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The collective plasmon excitation spectrum of a one-dimensional electron gas con6ned in a GaAs
quantum wire is calculated within the two-subband random-phase approximation. We calculate the
collective-charge-density-excitation (CDE) dispersion assuming that both the ground and the first
excited subband states are occupied by electrons. We 6nd four different branches of CDE modes,
two of which are intrasubband CDE's and the other two intersubband CDE's. The mode-coupling
effect between them is investigated by introducing a parity-breaking asymmetry in the con6nement
potential. Our calculated mode dispersion is in excellent quantitative agreement with a recent
inelastic-light-scattering experiment.

In an important recent experiment Goni et at. investi-
gated the one-dimensional plasmon dispersion in GaAs
quantum wire structures by using resonant inelastic-
light-scattering spectroscopy. In particular, the wave
vector dispersion of the collective-charge-density excita-
tion (CDE) modes in the one-dimensional (1D) electron
gas in GaAs quantum wires was obtained both for in-
trasubband and intersubband transitions. While the re-
ported experimental results for the collective mode dis-
persion are in reasonable agreement with the predic-
tions of an earlier strictly 1D theoretical calculation2
by Li and Das Sarma, there were a number of signif-
icant discrepancies and the experiment typically found
three or four collective CDE branches while the theory
at most predicts two (one for the intrasubband plasmon
and one for the intersubband plasmon). The purpose of
this paper is to report results of a theoretical calculation
of the elementary excitation dispersion in the quantum
wire samples of Ref. 1 by going beyond the extreme 1D
limit of single-subband occupancy and considering a two-
subband model, i.e., by assuming that the quantum wire
samples of Ref. 1 were, in fact, not in the extreme sin-
gle channel 1D quantum limit, but had two 1D subbands
occupied by carriers. The known experimental sample
parameters (electron density, wire width, etc.) of Ref. 1
are consistent with the 1D Fermi level Ey being in the
second confined subband, leading to two-subband occu-
pancy in the system. The important result of this paper
is to show that the two-subband model gives an excellent
quantitative description of the elementary CDE spectra
obtained in Ref. 1.

We use the random-phase approximation (RPA) for
our calculation of collective mode dispersion. As em-
phasized elsewhere, RPA is a very good approximation
for the collective mode dispersion in 1D quantum wire
structures by virtue of the essential vanishing of all ver-
tex corrections to the 1D polarizability function. The
RPA, therefore, gives essentially an exact result for the
collective mode dispersion in quantum wires. The collec-
tive CDE is given within the RPA by the determinantal

equation 2'5

det (equi (
= 0,

where

In Eqs. (1) and (2), e;si (q, io) is the wave vector (q) and
frequency (io) dependent dielectric function for the 1D
subband quantized system with i, j, t, and m as the 1D
subband indices and q as the 1D wave vector, v;si (q) is
the interelectron Coulomb interaction in the 1D subband
representation, 2 and Iii (q, io) is the 1D noninteracting
irreducible electron polarizability function (the so-called
"bare bubble" ).2 Equations (1) and (2) provide the col-
lective CDE dispersion for a multicomponent quantum
plasma with each subband. index (i, j, l, m, etc.) signi-

fying a different 1D channel or, equivalently, a different
quantized 1D plasma component.

If we restrict to a two-subband model, then each of the
subband indices (i, j, l, m) in Eqs. (1) and (2) can be ei-

ther 1 or 2 where 1 and 2, respectively, signify the ground
and the first excited quantum 1D subbands. For the two-

subband model, therefore, there are sixteen components
of the dielectric matrix e;si, and Eq. (1) reduces to a
4 x 4 determinantal equation which, when solved for u as
a function of q, yields the CDE dispersion io(q). Since the
determinantal equation is of the fourth rank, there can,
in general, be four different branches of CDE modes, each
with its own dispersion io(q). In the most general case
of two-subband occupancy this is precisely what hap-
pens, whereas in the one-subband occupancy case one
finds only two solutions for Eq. (1). We are, there-
fore, solving for the collective CDE mode spectra of a
two-component (i.e., two-subband) 1D quantum plasma.
If the one electron wave functions for 1D confinement
are parity eigenstates (as they would be for symmetric
confining potentials such as square well or parabolic con-
finement), then the off-diagonal elements of the Coulomb
matrix elements ( e.g. , viii2, v2iii& etc.) vanish by sym-
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eintra(qr ~) = (1 &11111111)(1 &22221I22)
2+~„„II„II„=0 (3)

and

&inter(q it ) = 1 &1212(1112+ 1121) (4)

where we suppress the (q, ~) dependence on the right-
hand side for the sake of brevity. Using the known ex-
pression for 1D polarizabilities it is easy to show that the
long wavelength behavior of the two intrasubband CDE
modes ur+t' implied by Eq. (3) are

~+'"(q i o) = 2qV r.(I+ 11) I »(aq) I'~' (5)

1+&~'""
(q -+ 0) = 2q 1+o.

(6)

where rI = y 1 —n, ct = E12/E~ & 1, and r,
4m'e2/erick~. In Eqs. (5) and (6), the wave vector q
is measured in units of the 1D Fermi wave vector k~ and
the frequencies ~ are measured in units of E~/h, (i.e.,

q i q/kF and lug m hu/E~), a is the effective linear
width of the 1D quantum wire (i.e., the confinement size),
Eq2 is the subband bottom energy difFerence between the
ground and the excited subbands, o. is the subband oc-
cupancy factor (with n & 1 signifying two-subband oc-
cupancy), and m* and e are the electron efFective mass
and the background lattice dielectric constant, respec-
tively. In the extreme quantum limit, when o, approaches
unity and g ~ 0, we get the following results in the one
subband occupancy case:

(u+" (q m 0)
~ 1

——2q~r.
~
ln(aq) ~'~, (7a)

~'"'"(q ~ 0) I-=i = 2q (7b)

Note that in this limit of one-subband occupancy we re-
cover the known results; u'" ' becomes the usual 1D

metry, leading to an exact separation between intasub-
band and intersubband elementary excitations. Thus,
there is no mode-coupling eKect between intrasubband
and intersubband CDE plasmons for symmetric confine-
ment potentials. For parity violating asymmetric confine-
ment potentials there would be mode-coupling efFects,
particularly at finite wave vectors where the intrasub-
band and intersubband CDE energies are approximately
equal (the resonant coupling effect). In the long wave-
length limit (q i 0), the xnode-coupling effect disappears
due to the orthogonality of subband wave functions, and
a strict separation of the collective modes into intra-
subband and intersubband CDE modes becomes possi-
ble even for nonsymmetric confinement. In the following
we consider both symmetric and asymmetric 1D confine-
ment.

We first consider the symmetric confinement situation
when the collective mode condition [i.e. , Eqs. (1) and (2)]
is exactly separable and reduces to two separate equa-
tions for intrasubband and intersubband plasmons:

plasmon mode ' and ~'"' is the single-particle exci-
tation (SPE) energy which, being degenerate with the
electron-hole Landau continuum, is damped and carries
no spectral weight in the q m 0 limit. When both sub-
bands are occupied (n & 1), we conclude from Eq. (6)
that w+

' is peaked above the 1D plasma dispersion [Eq.
7(a)] and w'" ' at long wavelength is a purely linear
acoustic plasmon mode that lies below the 1D plasma
dispersion.

Similarly, using the analytic forms for IIq2 and II2~
(Ref. 2) we can solve Eq. (4) and obtain the long wave-

length intersubband CDE dispersion relation. The result
for the two-subband occupancy (n & 1) case again pro-
duces two uncoupled modes ug "(q),

~'+"'(q —i 0) = E12 + N~(1 —1l)n1212(q ~ 0) ~ (8)

~'"'"(q -+ 0) = E12,

where N is the 1D electron density in the quantum
wire. Here ~+ " is the usual depolarization shifted in-

tersubband CDE, and u'"" appears as a new intersub-
band collective mode only when the first excited sub-
band gets occupied by carriers. Since the occupation
of the second subband opens up a nondamping gap re-
gion inside the SPE intersubband continuum (see Fig. 1)
~'"t" is an observable CDE collective mode in this re-
gion. When the second subband is empty (i.e., n ) 1),
this gap closes, and consequently the ur'"" mode be-
comes a completely damped mode within the intersub-
band SPE continuum. Thus, while ~+t" exists both in
one- and two-subband occupancy situations, u'"" ex-
ists as a true collective mode only when both subbands
are occupied. In this sense, u'" ' and u'"" are both
true undamped CDE collective modes only when both
subbands are occupied; in the one-subband occupancy
case u'"" is a completely damped zero of the dielectric
function which resides entirely inside the SPE electron-
hole continua and carries little spectral weight. We note
that by definition (&u+~t" —ur' t") is the depolarization
shift for the 1D intersubband transition. We emphasize
that the existence of u'"t ' as a true intersubband CDE
mode is a feature peculiar to 1D systems only; there is no
such intersubband collective mode in the corresponding
two-dimensional systems in the two-subband occupancy
situation, where one only finds the depolarization shifted
~'""intersubband CDE mode.

We show in Fig. 1 our calculated results for intrasub-
band and intersubband CDE mode dispersion obtained
by direct numerical solutions of Eqs. (3) and (4). We
use an infinite square well con6nement potential of width
a, employing parameters corresponding to experimental
samples of Ref. 1 in Fig. 1: a = 300 L, N = 8.5 (a),
8.6 (b) and (c), and 6.7 (d) x 10s cm 1 corresponding
to four dMerent values of the subband occupancy factor
a = @" ——0.76 (a), 0.90 (b), 0.73 (c), and 0.91 (d).
The cafculational parameters are taken from the vari-

ous experixnental samples of Ref. 1 in Fig. 1 with Eq2
(meV)/Ey (meV)= 3.2/4. 2 (a), 5.2/5. 8 (b), 3.2/4. 4 (c),
3.1/3.4 (d). In each figure we show the calculated CDE
mode dispersion (solid lines) along with the correspond-
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Ing boundaries of the Landau damping electron-hole SPE
continua regions (dotted lines). Each set of results has
four branches of collective CDE d'aspersion: the lower

(upper) two corresponding to the ur'~ '
(~co+ j modes.

(There are four sets of electron-h l L d
each of Fi . 1

on- o e an au continua in
eac of Fig. 1, corresponding to two each of intrasub-

or e two occupied sub-band and intersubband SPE fo th t
an s; the lower two Landau continua dotted lines define

the allowed regions of intrasubband SPE modes and the
upper two define the intersubband SPE regions. ~ We
also show in Fi . 1ig. the available experimental points for

DE dispersion as taken &om Ref. 1. The agreement
between theory and experiment in F' 1

'

en . Our theoretical results account very well the
four observed branches of CDE d

' Fmo es in Fig. 1 a), ex-
plaining the two lower ones as cu' ~' d than the two upper
ones as a+i". In the samples of Figs. 1(b), (c), and

(d) our theory provides quantitative explanation for the
observed CDE modes [three for Fig. 1(b) and two for

onl the low
igs. 1(c) and 1(d)]. In these samples [Fi s. 1(b)—1(d)]lgs.

ional higher energy branches (u'"~") for these sam
' s. & ~—~ ~& w ose

verification

i future experiments

would be strong support for our theoretical calculations.
We have also shown as an inset of Fig. 1(b) the details
o our calculated results for the intrasubband CDE dis-

the SPEE continuum becoming overdamped and experi-
mentally unobservable.

In Fig. 2 we show our calculated two-subband model
inelastic-light-scattering intensity (obtained by calcu-
ating the dynamical structure factor~' of the two-

component 1D system) for the sample correspondin t
'g. (b). The calculations are done at a finite tem-

n Ing o

perature T = 1.8 K, with a small collisional broadening

p = 0.05' (which corresponds to experimental mobility
values), for = 0.1kq — . ~, an" at a transverse wave vector
transfer of 2x/a. In the inset of Fig. 2 we show the light-
scattering spectra (same sample) for a transverse wave

vector transfer of 3vr/a. In general, we find the lower

pea s to be sharper than the higher peaks at higher val-

ues of transverse wave vectors. Comparison with the ex-
perimental line shape gives very good qualitative agee-
ment; an exact quantitative comparison is not possible
because the experimental values of the transverse wave
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FIG. 2. The dynamical structure factor of the CDE modes
corresponding to the results of Fig. 1(b) are shown for

q = O. 1k~ and for a transverse wave vector of 27r/a. The
inset shows the same at a transverse wave vector of 3s'/a.

vector and the background intensity are not known.
Finally, in Fig. 3 we show the mode-coupling effect on

our calculated CDE dispersion by including in our theory
an asymmetry in the square well potential. This asym-
metry destroys parity conservation of the problem and
causes intrasubband-intersubband mode-coupling effect
at finite wave vectors, as can be clearly seen in Fig. 3.
For small asymmetry the mode-coupling effect is weak.
In general, the mode-coupling effect is significant only
at level crossings, i.e., only when the uncoupled intra-
subband and intersubband CDE energies are equal. We
believe that most of the small (but systematic) discrepan-
cies in Fig. 1 between theory and experiment are caused
by intrasubband-intersubband mode-coupling effects, as
is obvious &om a comparison between Fig. 1 and Fig.
3. Since the exact confinement potential is not known,
it is futile to try a quantitative comparison; the strength
of the mode-coupling effect obviously depends on the de-
tails of the asymmetry. We have established, however,
that the resonant mode-coupling efFect is operational in
the experimental results of Ref. 1.

We conclude by emphasizing that our RPA-based two-

FIG. 3. The mode-coupling effect of intrasubband and in-

tersubband CDE for the results shown in Fig. 1(a) but with
an asymmetry of 2 meV in the con6nement potential. The
inset shows the same with a weaker asymmetry of 1 meV.
Only the mode-coupled ~+" and cu'"'" are shown.

subband collective mode calculation gives excellent qual-
itative and quantitative agreement with the experimental
CDE dispersion in GaAs based 1D quantum wire struc-
tures. The success of this detailed quantitative compari-
son establishes that the collective electronic CDE modes
in 1D quantum wires can be well described by RPA-type
linear response theories provided the details of the 1D
confinement potential are approximately known. It may
be of interest to remark in this context that while the
RPA plasmon dispersion in the strict 1D limit (i.e., the
one-subband occupancy case) is the same as the collec-
tive CDE dispersion of the 1D Luttinger liquid, a two-
channel (i.e., the two-subband occupancy case) gener-
alization of the Luttinger liquid theory including inter-
channel excitations is not yet available and, therefore,
the applicability of Luttinger liquid ideas to explain the
four observed CDE branches in Ref. 1 remains unknown.
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