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Transport through quantum point contacts (+PC's) with various geometries close to those used
experimentally is studied in the ballistic regime. We neglect impurity and temperature effects in an
effort to understand the detailed status, as a function of geometry, of various popular approxima-
tions in this Geld, namely, the local adiabatic, the global adiabatic, and the diagonal approximation.
By appeal to a combination of two well-known procedures, we are in a position to study, by exact
numerical solution, continuous but rapidly varying geometries of QPC's. Our calculations show that
the diagonal approximation is unreliable (as found previously by Castano and Kirczenow). The local
adiabatic approximation (Glazman et al. ) can serve as a rough estimate, but significantly under-
estimates the sharpness of conductance steps. The global adiabatic approximation is remarkably
successful, in spite of strong mode mixing. However, this approximation can also signiGcantly under-
estimate the degree of conductance quantization. The physical reason for this is given. Resonance
effects in continuous +PC's are found that confirm our physical interpretation.

I. INTRODUCTION

In 1988 two independent experimental groups ' made
the remarkable discovery that the conductance through
a narrow constriction in a two-dimensional electron gas
(2DEG) is quantized. The essential mechanism basic to
this fact was immediately recognized: Transverse quan-
tization allows propagation of a discrete set of modes
through a "quantum point contact" (QPC) and, as fol-
lows &om the Landauer-Buttiker formalism, each such
(spin degenerate) "channel" contributes 2e2/Ix to the
conductance. A more detailed understanding of the
phenomenon, including the shape of the conductance
steps, involves the precise geometry of the QPC and,
in addition, the in8uence of disorder and of tempera-
ture. In this paper we shall limit ourselves to some re-
marks in the final section on disorder and temperature
efFects, and concentrate on exact and approximate de-
scriptions of transport through QPC's with various ge-
ometries. Many-body efFects are neglected throughout.

The literature on this subject is quite extensive. It
would be an exaggeration to call the problem a contro-
versial one. Nevertheless, difFerent viewpoints with some-
what confIicting conclusions do exist, and we hope to con-
tribute to the clarification of some fundamental issues in
this context by presenting a detailed comparison between
several popular approximations and "exact" numerical
results on the conductance of QPC's. For example, we
demonstrate that exact calculations, when they difFer,
give better conductance quantization than the approxi-
mations used and, furthermore, we pinpoint the physical
mechanism responsible for this efFect.

The comparison has been made possible by the in-
troduction of a combination of two standard numerical
schemes in this field. On the one hand, the recursive
Green function technique applied to tight binding mod-

els has the important virtue of numerical stability, in
addition to being quite flexible. Its weakness in this con-
text is associated with the fact that the geometry must
be discretized. This makes it difficult to model smoothly
varying QPC's, since the transverse number of sites, N,
associated with the wi.dest part of the geometry deter-
mines the dixnension of the matrices (N x N) to be in-
verted. With a large number of inversions necessary one
is, in practice, limited to N 100. Alternatively, one
can choose to work with exactly determined (local) trans-
verse energy eigenstates. This reduces the problem to M
coupled equations, with M typically of the order of 10.
In this approach smoothness is no problem (on the con-
trary) and the dimension of the function space required
for a realistic discussion is easily managed. However,
the standard method for solving such coupled equations
(after discretization of the longitudinal direction) is the
transfer matrix method, or refinements thereof. These
methods have numerical stability problems suKciently
serious to make a detailed discussion of a range of QPC's
difBcult. Our novel combination takes advantage of the
strengths of both methods, while avoiding their weak-
nesses: We use the transverse energy modes as a basis,
and can thereby handle smoothly varying geometries by a
function space of reasonable dimensionality. On the other
hand, we use the recursive Green function technique in
the (discretized) longitudinal direction to determine the
scattering matrix. Some further details of the method
are given in the Appendix. The discussion of the QPC's
in the sections below demonstrates the usefulness of our
numerical scheme.

The paper is organized as follows. In Sec. II we recal1
what we shall denote the local adiabatic approximation,
introduced by Glazman et al. , and present the set of
coupled equations on which two further approximations,
which we shall refer to as the global adiabatic and the di-
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agonal one can be defined. This set of coupled equations
also forms the basis on which our exact numerical work is
done. In Sec. III an initial coxnparison is made between
the three approximations and the exact results for the
conductance of two typical /PC's. We then suggest a
qualitative picture which explains these and subsequent
results. Next, numerical results are presented for the
conductance of a /PC with a shape very similar to that
used by van Wees et al. We also brieHy discuss geometry
induced resonances. Concluding remarks constitute Sec.
IV.

A global treatment of the transport problem starts
from an expansion of the complete wave function in
terms of local transverse energy eigenfunctions, 4'(x, y) =

(x)(t) (y; z), where we have chosen y as the trans-
verse and 2; as the longitudinal direction. Inserting this
expansion of the wave function into the Schrodinger equa-
tion, one obtains the following coupled differential equa-
tions for the mode coefficients, s io y (x):

dE-E (z)+
2 .d, & (z)

II. BASICS d

2 .).» ~(x)~ +& ~(x) &)s(x) (3)2% dZ

The two-point conductance through a /PC is given by
the linear Landauer-Buttiker formula '

G= „)it ~i'= „Tttt,
a,P

where t p is the transxnission amplitude &om incoxning
mode P to transxnitted mode xx, and spin degeneracy has
been assumed. This formula gives, in principle, the con-
ductance of a /PC connecting two infinite reservoirs. In
our calculations we shall take the modes as those propa-
gating in the leads. One could worry about the validity
of the linear expression (1) in this context, with reference
to the extended discussion on nonlinear versus linear for-
mulas for the conductance, connected with probes in the
leads versus in (infinitely) wide reservoirs. 4 r We have
checked that the leads used in our calculations are suf-
ficiently wide that they can be considered as reservoirs,
i.e., further widening of the leads has a negligible in8u-
ence on the results. In other words, we can interpret our
results, based on (1), for /PC's with leads of moderate
width, as applying to the corresponding /PC's between
infinite reservoirs.

The local adiabatic approximation was introduced by
Glazman et al. These authors consider only what hap-
pens in the narrowest part of the constriction, and as-
sume that the inQuence of the widening areas is negligible
as far as the conductance is concerned. As a result, the
transmission probability only depends on the curvature
B of the constriction at minixnum width, and the mini-
mum width Wo itself. The resulting conductance can be
written as

28 ~ 1
h 1+exp( —z K)

' (2)

where z~ = (kp W()/z) —n and ~ = n2/2R/Wp with ~.
assumed larger than unity. Here a is the integer quan-
tum number of the transverse mode, kg = /2m'E/5 is
the Fermi wave number, m* the effective xnass, and E the
energy. An important advantage of this approximation
is that it provides an analytic expression for the conduc-
tance as a function of energy. However, as we shall see,
for geometries with rapid variations, like the /PC s typi-
cally used in experiments, the local adiabatic approxima-
tion compares rather unfavorably with exact calculations
and has, at best, semiquantitative significance.

where P (y; z) satisfies the (local in z) transverse
Schrodinger equation

52 82
—,, Z„,+V(y*) 4-(y*) =E-(*)4-(y *) (4)

and the coupling matrices are given by

&-~(*) = J C(v;*)~.6(w;*)du,

B e(*) = fC(v;*)C4p(n*)&w

What we shall call the global adiabatic approximation
consists in neglecting the right hand side of Eq. (3) com-
pletely. As a result, the equations decouple into one-
dimensional Schrodinger equations for the various modes,
with the transverse eigenvalue E (x) acting as an ef-
fective barrier potential. With hard wall confinement,
these effective barriers will be inversely proportional to
the width square, E (x) W z(x). With parabolic con-
finement, E (x) W i(z). As a consequence, for given
W(x), a constriction with hard walls will appear as more
abrupt than one with parabolic confinement. Note that
there are speculations in the literature that the global
adiabatic approximation might be exact for a single /PC,
as far as its conductance is concerned.

An apparent improvement over the global adiabatic
approximation consists in retaining the diagonal terms
on the right hand side of Eq. (3), while again discarding
all nondiagonal ones. This is what we call the diagonal
approximation (called adiabatic by several authors), and
again results in a set of one-dimensional effective barrier
problems. The extra terms retained stem &om B and
produce an additional contribution to the effective barri-
ers, proportional to (W'/W)2. Castano and Kirczenow
have shown that when stepwise behavior breaks down ac-
cording to the diagonal approxixnation (which they call
adiabatic), exact calculations still give a stepwise con-
ductance.

III. RESULTS

A. Comparisons

In order to compare, with some fIexibility, the three
approximations of the preceding section with exact re-
sults, we use /PC's with somewhat different shapes. At
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this point we limit ourselves to constrictions with fourfold
symmetry (mirror symmetry around x = 0 and y = 0)
to keep comparisons as simple as possible. For ~z~ ) L,
let the width of our in6nite waveguide be TV . This is
also chosen to be the maximum width. The total length
of the symmetric constriction is 21, and the minimum
width R'0. We use the following two shapes:

Shape 1 is the one considered in Ref. 9. With P = 1,
shape 2 corresponds to that of Ref. 10.

Results for the conductance in units of 2e2/h as a
function of ky'Wp/7r (i.e. , of the square root of the di-
mensionless energy) are presented in Fig. 1. We have
used hard wall boundaries, shape 1 in Fig. 1(a), shape
2 with P = 1 in Fig. 1(b), and have chosen ratios such
that W /Wp ——6 and L/Wp ——1 in both cases. The
most striking feature of Fig. 1 is the failure of the di-
agonal approximation, found already by Castano and
Kirczenow for precisely the /PC of Fig. 1(a). As ex-
plained in Ref. 9, the artificial resonances of the diago-
nal approximation are due to the "ears" contributed to
the effective barrier potentials by B (x) (W'/W) .
For constrictions of increasing abruptness, these arti6cial
resonances become progressively more prominent. How-
ever, the global adiabatic approximation, which neglects
B along with all the coupling terms, is more success-
ful. In fact, it is remarkably successful, considering the
abruptness of the constrictions shown. In particular, this
approximation does not produce qualitatively wrong re-
sults for the conductance of a single /PC. This high-

lights the inconsistency of the diagonal approximation:
One should not keep diagonal terms on the right hand
side of Eq. (3), while neglecting equally important non-
diagonal ones. Quantitatively, however, even the results
based on the global adiabatic approximation show clear
deviations from the exact results, contradicting the spec-
ulations in Ref. 10. The local adiabatic approximation
fares worse, and essentially washes out the conductance
steps, in spite of the fact that the smoothness parameter
~ of Eq. (2) takes the values 4.87 and 2.81, respectively,
for the two shapes of Fig. 1.

Note that the above comparisons between numerically
exact and approximate methods were based on the results
for the conductance alone. It is important to distinguish
between the fundamental merits of the global approxi-
mation itself, which neglects intermode scattering alto-
gether, and its qualities as a method for calculating the
conductance. With the abrupt constrictions of Fig. 1, it
is not surprising that intermode scattering is consider-
able. However, as emphasized by Brataas and Chao,
in spite of this, the conductance predicted by the global
adiabatic approximation can be extremely close to the
exact one. Reasons for this have been pointed out by
Yacoby and Imry. In their careful discussion of the
leading corrections to the adiabatic approximation they
show that, whereas the local transmission amplitudes
~t p(z)~ scale with W'(z)N „(x)= W'(z)W(z)kp/m. ,

where K „(z)is the locally available number of propagat-
ing modes, the corresponding re6ection amplitudes scale
with W'(z)/K „(z).With constrictions that allow essen-
tially adiabatic transport in the inner region, with only
No modes propagating in the narrowest part, these scal-
ing relations explain the strongly reduced backscattering
where the constriction rapidly opens up, and N & No.
Even when the nondiagonal terms of the transmission
matrix are appreciable, the deviations in the conductance
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FIG. 1. The conductance as a function of the Fermi wave number for two +PC s of difFerent shape, both with W /Wo = 6
and L/WII ——1. In both cases "exact" numerical results (full line) are compared with three popular approximations.
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&om its adiabatic value, determined essentially by the re-
Bection amplitudes, can be small.

In spite of the success of the global adiabatic approx-
imation in predicting the conductance of a single /PC
(with more examples to be given below), deviations from
the exact results can, under certain circ»~stances, be
clearly seen. Refinements of the physical picture are then
called for.

B. A qualitative picture

An interesting fact demonstrated by Fig. 1 is the more
pronounced stepwise behavior of the conductance in the
exact calculations than in those based on the global adi-
abatic approximation. We shall now argue that this is
no accident, but has a simple physical explanation. The
argument that follows must only be read as a qualitative
guide, applicable under certain (realistic) circuxnstances.

For easier understanding, first consider a geometry
(with hard wall boundaries) where the width of the quan-
tum wire abruptly jumps Rom W to Wo (W » W, )
and, after a length 2L, jumps back to O' . This ex-
treme case was discussed already in 1989 by Szafer and
Stone. They showed, by simple Fourier analysis, that

the propagating mode with transverse wave number q„
in the constriction is mostly fed by incoming modes with
transverse wave numbers close to q„.In fact, the uncer-
tainty relation immediately gives that 4q S'0 . Sim-
ilarly, this mode (propagating or evanescent) will pro-
duce a superposition of outgoing modes with the same
distribution over transverse wave numbers. Since the
total energy E is conserved, a width Aq in the distri-
bution of transverse wave numbers will produce a corre-
sponding distribution of longitudinal wave numbers cen-
tered around k„(oraround lc„if the xnode is evanescent,
and Ic„is the corresponding damping coefficient). Here
2m'E/52 = kF2

——q2+ k2 (or kF2 ——q„Ic2)—Wit. h k„(or
e„)close to the threshold, where k„=F„=0, this distri-
bution will typically be over propagating modes (width
b,k), as well as evanescent ones (width b,e). The order
of magnitude will be the same, AA: Ae Aq Wo
In contrast to the uncorrelated modes impinging on the
constriction, outgoing modes originating in a single con-
striction mode have rigid phase relations. As a con-
sequence, a spread in longitudinal wave numbers cor-
responds to a persistence length in the wave pattern
emerging Rom the constriction. In other words, the ef
fective length of the constriction is longer than the ge-
ometric length, near threshold by roughly the amount
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plots for the +PC of Fig. 1(b).
Scaling of the arrows is arbi-
trary for each plot. Plots (a)
and (b) show current densities
according to exact calculations,
whereas (c) and (d) are calcu-
lated according to the global
adiabatic approximation. The
current densities are shown on
the z interval (L, L + W ),
where x = L can be regarded
as the exit of the constriction.
The numerical values for A:y,
given at the top, show that (a)
and (c) correspond to a Fermi
energy slightly higher than the
threshold for propagation of
mode 1, whereas for (b) and
(d), the energy is approaching
the threshold for mode 2.
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l - [max(ic„,Ak, b,K)]
' - Wo.

This argument was based on the simplest possible ge-
ometry with sudden jumps in the width of the electron
waveguide, for which the global adiabatic approximation,
strictly speaking, has no meaning. As a qualitative guide
the argument also applies to QPC's with smooth geome-
tries and sufBciently rapidly varying widths, like those
of Fig. 1, that the current density is unable to follow the
rapid change in geometry. For such geometries the global
adiabatic approximation i8 well de6ned. As a rough esti-
mate, our calculations indicate that W'(2:) must be con-
siderably greater than unity for the effect to exist, i.e.,
for the persistence length to be meaningful. All this is
demonstrated in Figs. 2(a) and 2(b), which show, for two
difFerent energies on the 6rst conductance step, the cur-
rent density emanating &om the exit (defined as z = I,)
of the QPC of shape 2 [see Fig. 1(b)]. For comparison, the
corresponding current densities, as given by the (in this
context obviously unreliable) global adiabatic approxi-
mation, are shown in Figs. 2(c) and 2(d). The effective
lengthening l of the constriction is clearly of the same
order as Wo. Furthermore, one can see that when the
energy is close to the threshold, max(r„,Ak, b, ic) is at
its minimum. One would therefore expect that the effec-
tive length of the constriction is somewhat greater here.
This can be recognized in the slightly longer persistence
length of Fig. 2(a) than of Fig. 2(b).

Three remarks are in order. (i) From time re8ection
invariance (no magnetic field here) the effects seen at the
far end of the constriction must have precise counterparts
at the entrance. However, in the current density these ef-
fects, at the entrance, can be masked by totally reBected
modes. (ii) In addition to increasing the efFective length
of the constriction, the mechanism described above also
effectively smoothens the shape of the constriction (in
both ends), so as to reduce the probability for reflections.

(iii) In a sense, the mechanism under discussion plays a
role complementary to that of collimation. ' Collima-
tion is seen in constrictions with slowly increasing width.
so that adiabaticity leads to a transfer of energy from
the transverse to the longitudinal direction. The present
mechanism, in contrast, takes over when the widening
has become so rapid that adiabaticity breaks down, and
no further energy transfer (on average) takes place.

One direct consequence of the efI'ective lengthening of
the constriction is the sharpening of the conductance
steps of QPC's, as compared with the results of the global
(not to mention the local) adiabatic approximation. This
is demonstrated already in the results shown in Fig. 1.
A further consequence of the mechanism discussed mill

become apparent in Fig. 4 below«

C. A realistic +PC

Encouraged by the success of our numeric~, l scheme,
we now turn to calculations on a QPC with a georne-
try close to that used in the experiments by van Wees et
a/. After their initial report on quantization with this
type of QPC, a theoretical calculation was performed on
a similar structure by Tekman and Ciraci. Their results
for QPC's with sharp corners, similar to real QPC's as
defined lithographically, showed poor quantization. This
led van Wees et al. to conclude that the actual electro-
static potential that defines the QPC's is substantially
difFerent from the geometry of the lithographic gate.
Self-consistent, and smooth, electrostatic potentials have
been calculated by Kumar et al,. and by Nixon et al.
It is therefore of interest to see how far from the sharp
gate geometry one needs to go before quantization of the
conductance is achieved. We model the geometry of the
QPC by the following analytic form (shape 3):
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FIG. 3. The conductance of +PC s with realistic shapes. shown in the insets. In (a) W /WII = 5 and L/WII = 1. In (b)
W /WII = 23/3 and L/WII = 5/3.
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f(u;Q) = — . [exp(Qu) —coshQ].
2 sinh Q

The resulting geometry is shown in Fig. 3 for p = 0.7 and

Q = 1.3. Figure 3(a) shows the case when W /Wo ——5

and L/Wo ——1, whereas in Fig. 3(b) W /Wo ——(23/3)
and L/Wo ——5/3. The latter gives a slightly better quan-
tization of the conductance. This can be understood in
terms of the smoothness parameter, Ic = x /2R/W(),
which is larger in case (b), due to the smaller Wo. The ge-

ometry of Fig. 3(b) is probably the one closest to the real
device. Our results show that for both cases, exact cal-
culations give good quantization, whereas the steps are
considerably more smeared out according to the global
adiabatic approximation.

D. Resonance efFects in +PC's

A number of calculations on /PC's show resonant be-
havior in the conductance, due to backscattering at the
exit and the entrance of the constriction. 9 The rele-
vance of these calculations has been questioned ' since
they use unrealistic constriction geometries with sharp
corners that greatly enhance the probability for reBec-
tion. With our powerful numerical scheme, we are in a
position to check the extent to which resonances occur
in smoothly varying geometries. We have considered two
cases.

First, we consider /PC's with a finite region (length
Lp) of constant width Wp in the middle. The two con-

necting regions, each of length AL, are of shape 2, as
defined by Eq. (8), with L m /t. L and with P = 2. With
W /Wp ——6 and small connection lengths, DL/Wo ——

3/8, as used in Fig. 4(a), oscillations are prominent. For
completeness, we have again included the diagonal ap-
proximation, which is clearly misleading here. Both the
global adiabatic approximation and the exact calcula-
tions yield pronounced oscillations. It is interesting to
note that the oscillations of the exact results have higher
frequencies and lower amplitudes than those of the global
adiabatic approximation. This can be understood on the
basis of the qualitative picture given in Sec. IIIB. The
increase of the effective length of the constriction, not
seen in the global adiabatic approximation, is responsible
for the higher frequency of the exact oscillations. Simi-
larly, the effectively smoothened connections between the
constriction and the external 2DEG reduce the reBec-
tion probabilities, with smaller oscillation amplitudes as
a result. We have tested this interpretation by calcu-
lating the conductance with the same parameters as in
Fig. 5(a), except that Lo is increased by a factor 3. As
expected, the &equencies of the oscillations according to
the exact and adiabatic results are now much closer to
one another, whereas the ratio of their amplitudes is es-
sentially unaffected.

The much longer connection length, EL/Wp ——5, used
in Fig. 4(b), dampens the oscillations considerably. In
agreement with our qualitative picture [W'(2:) + 1 here],
the difference between the global adiabatic approxima-
tion and the exact results for the conductance is hardly
noticeable with such smooth connections, in spite of the
fact that mode mixing is considerable. It is more surpris-
ing that oscillations are at all present in this case.

Against the case studied above, one could argue that
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FIG. 4. Resonance effects in +PC's. The 6gure shows the conductance of two /PC's according to exact results and
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(b) the connection regions are considerably longer, with b L/Wp ——5.
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FIG. 5. Resonance effects in /PC's. The figure shows the
conductance for three /PC's with different shapes, all of them
continuous. For all three constrictions, W /Wo ——6 and
I /Wo = 5/2. The maximum of W'(z) increases with increas-
ing P, thereby enhancing the probability for re6ection.

QPC's with entirely straight segments are unrealistic
and, furthermore, that this model forces the second
derivative of W(z) to jurnp at the ends of the straight
segment, even though the first derivative is continuous.
As our second case we have therefore also looked for reso-
nances in QPC's with completely continuous geometries.
Figure 5 shows exact results for QPC's of shape 2, given
by Eq. (8) (with no straight part inserted), for three dif-
ferent values of the exponent P. We have chosen param-
eters such that W /Wo = 6 and I/Wo ——2.5. Whereas
no oscillations occur for P = 2, they are clearly visi-
ble, if not exactly prominent, for P = 3 and P = 4.
This demonstrates that resonances can indeed result &om
rapidly changing, but completely continuous geometries.
Whether experimentally observed resonances should be
explained by this mechanism is quite another matter. Im-
purity scattering is a more likely candidate.

are e6ectively longer and smoother than given by their
geometry alone. The result is a sharpening of the con-
ductance steps. The most convincing evidence for the
correctness of this qualitative picture is provided by the
frequency and amplitude of the oscillations shown in Fig.
4(a)

Even though the global adiabatic approximation in
many cases correctly predicts the conductance of sin-
gle QPC's, its basic flaw, associated with the neglect
of all intermode scattering, becomes apparent in more
complex situations. The simplest example is transport
through two QPC's in series. With intermode scatter-
ing neglected, the adiabatic approximation predicts neg-
ligible reBection by the second QPC, once the first one
has been passed. In reality, intermode scattering leads
to substantial reflection, also by the second QPC. For
similar reasons, the adiabatic approximation fails in the
presence of impurities, as convincingly demonstrated hy
Nixon et at. and Laughton et a/. ' With impurities,
both intermode scattering and a correct treatment of
phase relationships are essential for a realistic calcula-
tion of the conductance (with or without resonances).
All these comments apply to the case of zero (or weak)
magnetic field. Glazman and Jonson22 have shown how
the global adiabatic approximation becomes valid, in the
sense that mode mixing becomes negligible, in sufBciently
strong fields. Temperature effects will smear out oscilla-
tions both in exact and adiabatic calculations, and the
experimentally observed simple steps in the conductance
of QPC is presumably partly due to temperature smear-
ing of fine oscillatory details.
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APPENDIX A

IV. CONCLUDING REMARKS

In this paper we have studied the inHuence of geom-
etry on linear transport through QPC's. By combining
two standard techniques in the field, we constructed a
numerical scheme sufBciently powerful and fiexible that
approximations commonly used could be tested against
"exact" numerical results for a number of QPC geome-
tries. Our calculations confirm that the diagonal ap-
proximation can produce a qualitatively wrong result
and is, therefore, not to be trusted. The local adia-
batic approximation is of limited value as a basis for ex-
plaining the observed conductance steps in single QPC's.
However, the global adiabatic approximation is remark-
ably good in its predictions of the conductance of a sin-

gle QPC. Nevertheless, even for single QPC's, with suf-

ficiently rapidly changing width, this approximation un-

derestimates the sharpness of conductance steps. The
reason for this has been pinpointed: The coupling be-
tween inner and outer modes leads to constrictions that

The transverse continuum Schrodinger equation was
given in (4). We now discretize the z axis, x = ma, with
a the lattice constant, and write the total wave function
in ket notation,

~(*- ~) = ).~-(*-)l™). (Al)

HTB = ) la, m)(e + 2)(u, ml

—) t ~ +, lcm', m)(P, m+ ll
~,P,rn

+~ ~+, l~, m+ l)(P, ml, (A2)

To each point m on the x chain is associated the energy
eigenstate n = 1,2, 3, ... . The Hamiltonian, of the tight
binding type, acting on the states of this chain reads
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with

2m*a2 E(x) (A3)

and

+~
—— * y;z~ p y;x~+z dy. (A4)

The corresponding Schrodinger equation is

H~~C =~4,
with e = (2m'a2/hz) E. It is straightforward to check, by
Taylor expansion to second order in a, that (A5) in the
continu»m lixnit, a ~ 0, reduces to the set of equations
(3)—(6). Note that the tight binding Hamiltonian (A2)
has only nearest neighbor couplings in the x direction.
In the energy "direction, " however, all "sites" o. are, in
principle, coupled to all "sites" P on the neighboring z
slice, according to (A4). Symmetry can, of course, reduce

the number of nonzero couplings.
In principle, the number of transverse eigenstates is

infinite. However, for a realistic Fermi energy, a numeri-
cal scheme based on truncation after a few modes beyond
the M„modes propagating in the widest part of the given
structure rapidly converges. Typically, depending on the
circumstances, one needs to include no more than five
evanescent modes. This xneans that for many problems
of interest, one has M & 20, and the dimension, M x M,
of matrices to be repeatedly inverted is easily handled,
when transport along the z chain is calculated by the re-
cursive Green function technique. A direct application of
this technique to the discretized zy plane requires much
larger matrices. The price one has to pay in this context,
using our hybrid method, is associated with the fact that
t +& couple "all" states, a. This price is essentially
negligible.

Generalization to the case with nonzero magnetic field
is immediate, accomplished by using the Peierls substi-
tution when the overlap integrals (A4) are calculated.
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