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Acoustic phonon scattering of electrons and excitons in fully quantized systems based on
GaAsjGa Ali As quantum wells is studied theoretically. We coinpare spatial quantization by
lateral potentials (quantum dots) with Landau quantization by a magnetic field. In the Born ap-
proximation, the rate of electron scattering from the first, excited state to the ground state of a
parabolic quantum dot is one-half of the corresponding transition rate between Landau levels. When
an increasing magnetic field is applied to a dot of sizable lateral confinement, the scattering rate
first increases strongly, then exhibits pronounced oscillations, and finally decreases at high fields.
Exciton relaxation by phonon emission is enhanced by a magnetic field in this system. The relax-
ation dynamics of quantum dot excitons strongly divers from that of magnetoexcitons in quantum
wells.

I. INTRODUCTION

The characteristic electronic structure of crystals con-
sists of energy bands with a quasicontinuous spectrum
seperated by energy gaps. Deviations kom the periodic-
ity caused by defects or impurities may lead to discrete,
electronic states within the gaps of the bulk band struc-
ture. Artificial structures on the other hand, allow us
to transform the energy bands of the solid into a ladder
of discrete levels in a controlled way, at least in prin-
ciple. Examples of this kind of quasi-zero-dimensional
(OD) systems are quantum dots defined by imposing lat-
eral confinement in the 2D plane of semiconductor quan-
tum wells either directly during epitaxial growth or sub-
sequently by a lateral patterning technique. In an al-
ternative way, complete quantization can be obtained by
applying a magnetic field perpendicular to the 2D plane
of the quantum well (Landau quantization).

The interaction between electronic states and lattice
vibrations in low-dimensional semiconducor structures
has been widely studied. In quantum dots, where com-
plete spatial confinement induces a discrete energy spec-
trum, electron-phonon scattering is strongly modified
with respect to systems of higher diinensionality. Scat-
tering by longitudinal optical (LO) phonons, which in
III-V compounds represent the dominant mechanism of
thermalization between electronic states and the lattice,
is possible only when the energy separation between ini-
tial and final state is of the order of the LO-phonon en-
ergy, which, in general, is difficult to achieve in a quan-
tum dot. Longitudinal acoustic- (LA-) phonon scattering
becomes inefficient when the splitting between the OD
levels exceeds a threshold value depending on the small-
est dimension of the structure (typically some meV for
quantum dots fabricated from quantum wells). Benisty
et al. have pointed out that the resulting slow relaxation
of excited electrons down into the ground state can give

rise to an intrinsic limitation of the biminescence effi-
ciency of OD semiconductor structures. 4 It is, however,
difBcult to suppress efficient relaxation of excited carri-
ers, in general, since there are a number of possible re-
laxation mechanisms. Recently, the importance of two-
phonon scattering, of Auger processes, and of excitonic
effects have been studied theoretically. Indications for a
slowed energy relaxation have been observed in photolu-
minescence experiments on single GaAs quantum dots. s

The other limiting case, scattering between purely Lan-
dau quantized states, has been discussed, ~ in particu-
lar, in the context of the breakdown of the quantum Hall
effect.

In the present paper, we compare the effect of com-
plete spatial quantization on electron and exciton relax-
ation with the one of Landau quantization. The outline
is as follows. In Sec. IIA we introduce the energies and
wave functions of electrons in a parabolic quantum dot
in magnetic field. In Sec. IIB results on electron-LA-
phonon scattering are presented, including a discussion of
the gradual transition &om spatial quantization to Lan-
dau quantization. The exciton case is treated in Sec. III.
Section IV contains the conclusions.

II. ELECTRONS IN PARABOLIC DOTS
AND MAGNETIC FIELD

A. Energies and wave functions

We consider structures based on GaAs/Gao rAlq sAs
quantum wells. An envelope function description of the
electronic states in a one band effective mass approxima-
tion is employed. It is assumed that the confinement by
the quantum well grown along the z axis is much stronger
than the lateral confinement. This facilitates the prob-
lem since the effective-mass Hamiltonian can, to a good
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approximation, be written as

The lateral motion is decoupled &om the one along z and
the envelope functions separate g(r) = P(r )y(z) (arrows
indicate 2D vectors defined in the xy-plane, boldface 3D
vectors). The z-dependent part y is an eigenfunction of
the quantum well Hamiltonian,

with the vertical axis A = 1. At A=O, the degeneracy
is equal to e, while at %=1 we obtain the well known,
macroscopic degeneracy of Landau levels. Figure 1 is
limited to states of angular momentum / & 10, otherwise
there would be an infinite number of lines (for an infinite
sample area) of increasing slope arising from each of the
levels at A = 1. Between the two limiting cases, there are
many level crossings. Following the state (n = 0, l = —1).
an example which is used in Sec. IIB, crossings with
states of (n = 0, l ) 0) occur at A = (l —1)/(l + 1).

V, is the ofFset between the band edges of the well and
the barrier (8 is the Heavyside function) and m*(z) the
z-dependent effective mass. Throughout the paper, we
assume carriers in the ground state of the quantum well
of width L, .

Along the lateral directions, we consider the Hamilto-
nian

(& —&&)'
H y

—— + —moor
2m 2

where we have used the symmetrical gauge A

( —y, z)B/2 to relate the vector potential to a magnetic
field B applied along the z axis. An r"-independent lat-
eral effective mass m = m*(z = 0) is assumed and the
electron charge Q = —e is introduced. Lateral spatial
confinement is modeled by a parabolic potential with ro-
tational symmetry in the zy plane. H~„ is the Hamilto-
nian of a 2D harmonic oscillator in a perpendicular mag-
netic field which has an analytical solution. The wave
functions, parametrized by the radial quantum num-
ber n (0,1,2, . . . ,) and the angular quantum number l

(0, +1,+2, . . . ,), are

(4)

The lateral position vector is expressed in polar coor-
dinates as r = pn (cosrp, sing) with u, = eB/m, ~ =
g~p2+~2/4, and n = /5/(m~). The Laguerre poly-
nomials L are defined in accordance with Ref. 15. The
corresponding energy spectrum is given by

(5)

It is convenient to introduce the dimensionless quantities
A = ~,/(2~) and e = E i/(her) to discuss the gradual
transition from pure spatial quantization ((up ) 0, u
0, A = 0) to pure Landau quantization (up ——O, u,
0, A = 1). Equation (5) transforms into

(6)

In this representation the energy spectrum consists of a
set of straight lines, shown in Fig. 1. Each state P„ i

corresponds to one line with a slope given by —t. For
l & 0, the quantum number n determines the intersection

B. Electron scattering by LA phonons

In this section, scattering between the discrete electron
states is considered. We study the interaction with bulk
phonons of the well material. The presence of heteroin-
terfaces along the growth direction and eventually along
lateral directions is neglected as far as the phonon modes
are concerned. Roughly speaking, this is based on the
fact that the lattice ions are much heavier than the elec-
trons and, therefore, quantum confinement energies of
phonons are weak compared to electron ones~ . The bulk
phonon approximation is expected to work well for low-
dimensional systems that are embedded pseudomorphi-
cally in a semiconductor matrix which act as a barrier for
the electronic states but exhibit similar lattice properties
as the well, wire or dot material itself. The bulk optical
phonon dispersions of GaAs and A1As do not overlap in
energy which leads to the presence of confined and inter-
face modes for the optical phonons in GaAs/Ga Ali As
heterostructures. Nevertheless, recent calculations of the
electron-optical phonon interaction based on a micro-
scopic description of the phonons show that the assump-
tion of unmodified bulk phonon modes provides reason-
able results for the total scattering rates in GaAs/AlAs
quantum wells and wires ' . Acoustic modes are much
less afFected since the acoustic branches overlap in energy
leading to phonon modes which are propagative through-
out the structure and therefore remain bulklike. Some
OD structures are fabricated by etching through a quan-
tum well, thus exhibiting free surfaces. But as these
structures are quite big (typically several hundreds of
angstroms) compared to the lattice unit cell the electron-
I A-phonon scattering is again well described within the
bulk phonon approximation. The situation is different in
II-VI semiconductor microcrystals. There a large por-
tion of the atoms are related to the crystal surface and,
therefore, all phonon modes and the electron-phonon cou-
pling can be significantly different as compared to the
bulk.

Energy conservation requires that the interacting
phonon corresponds to the energy separation of the initial
and final electron states. LO-phonon scattering is widely
suppressed in OD structures, due to the discrete electronic
energy spectrum together with the small LO-phonon en-

ergy range. We, therefore, consider the interaction with
longitudinal acoustic (LA) phonons. Phonon scattering
rates are calculated from the Fermi golden rule,
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where the interaction operator TV, in terms of the
electron-phonon formfactor A(q), is given by

( + lll)'(n'+ ll'I)'

x dzxi'i+i' + e
0

x LIMNI (x2) LI I (~2) Ji ii (Q—x) . (13)

Substitution of Eqs. (8)—(13) into Eq. (7) gives

W = A(q)e+'~' (8)

The upper (lower) case accounts for emission (absorp-
tion) of phonons by an electron in the initial state g;.
The sum extends over all phonon wave vectors q. It is
assumed that the initial (final) electron state is occupied
(unoccupied). The thermal occupation of phonons of en-

ergy Eq at the lattice temperature Ti is given by the
Bose-Einstein distribution n~. The coupling of electrons
to I A phonons by means of a deformation potential D is
described by

A, Lg(q) = D,
2pc~

(@, e'~' gf) = f „(q)F,(q,I,/2) . (10)

For an infinite barrier (V, -+ oo) quantum well holds:22

sinz ( 1

z ( 1 —x2/vr2 )I

~

assuming an isotropic phonon dispersion ~q — czq.
We use the GaAs parameters p = 5300 kg/ms, c,
3700 m/s and D = 8.6 eV. Piezoelectric coupling to
acoustic phonons exists in the present system, but is
found to be an order of magnitude weaker than the de-
formation potential interaction in experiments on 2D
GaAs/Ga Ali As structures. 20'2i The Hamiltonian of
the piezoelectric interaction is of the form Eq. (8), with
a difFerent formfactor A. Qualitatively, the results for de-
formation potential interaction also apply to piezoelectric
coupling since the important part is the harmonic expo-
nential. For the electron states given above, the relevant
matrix element is

n~ (hc, qo, Ti) + —+—

x F, (qocos8L, /2),

d8 sin 8 G (otqs sin 0, n;, l;, n f lf)

(14)

G2 exhibits a maximum at Q = i/2(P + 1).
In Figs. 2—5, we present numerical results for elec-

trons in OD systems based on GaAs/Gas qAls sAs quan-
tum wells. At B=O, the rates of scattering &om initial

where qo ——IE; —Eyl//(hc, ). Equation (14) describes LA-

phonon scattering of electrons in the presence of spatial
lateral confinement and (or) magnetic field. For a given
transition i ~ f, the ratio of the lateral confinement
length n and the phonon wavelength A~ = 2z'/qs deter-
mines the lateral matrixelement G and the product qoL,
governs I', . To illustrate the essential features contained
in Eq. (14), we discuss two examples: (1) scattering
from the (n = 0, l = 1) state and (2) scattering from
the (n = 0, l = —1) state, both at zero temperature. At
A = 0, these initial states are degenerate and correspond
to the first excited quantum dot level (e = 2 in Fig. 1).
As magnetic field increases initial state 1 evolves towards
the lowest Landau level [from (A, e)=(0,2) -+ (1,1) in Fig.
1]. State 2 goes to the first excited Landau level [(0,2)
—+ (1,3)], through many level crossing as mentioned in
Sec. IIA. For these transitions, the lateral matrix ele-
ments can be expressed in closed form

( ~ i'+1

G(Q, O, —1, 0, l') = l'! '
I

——
l

e ~
2)

This expression shows that the squared matrix element
strongly decreases for q, ) 27r/L, This refiec. ts a
general feature of electron-phonon interaction: Cou-
pling is weak when along a given direction the phonon
wavelength is small compared to the spatial variation
of the electron wave function. In the numerical cal-
culations we use, instead of Eq. (11), an expression
which takes the finite-barrier height into account. The
phonon wave vector written in spherical coordinates q =
q(cos &psin6, sin @sin 8, cos v9), it follows for the lateral
matrixelement:

f „(q) = (n, l e'~'" n', l')

= e' ~+ i l G(o.q sin 8, n, l, n', l'), (12)

0.0 0.2 0.4 0.6 0.8 1.0

with
FIG. 1. Single-particle energy spectrum according to Eq.

(6).
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state 1 and 2 are equal, since the states are degenerate
and G2(Q, 0, 1, 0, 0)= G (Q, O, —1,0, 0). Due to energy
conservation all emitted LA phonons have the same en-
ergy Eq ——Ruo. Figure 2 shows that in a parabolic quan-
tum dot the scattering rate first increases with lateral
confinement, passes a maximum, and strongly decreases
for large uo. The increase at small ~o is caused by the
q dependence of the deformation potential form factor
[Eq. (9)]. For large ao the phonon wavelength becomes
smaller than the smallest dimension of the quantum dot
(Aq ( I ) and the scattering rate decreases by orders of
magnitude. The same behavior has been found for quan-
tum dots with square shaped lateral potentials of infinite
barrier height. s' The mean angle (8) of the emitted LA
phonons (right axis) is obtained by multiplying the in-
tegrand of Eq. (14) by tl and dividing the final result
by 7; &. Starting from a value of 7/6 at small phonon
energy, the mean angle continuously decreases with in-
creasing ~o. The small energy limit of (tl) depends on
the quantum numbers of the initial and final states, but
not on the dot dimensions. This follows directly from a
development of F, and G for small arguments. For large
~o, the phonon emission is highly anisotropic. It is ori-
ented along the direction of strongest confinement, here
the quantum well growth axis z.

A fundamental difference between spatial and Landau
quantization is the macroscopic degeneracy of the Lan-
dau levels (the number of states per Landau level is pro-
portional to the sample area). Elastic as well as inelastic
scattering mechanisms lead to a Landau level broadening
and a mixing of the degenerate eigenstates. To calculate
scattering rates in this system, one has to take into ac-
count the broadening e8'ects self-consistently. Elastic
scattering (e.g. , interface roughness and impurity scat-
tering) strongly contribute to the broadening of Landau
levels, in particular in narrow quantum wells, and thus
have to be included in a self-consistent calculation. As
a consequence, the scattering rates are sample depen-

w 6

(n, l) =(0, —1 )

O

0.8
E3
Z:

O-4 v)
O

{/)

2

W~, (mev)

FIG. 2. Rate i and mean phonon emission angle (8) for
scattering from the first excited electron state of a quantum
dot, as a function of the lateral confinement. According to
Eq. (16) the curves also apply to scattering between Landau
levels. GaAs/Gao qAle iAs, L, = 3 nm, Tr = 0.

dent. In this work, we consider scattering between states
whose energy diAerence is large compared to the Landau
level broadening. In this limit the details of the elas-
tic scattering mechanisms which are diKcult to quantify
should be less important. The hope is that the scattering
rates, calculated between unperturbed eigenstates in the
Born approximation, still contain the essential physical
features of the full, much more complex problem.

At A = 1 an electron in initial state 2 has a macro-
scopically degenerate final state available at lower eu-

ergy, while at A =- 0 there is only the nondegeiierate
quantum dot ground state. We now show that the to-
tal scattering rate from the state in the first excited
Landau level is simply related to the case of pure spa-
tial confinement. Let us compare A=O and 1 for the
same energy difference between the first excited and the
ground state (~o ——ur, ). It follows qo = qo and(A=1 } (A=O)

ri "=') = i/2n("=o). Therefore, the di8'erences in Eq.
(14) amount to the use of P G (i/2Q, 0, —1, 0, 1') instead
of G2 (Q, 0, —1,0, 0). From Eq. (15) follows

OG OC& 2l '+2

) G'(ir2Q, O, -I, O, t') = ) I'!-'
~

2
2Q e

—Q/2

= 2G'(Q, O, —1, 0, 0) .

This shows that the scattering rate between the Landau
states is twice the one between the quantum dot lev-
els. The angle distribution of the emitted phonons is the
same. We should keep in mind that the factor of 2 cor-
respondance between the scattering rates is derived only
for the initial state (n = 0, / = —1) and not for the other
degenerate states belonging to the first excited Landau
level.

In Fig. 3, we present the B-field dependence of the rate
and the mean emission angle for scattering from initial
state 1. The phonon energy E~, given in the upper hori-
zontal scale, decreases homogeneously with increasing B,
most strongly for ~, ( ~o (below 2 T). The peak in 7.

near 5 T reflects the maximum in the lateral matrixele-
ment G. At higher fields, the scattering rate decreases
and (tl) approaches the small energy limit 7/6 of this
transition. The results presented in Figs. 2 and 3 are
easily generalized to finite temperatures. Since all inter-
acting phonons have the same energy, we just need to
multiply the total scattering rate by the phonon occupa-
tion number given by the square bracket in Eq. (14).

Results for scattering from initial state 2 are given in
Fig. 4 (hero ——2 meV) and Fig. 5 (Ruo = 6 rneV). A sum
over all available final states has been performed. Scat-
tering rate 7', mean phonon energy (Ev) and emission
angle (8) show pronounced magnetic field oscillations.
This is caused by the level crossings of the initial state
discussed above. Each time a new final state becomes
available, 7 and (tl) exhibit a, peak while (E~) shows
a sudden decrease. The oscillations are damped with in-
creasing B since the angular momentum quantum num-
bers of the initial and final states become increasingly
diferent.



5Q

2 1 p 5
q (fTl ev)

o.2 0.12

HON &&RING gE~yEEN ZERO -DIMENSIONAL . . 17 g7g

20
I

C)
'1 5

LLJ

CL
10

4J
5

0

1-2

O0
— 0.8—

LIJ

(3
Z'

- 0.4—

LIJ

0

O.B .
/

C) 04
V)

LJJ

O. p

10
B (T)

15
O. p

20

o
O

4J 0
C3

o 0
CA

LJJ

O.p

Rat
ering from th

mean emis

turn

e (n =
O»e&on ang]e

Indotaeaf
~~ = j) e)eI

( ) foreeaI

unction of m
ron state o

~ —3nm, zi=O
per scale.

A

LJ
V

0
I

M

C)
3p

LLJ

2p

Z'

10Q

I—

C3
0 J

0

B (T)

12

Conclu
teracti

section
n» to a ]ar

' electron Z,p

y ee lengths'
e ermined b

atera

A — l th l tt
g

St o
A 1 't}1i o. and (or) L, .

F~G. 5. A, Fyg 4 for

A 4
V

0
I 20

15
I—

CL 10
z

(3
u) 0

0

III. QUANTUM DOTIII. DOT EXCITONS
NETOEXCITONS

eV

6

FIG. 4.. 4. Scatterining rate 7 m
ean emission an

e GaA /Gs ao yAlp 3As L) Q 3

Similar to th
struct th

e elect

l bb

a ove, we con-

system. H
f t e quantum w

n uction and

cavy-hole —li
um well underl i

—gIIt- e

bt thh

are l ent energies

a 1ons we res
G A

e numeri-

q ntum well La s ua
e ves tos st

ons in GaAs u
~ =3nm.

on

s quantum wells of w e nms u e s of width above 10 nm



17 276 U. BOCKEI,MANN

it has been shown that hh-lh mixing is important. To
describe the exciton motion in the xy plane, we consider
the Hamiltonian:

s ee
4

H = H, + IIh + H;„,. (17)

H,nt(~~. —rh~) =—2vre2 ) .f, (q), -.(„- „-„)
K

(18)

H, and Hh are given by Eq. (3) with the appropriate
parameters for electrons and heavy holes. The parabolic
lateral potentials (1/2 m, w 2o,r,2 and 1/2mhwo2 hrh2) con-
Bne electron and hole at the same spatial position. We
neglect the spin splitting in the conduction and valence
band. The Coulomb interaction is described by

C e

;=0
—T-'=10'Qs '

10 15

with the form factor

&*(r)=f& fd' ' 'ir(* )i*ir ()i

@en(re&rh) Xe(ze)Xh(zh) ) cl, , n), ,l,n
~e,~h, ~e

X&:.,l. (& )&."„,, l. (rh) (19)

The envelope functions y, and gg are the electron- and
heavy-hole ground state wave functions of the quantum
well [Eq. 2]. A spatially constant, static dielectric fun-
tion K = 4vreoe, (e, = 12.9) is used. The electron-hole
exchange interaction is neglected. For spherical quantum
dots, the effect of dielectric confinement and the exchange
interaction has been discussed by Takagahara. We use
the following expansion of the exciton envelope function:

H =H, +H„)+H;„,

+ —Mu)p, B,

H«l = —+ —p, (ufo „l+ ur, „l/4) r,
1

Hint(r) + 'Y~c, rel~reli

Hmix =~cc.m. ~ & P + p pz

H,

E (T)
FIG. 6. Magnetic 6eld dispersion of the lowest excitons of

zero-angular momentum j for a quantum dot with )kuQ, —6

meV; Tuuo, h = 4.7 meV based on a GaAs/Gao. rAlo. 3As well

of width L, = 3 nm. The horizontal bars give the rate of
radiative recombination (the length corresponding to 10 s

is indicated). The three framed branches refer to Fig. 9.

The analytical basis functions P are given by Eq. (4).
Due to the rotational symmetry around the z axis, the
total angular momentum j = l, + lh is a good quantum
number and the development is restricted to n„nh, and
l, . The Hamiltonian H is numerically diagonalized after
an expansion on the basis Eq. (19).

In Fig. 6, the energies of the lowest j = 0 exciton
states are presented as a function of magnetic Geld. Only
excitons with j = 0 can decay radiatively by an allowed
interband transition. The radiative decay rate, given by
the horizontal bars, is calculated from the exciton wave
function using Eq. (4) of Ref. 7. The energies of the low-
est nonradiative (j g 0) exciton states are presented in
Figs. 7,8. The exciton binding energy (ge„~ —H;„t~pe„)
increases with magnetic Beld, similar to the case of quan-
tum well excitons. The binding energy of the ground
state exciton, for instance, goes &om 13.2 meV at zero
Geld to 18 meV at 15 T.

The expansion in terms of single-particle solutions has
been employed in most theoretical studies of excitons in
semiconductor quantum dots. ~ It converges rapidly
only for strong lateral confinement. For Figs. 6—9, we

have used the 300 lowest energy basis states for each
value of j. In this regime of weak lateral confinement the
basis states are strongly mixed by the Coulomb interac-
tion term H;„&. An alternative way consists of rewrit-
ing H in terms of center of mass (c.m. ) and relative
coordinates:

C3
rx 10—
LLJ

20

15
E

10
C3
CL

z
LLJ

0

PIG. 7. Magnetic Beld dispersion of the nonradiative exci-
tons (j ) 0) for the quantum dot of Fig. 6.
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FIG. 8. Magnetic Beld dispersion of the nonradiative exci-
tons (j ( 0) for the quantum dot of Fig. 6.

the Coulomb potential and an angular momentum term.
The latter decouples since it only acts on the angle of
r. Equation (20) suggests an expansion on a set of
functions depending separately on R and r. This ap-
proach indeed exhibits a faster convergency for weak lat-
eral confinement. However, the r dependent basis
functions are not analytical. This would be an impor-
tant disadvantage in the present work, where the exciton
wave functions are used to calculate the phonon scatter-
ing rates. We can give a rough assignment of the en-

ergy branches of Figs. 6—8 to a set of quantum numbers

(n, , l, , n„i, l„i), always bearing in mind the mixing
due to the term H . For the angular momentuzn quan-
tum number holds: j = l, + lg ——l, + l„~. In this
approximate way, the two lowest j = 0 branches corre-
spond to (0,0,0,0) and (1,0,0,0) for all B, while the third
branch evolves from (0,0,1,0) at zero Bto (-2,0,0,0) at
high fields. For j g 0 the lowest branch corresponds
to (O,j,0,0). The magnetic field dispersion mainly arises
&om the magnetic Geld dependence of H, ~. K;„is re-
sponsible for the anticrossings.

We now turn to scattering between the discrete ex-
citon levels. As in the electron case, we consider the
deformation potential interaction with bulk LA phonons
in the Born approximation. The rate of scattering be-
tween a pair of exciton states is calculated from Eq. (7)
where for g; and gy excitonic wave functions are intro-
duced. Neglecting the nondiagonal terms in the valence
band Harniltonian, the operator for the heavy-hole exci-
ton LA-phonon interaction,

100

I

rn 80
C)

w 60
I—

40

20

0
0

I

10

FIG. 9. Exciton-I. A-phonon scattering rates in a quantum
dot at zero temperature. The three curves correspond to the
radiative initital states indicated in Fig. 6. The lines bet+seen
the symbols are guides to the eye.

R = (m, r, + mars)/M is the c.m. position vector (with
conjugate momentum P) and r = r, rs the—relative
position vector (momentum p). M = m, + ms, p, =
m, mi, /M, p = (ma —m, )/M, ~, , = eB/M, ~o „i ——

(mago, e + meMo, i )/M~ vc, rei = eB/p& Lrei = (r x p)
H, represents a harmonic oscillator with an angu-
lar frequency given by ~o2, ——(m, uro2, + ma~o2 i„)/M.
It is independent of magnetic field. H„~ depends on
the lateral potential and magnetic field and contains

lj2
W=

/ /

De'~"
E 2pdce )

1 + m (q + qil)+ +m-
q2 q2

(21)

is the sum of the electron operator Eq. (8) and a hole
operator which depends on the direction of propagation
of the phonon. For the valence band deformation poten-
tials, we use l = 2.7 eV and m = 8.7 eV. Comparing Eqs.
(18) with Eq. (21) we observe that the matrix elements
of both H~„q and W are of the form given in Eq. (12),
namely, harmonic exponentials in between single-particle
harmonic oscillator functions. This is used in the numeri-
cal calculations. We calculate both matrix elements from
a table of G(Q, n, l, n', l') .

Figure 9 shows the magnetic field dependence of the
exciton-phonon scattering rates v for three different
radiative excitons. The quantity 7 is the sum over
the transition rates to all exciton states of energy below
the initial state. This includes radiative as well as non-
radiative excitons, there is no general selection rule. The
scattering rates of the first excited radiative branch (tri-
angles), for example, are doininated by transitions into
states ofj = +1. For all three initial states, w increases
with B. The reason for this increase is twofold. First, the
magnetic field leads to a compression of the exciton wave
function in the lateral directions and with that higher
Fourier components become available to phonon scatter-
ing. Second, the energy separations between the initial



exciton states and the relevant final states decrease with
increasing B. The pronounced oscillations of v. for the
two higher initial states are caused by variations in en-

ergy and wave function related to the anticrossing of the
exciton states.

The magnetic field can accelerate exciton relaxation in
quantum dots. This is an interesting result, in particu-
lar with respect to the magnetoptical properties. A rate
equation analysis based on calculated exciton lifetimes
shows that for the quantum dot discussed above excited
state transitions are expected in luminescence at zero B,
even at low excitation intensity. This is in agreement
with microscopic luminescence measurements on single
quantum dots, where strong transitions blueshifted from
the ground state have been observed. From the present
work we expect that luminescence arising Rom excited
state transitions decreases in intensity compared to the
ground state as a magnetic Geld is applied.

Let us finally consider the limit of zero lateral con-
Gnement, namely, the case of 2D magneto excitons. Is
exciton relaxation between Landau levels similar to re-
laxation between the discrete states of quantum dots?
For electrons there are similarites as shown in Sec. IIB
[Eq. (16)]. We have seen that a discrete electronic en-

ergy spectrum leads to a strong decrease in the electron-
LA-phonon scattering rate w when the level separation
exceeds a threshold depending on the smallest dot di-
mension. This also holds for excitons. On the other
hand, the energy spectrum of magnetoexcitons in 2D
systems is continuous. This directly follows from Eq.
(20), where the c.m. motion of the exciton is free for

~0, ——~oh ——0. This means that excitons can relax

efhciently in small steps through the continuum of non-
radiative states, even if the separation between the radia-

tive levels (in the dipole approximation the states with
zero c.m. momentum P) is large. The relaxation dynam-
ics of excitons in purely Landau quantized systems is,
therefore, di8'erent from the one in quantum dots.

IV. CONCLUSIONS

A theoretical study of electron-LA-phonon and
exciton-LA-phonon scattering in fully quantized systems
has been presented. In the Born approximation, we ob-
tain comparable rates for electron scattering between
states obtained by pure spatial quantization and by pure
Landau quantization. Nevertheless, the two types of con-
finement are not equivalent. Starting from a dot with
sizeable spatial quantization, increasing spatial confine-
ment leads to a decreasing electron-phonon scattering
rate, while an increasing magnetic Geld causes an increase
in w followed by pronounced oscillations. In the same
system, exciton relaxation by phonon emission become
more eKcient when a magnetic Geld is applied. For the
exciton relaxation dynamics, spatial quantization is fun-

damentally diferent from pure Landau quantization.
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