 meV below the top of the valence-
band edge of Sip SGeo 2. This complicates the choice of
structural parameters to obtain transition energies suit-
able for the long wave length in&ared response. The
reason is that the single particle approximation in. the
band structure calculation no longer holds. Instead, a
description of the collective transition of carriers, the so-
called many-body effect, must be used. To estimate the
magnitude of the effect, we consider the conventional ex-
change and Coulomb interactions given in the literatureio
to correct our transition energies. For the doping concen-
tration mentioned earlier, it results in an upward shift of
the top heavy hole state (HH1) by about 25 meV. This
energy correction is negligible for other lower lying sub-
bands because the interactions depend upon the number
of carriers occupying the subband. More populated sub-
bands will receive more correction than less populated
ones. In our doped structure, only the HH1 subband is
significantly populated. Apart &om the self-energy cor-
rection, the coherent many-body system should exhibit
the renormalization of intersubband Rabi &equency due
to electron-hole Coulomb attractions (i.e., excitonic ef-
fects). Such efFects may enhance the optical nonlinear-
ities by orders of magnitude compared with predictions
of the multilevel susceptibility formula such as that given
previously. It is clear that our calculations of y( ), which
are derived &om a system with discrete energy levels, do
not give a definitive statement concerning the spectral
form of the second-order response.

In the structure considered, there are another two
states localized in the quantum well, namely the light
hole state (LH1) and the split-off state (SO1). The en-
ergy of the first excited heavy hole state (HH2) lies out-
side the quantum well, i.e., below the valence-band edge
of Si which is the barrier material. We have schemati-
cally shown these states together with some of the prin-
cipal zone center transitions in Fig. 1. At this point we
should recall that our objective is to evaluate difference-
&equency mixing of 30—50 pm using pump &equencies
around 10.6 pm. Thus we look for strong transitions in
the band structure with energy separations of 115 and
135 meV.

Accordingly we have calculated the seven independent
nonzero components of gl l (—us', uri, —uz) with ui ——135
meV and u2 ——115 meV. The results are tabulated in
Table I. The largest component is y„,. Here z is the(2)

HH1
Fermi Energy

LH1

.:170meV

TABLE I. ~y„&(—us', uq, u2)
~

for the asymmetric and(~)

symmetric Si-SiGe quantum-well structures considered, where
et)3 —cog ctp2 for frequencies uz ——135 meV and uz ——115
meV.

HH2

SO1

112meV

150meV

FIG. 1. Schematic energy band diagram of the 18
Sip.sGes s/2 Sis.sGes. i/40 Si quantum-well structure. Zone
center transition energies between some of the key states are
shown.

Polarization
~

zxy
xyz
zxz
zzz

Asymmetric
~

4.56x10
5.61x 10
7.94 x 10
2.69x 10
2.68 x 10
4.33x 10
2.42 x10

Symmetric

8.52 x 10
2.60x 10

2.59x 10
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ture given in Fig. 1, where cu3 ——~q —u2
for frequencies uz ——135 meV +10 meV and
~2 ——115 meV +10 meV. All seven indepen-
dent nonzero components with difFerent po-
larization yaP are shown.
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quantum-well growth direction and directions x, y lie in
the plane parallel to the quantum-well layers. We also

6nd that the component y, Is large. y, descnbes(2} (2) ~

an induced polarization in the z direction in response to
fundamental 6elds applied in the z direction. This com-
ponent is, therefore, particularly useful for laser inputs
at normal incidence, which was otherwise believed to be
impossible in the past. To assess for the optimization of
the response, more calculations have been performed as
we vary the frequencies of the applied 6elds for u~ ——135
meV +10 meV and ~2 ——115 meV +10 meV. The results
are presented in Fig. 2(a)—(g) for different tensorial com-
ponents of gi )(—us,'uq, —u2). The dependence of yi )

on frequencies of uq and cu2 can be understood &om the
band structure as both the energies and the strength of
the responsible optical transitions vary over the Brillouin
zone.

Next, it is instructive to discuss the origin of the
second-order response, i.e., to identify the key transitions
that are responsible for the diHerence-&equency mixing.
Let us refer to Fig. 1 again. The transitions involved
in the mixing are HH1~SO1 and HH2~HH1. Transi-
tion between states HH1 and SO1 is partially allowed
because of valence-band mixing. It is noted that the
zone center transitions do not correspond to the mix-
ing of frequencies at 115 meV and 135 meV. However,
away &om the Brillouin zone center there exists transi-
tions at these energies. To further explain the obtained
results we present, in Fig. 3, the band structure of the
system along two symmetry lines in the Brillouin zone.
We can see that transitions at A and B contribute to
the process HH2~HH1~SO1~HH2 for mixing &equen-
cies of 115 meV and 135 meV. It is worth pointing out
that the diHerence-hequency mixing at the above fre-
quencies (this corresponds to the center positions of the
three-dimensional pictures in Fig. 2) cannot be easily
optimized. This is because state HH2 is essentially a
continuum state and has a large miniband width. Such
a band structure eKect manifests itself in the directional
dependence of the optical mixing. It follows that diHer-

ent tensorial components of y~ ) do not necessarily peak
at the same position (see Fig. 2).

B. The role of asymmetry in Si-SiGe
quantum-well structures

From the previous section we conclude that large op-

tical second-order nonlinearities can be achieved in an

asymmetric Si-SiGe quantum-vrell structure. The next

step is to investigate the role of asymmetry on the opti-

cal mixing. It is well known that y&s) is subject to certain

symmetry restrictions, for instance the tensor is strictly

zero for those crystal classes that have inversion symme-

try. In a symmetric quant~~~-vrell structure the symme-

try group is D2d, and so there are only three nonzero
(2) (2)

independent components of y' ', namely y „„g„,and

-0.05

Fermi energy

115meV 115meV HH1

-0.15

20~V

A 8

SO1

HH2

-0.02 0.0

I
0.02 0.04

towards X

FIG. 3. Miniband structure of the asymmetric Si-Si0.8Geo.q

quantum-well structure along the P I' and I'-X (i.e., 6 li-ne

in bulk) symmetry lines. The scale shown along these lines is

measured in unit of 2'/a where a is the bulk lattice constant
of the structure. P is the edge of the minizone along the
quantum-well growth direction (z).



DIE'FLORENCE FREQUENCY MIXING IN p-TYPE Si-. . . 17 333

Tp.

Q Q.

2

xzy

'7o-,

FIG. 4. All three independent nonzero
components of ~y„&(—(us, uq, u2)

~

for the(~)

symmetric Si-Si0.8Geo.~ quantum-well struc-
ture.

%0
O.

&o~ &&~
Q Q.

xyz

1p-

(g.O0-

o.

(0
O.



17 334 K. S. VfONG AND M. JAROS

This indicates that the largest component (y„,)
that existed in the asymmetric quantum-well structures
vanishes in this case because of crystal symmetry. This is
considered as a major drawback in symmetric well struc-
tures in the past if one is interested in the nonlinearities
associated with the excitations between conduction mini-
bands in an n-type material. This is because, owing to
the selection rule of the I' conduction band, all the other
components of yc ~ are usually very small. However, one
might hope to circumvent such problems in a p-type sym-
metric well structure. It should be stressed that our band
structure and momentum matrix elements are generated
in a model that takes into account the crystal symmetry.
For instance, a detailed band structure is available over
the entire Brillouin zone. Apparently, the angular de-
pendence of xnomentum matrix elements are determined
with quantitative precision. On the basis of these calcu-
lations, we can correctly account for any small change in
the crystal potential.

To compare in the simplest way with the previous re-
sults, we consider a symmetric quantum-well structure of
Si-Sio.sGeo. 2 by removing the Sio.9Geo. i alloy layer « the
asymmetric structure given in Fig. 1. We have chosen 19
monolayers of Sio SGeo 2 and 41 monolayers of Si to avoid
having an inversion center in the system. This struc-
ture has the closest resemblance to the previous asym-
metric structure for comparison purpose. The three cal-
culated independent components of y~ ~(—&us', wy, —u)2)

with cuq ——135 meV and u2 ——115 meV are tabulated in
Table I and their &equency dependence are presented in
Fig. 4. Again we have shown the span of +10 meV &om
the pump &equencies of 115 meV and 135 meV. Prom
these diagrams, we can see that all three components
are of magnitude around 10 5 esu. We can also directly
compare the results with the asymmetric structure. y~ ~

here are obviously larger than their counterparts in the
asymmetric structure. To explain this we have to study
the processes contributing to y~ ~. We found that the
main process is HH2-+HH1~SO1~HH2. This process
of difference-&equency generation can be summarized in
an energy-level description given in Fig. 5. The system
first absorbs a photon of &equency ~i and jumps to the
highest available level HH1. Then it decays by a two-

photon emission process that is stimulated by the pres-
ence of the u2 field, which is already present. In fact, it

HH1

SO1

HH2

FIG. 5. An energy-level description for the di8er-
ence-frequency generation.

is the same process contributing to g~ & in the asymmet-
ric well structure. Since the transition energies between
the concerned states are similar in both cases, the diBer-
ence in magnitude of y~ ~ must have resulted &oxn the
difFerence in optical transition matrix elements. There-
fore, we tabulate the strength for the three optical tran-
sitions in concern together with their energies in Table
II. The results show that the strength of both transitions
HH2 —+HH1 and SO1-+HH2 are larger in the symmetric
well case. This seems rather unusual and hence requires
further explanations.

Let us write down the optical matrix element in the
well-known envelope function model. By considering two
states i and f, which are composed of periodic parts u, ,

uy (Bloch functions) and slowly varying parts F, and
Fy (envelope functions), respectively, the optical matrix
element can be expressed as

(ux lplu') (F~ IF' )

where (FylF, ) is the overlap integral between the enve-

lope function part and (uy lplu, ) is the corresponding mo-
mentum matrix element defined between the Bloch func-
tion part of states i and f Selec. tion rules for particu-
lar transition can be deduced by considering separately
(uylplu, ) and (FylF;). Momentum mixing of the bulk
Bloch functions of the confined quantum-well states can,
of course, relax the selection rule by enhancing the term
(uylplu;). For example, transition HH1~801 is allowed
because of valence-band mixing between bulk heavy and
light hole characters. Asymmetry in the quantum-well
potential that we have considered in the previous sec-
tion can also enhance the momentum mixing. Since mix-

ing occurs in the plane perpendicular to the quantum-
well growth direction, the asymmetry considered here can
only contribute little to the mixing. On the other hand,
the term (Fy lF;) which describes the overlap between the
two states, decreases with increasing asymmetry in the
structure for obvious reasons.

Using the above arguments, we can easily explain the
results in Table II. HH2 —+HH1 is an allowed transition
because both states involved are derived &om the same
bulk heavy hole band edge and it obeys the selection rule
for intersubband transition. Thus the term (uylplu;) is
finite and is similar for both symmetric and asymmetric
structures. However, the overlap integral in the asym-
metric structure is smaller. It follows that the optical
matrix element is smaller in this case. For the transi-
tion HH1~801, momentum mixing enhances the size of
(uy lplu;) but only to a small extent. (Fy lF;) is small for
this transition because both states involved are ground
states of the corresponding bulk moment»m character.
Hence its magnitude is insensitive to the change in sym-
metry. Finally, transition SO1mHH2 depends on both
terms. As state HH2 is a continuum state, the asymme-
try has a large effect on determining the size of (FylF;)
for the transition. The increase of (uylplu;) brought in

by enhanced momentum mixing sixnply cannot coxnpete
with the more rapid decrease of (Ey lF;).

Lastly, it is useful to point out that one can gener-
ally obtain an increased second-order response by de-
signing structures with a large asymmetry. Such depen-
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TABLE gg. Squared optical matrix elements and energies for transition at the center of the Brillouin zone in both symmetric

and asymmetric Si-Sio.sGeo.2 quantum-well structures. Energies are measured in meV and matrix elements in a.u.

Transition

HH1mHH2
HH1 —+SO1
SO1mHH2

Energy

152
114
38

Symmetric well

Polarization x, y
0.10 x 10
0.32 x 10
0.13 x 10

Polarszatzon z

0.90 x 10
0.63 x 10
0.60 x 10

Energy

150
112
38

Asymmetric well

Polarization x, y
0.10 x 10
0.66 x 10
0.33 x 10

Polarization z

020 x10
0.20 x 10
0.15 x 10

dence of second-order processes on asymmetry has been
addressed in our recent publication concerning GaAs-
A1As quantum-well structures. We, therefore, refer our
readers to it for more details.

asymmetry normally invoked to study y~2~ in quantum
wells does not play a significant role in the optical mixing
that determines the magnitude of y(2i.
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