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Polaritons in semiconductor multiple-quantum-well structures with Forster-type interwell coupling
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When the barrier potential is high enough and/or its thickness large enough resonance tunneling be-
comes negligible in multiple-quantum-well structures. In this case a possible mechanism to connect the
quantum wells is a Forster-type interwell coupling that originates from the long-range electron-hole ex-

change interaction. We theoretically investigate excitons in such a coupled multiple-quantum-well
structure subject to an external light 6eld, and show that the resulting polaritons behave in a qualitative-

ly di8'erent way than those in uncoupled quantum-well structures. Of particular interest are interbranch
polariton transitions and the redistribution of the radiative damping rate between di8'erent polariton
branches. Numerical calculations are performed for a CdS-coupled double-quantum-mell structure with

dephasing by phonons taken into account.

I. INTRODUCTION

The past two decades have witnessed rapid progress in
research and technology of different artificial low-
dimensional heterostructures, where quantum-size effects
are exploited to produce devices with performance
characteristics superior to those of conventional bulk
(3D) homostructures. Semiconductor multiple-
quantum-well structures (MQWS's) are promising candi-
dates for the latest generation of modern laser and super-
high-speed optoelectronic devices.

In a MQWS the wells are coupled: If the barrier po-
tential is not too high and not too wide, the wells are con-
nected by tunneling because the wave functions of the
carriers in different wells overlap. In this way, real-space
particle transport along the growth direction (z axis) is
possible, bringing about a number of attractive phenome-
na: charge separation induced optical bistability, ' in-
terwell charge oscillations emitting tunable terahertz ra-
diations, barrier-to-well capture and well-to-barrier
escape of carriers, ' spin-fiip Raman scattering,
phonon-assisted resonant magnetotunneling, and relaxa-
tion of nonequilibrium electrons, formation of crossed
excitons, "*' i.e., excitons comprising an electron in one
well and a hole in another well, etc.

However, tunneling is not the only mechanism for con-
necting the wells. In fact, there are phenomena that can-
not be explained by tunneling. For example, the diffusion
coefficient measurements' ' in MQWS's with broad bar-
riers have shown that the diffusion coefficient decreases
as a power of barrier width but not exponentially, as ex-
pected for tunneling in MQWS s with thin barriers. Tun-
neling mechanisms are also unable to explain the recent
experimental observation' of energy transfer between
wells separated by thick barriers. One possible rnecha-
nism to explain the above-mentioned experimental results
(see, e.g., Refs. 16 and 17) would be a Forster-type in-

terwell energy transfer, ' which occurs via dipole-dipole
interaction between excitons and electron-hole pairs
residing in different wells. This Forster-type interwell
coupling has only recently become of interest for

MQWS's, ' ' ' ' though it is quite familiar in molecu-
lar crystals. '

In this paper, we deal with the photon-exciton interac-
tion in such a MQWS with Forster-type interwell cou-
pling. The resulting hoppinglike transition of excitons
from well to well is taken into account to any order yield-
ing the "true" exciton, which belongs to the whole struc-
ture and is delocalized over all wells. The interaction of a
bulk photon with such a true MQWS exciton, which is
also accounted for in any order, forms a MQWS polari-
ton. This polariton, unlike the bulk one, carries pecu-
liar features of MQWS due to the translational symmetry
breaking along the growth direction. For a single-
quantum-well structure (SQWS) the polariton concept
has been considered recently in Refs. 23-28, where it is
shown that for each region of Q(kl) & k~~ (0 and k~~ are
the polariton energy and its in-plane wave vector, i.e., the
wave vector in the plane perpendicular to the growth
direction) and for Q(k~~ ) & k~~ there is one polariton. We
will show that in a coupled MQWS in each of the two
above regions there are as many polaritons ("polariton
branches") as the number of wells involved. Similar to
the SQWS case, in a coupled MQWS, polaritons with en-

ergy Q(k~~ ) & k~~ possess a finite radiative lifetime whereas
those with Q(k~~ ) & k~~ are nonradiative. Nevertheless, for
light wavelengths k of interest and typical well widths I

of experimentally investigated samples (A, =500—800 nm,
I = 5 —20 nm) the polariton in a SQWS is almost indepen-
dent of the well width, while both the polariton disper-
sion and damping in a coupled MQWS are sensitive to
the structure parameters. If interwell coupling is ig-
nored, the polariton in each well has nearly equal radia-
tive damping independent of the well width. But when
the coupling between wells comes into play, a "redistribu-
tion" of damping between the polariton branches results:
a lower branch gets a shorter radiative lifetime than an
upper branch does, and this difference in the lifetime is
larger for stronger interwell coupling.

Our paper is organized as follows. In Sec. II, we derive
from an original interacting electron-hole picture the ex-
citon Hamiltonian with taking into account both in-
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trawell and interwell electron-hole Coulomb-exchange in-
teraction. The long-range electron-hole exchange in-
teraction between wells results in the appearance of hop-
pinglike nondiagonal terms in the exciton-exciton in-
teraction Hamiltonian which is diagonalized to yield the
so-called true exciton. This true exciton is then to be
coupled to the photon field in Sec. III where a system of
equations is established, the numerical solution of which
gives the kll dependence of both energy and radiative
damping of the multibranch polariton. Section IV calcu-
lates the rate of polariton scattering by phonons and
compares this with the radiative one obtained in Sec. III.
Finally, our paper ends with a short discussion and con-
clusion. We use throughout this paper units with
R =c= 1, where A and c are, respectively, the Planck con-
stant and the speed of light in vacuum.

tion is quantum confined. To lowest order in the
efFective-mass approximations and according to the en-
velope function theory, the normalized one-carrier wave
function within a well can be constructed as a product of
a plane wave with in-plane wave vector kII multiplied by
the 3D Bloch function u (r) [a denotes electron (e) or
hole (h ) in the two-band case] at the band extrema and
the carrier envelope function PI"'(z) in the z direction:

' 1/2

C
7TZ

cos
n

L„Ly

In (1), L„L~ is the area of periodicity in the xy plane,
r=(pII, z), and

II. TRUE EXCITONS

Let us consider a general MQWS in which the wells
have widths 1„and their spatial separations in the growth
direction are d„„. (d„„.=d„.„). The motion in the xy
plane, i.e., the plane perpendicular to the growth direc-
tion (z direction}, is free, whereas that along the z direc-

is the a-independent envelope function in well n for the
case of the infinite barrier potential, when only the lowest
electron (highest hole) subband is considered. Taking (1)
as a basic set, we can derive the Hamiltonian of the
electron-hole system of the MQWS in second quantiza-
tion as (operators e and e+ stand for the electron while h

and h+ for the hole)

H,k= g [e.,„(kII e k e k, +~a„(kII)h k, h„k, ]+—,
' g g C„„' kII'd„„)nil nil " nil "II

nklls pllqllkll
nn'ss'

+ + le+ le +X [enp sen'q s'en'q +k s'enp —k s +"np s "n'q s'"n'q +k s'"np —k s ~enp s "n'q s'hn'q +k s'enp —k s J
II II II II II II II II II II II II II II II II II II

+ P P cr, nn'(kII~ nn')[ nk —
p s rip s n'q s' n'k —q s']

p q k nn'ss'a
II II II

where s,s'= 1—,
' denote the carrier spin projection and

(3)

e „(kII)=E,(1 5„)+ —k~II+
1

(4)

with m the carrier effective mass which is n independent if all wells are assumed to be of the same material and, Eg the
band gap of the well material. The Coulomb interaction reads

C '(kII'd ') exp[ kIId-'( 5-')]
eLx L),k

Il

with e the electron charge and e an average dielectric constant neglecting any difference between the dielectric proper-
ties of the well and the barrier. The electron-hole exchange interaction reads

27' kllX „„.(kII, d„„,)= S»I„5 s+ J„{kII)(1—5 s)(l —5 r)(5 L
—5 z) 5

eL„L

2m.P kll+ e II 'K„K„'(1—5„„.)(1—5 s)(l —5 r)(5 ~
—5 z},eL„Ly

with o.=S denoting the intrawell short-range interaction
and o =L, Z, T denoting the long-range interactions for
the L,Z, and T polarization, respectively. For the L po-
larization, the dipole moment lies in the xy plane and is parallel to kII ( vo is the unit-cell
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volume and g is a coordinate vector within a unit cell).
For the T polarization, p, also lies in the xy plane but is
perpendicular to kll, while for the Z polarization p is in
the z direction. In (6), S3D expresses the 3D electron-hole
exchange integral,

e (Cl)uh (01)~h(02)~ (02)
Uo Dp )k

which is enhanced in the confinement regime by the fac-
tor I„,

1„/2

I„=f ", „dzl(((")(z)J'.
n

For an infinite barrier potential, I„=—', . The intrawell
long-range exchange interaction described by the second
term in the square parentheses of (6) depends on k)) ex-
plicitly and via J„(k)() implicitly, where

t /2 I /2 kJ ( k
()

):f dz f "
dz 'e " 'l (t)' "'(z '

)(()'"'(z +z '
) l

2

n n

enp s "nq s'
II II

1 gx. n, q()
—n p))

"y I. I.

so-called paraexcitons, which have total spin J=O and
projection J,=0, and the so-called orthoexcitons, which
have J=1 and J, =0,+1. The exciton operator is then in
second quantization,

1

vnk))JJ, ~ XXv P)) 9h )( s,J —s
V x y PI)$

+ +
XEneng —p sh„p J

II II z

where rih
=mh /(m, +mh ), g„describes the relative

motion of the electron-hole pair constituting the exciton
in a quantum state v, and A, J, are the Clebsch-

Gordan coefficients. Assuming an infinite barrier poten-
tial (I(.„=1), Eq. (13) represents a strict 2D exciton
creation operator. Making use of the othonormalization
conditions of y, and A, J „we are able to inverse (13)

as (for simplicity only the lowest exciton state is studied:
the index v can then be dropped)

(10) Je +X~. sbnp+q J
II II

s+x
(14)

For an infinite barrier potential, we find

(3k2I2+glr2)( 1 e ll ")
~(I )

2k))l„(k))l„+4lr )

with g, =1—
qI, . At low excitation levels, we can limit

ourselves to the one-electron and one-hole subspaces.
Then following the "excitonization technique" applied in
Refs. 29—31 and observing

which tends to unity for k))l„((1 and to 3/(2k))l„) for

kII l„»1. Therefore, for large kll the intrawell long-range
exchange interaction becomes independent of kII, for
large l„ it tends to vanish, and for kll =0 it is degenerate
for the all three polarizations. This latter fact is a
surprising feature caused by reduced dimensionality, and
should be contrasted with the bulk situation, where at
k)) =0 no such degeneracy occurs. The last term in (6)
is the Forster-type interwell coupling, which is of long-
range character and depends on both k,

l

and d„„. E„ is
given by

(12)

~-.=X X E'"(p)))o.l J o.p J
nPII

a=L, Z, T

E(v)(p )P(o') ~P(e)
n II npII npl,

+ g F„„.(p)), d„„)

g JI, ,'A, , =5JJ,
$$

we arrive at the exciton Hamiltonian of the form

(16)

which equals unity for finite barrier potential. Note that
in deriving the above formulas we have neglected tunnel-
ing and used the multipole expansion up to the second or-
der in i/2

—
g) ~/~R2 —Ril (g; is the radius vector of car-

rier i within a unit cell of position R; ).
To get the exciton Hamiltonian from (3), we realize

that an exciton is in fact a bound electron-hole pair. The
electron and the hole in the exciton may reside within the
same well or in different wells. "' When tunneling is ig-
nored only the former situation is possible. Furthermore,
because the electron and the hole have a spin —,

' each, the
exciton basic state vector in the absence of spin-orbit cou-
pling should transform according to a representation of
the rotation group, which is the direct product
D, /2 D1/2 of the two representations D, /2 where D»2 is
the bidimensional irreducible representation of the rota-
tion group of a spin- —,

' particle. In accordance with group

theory, any exciton may be classified into two classes: the

n'Wn

In (17), we have identified

On, p J ~np J=1J
II

Xp( )+p( )

np, n'p

(lg)

E„' '(p())=E + +
2(m, +mh )

—4Ry+2L„L,~(:)(p„)~~ »(0) ~2

as the orthoexciton, and

~(a) —g, (~)
~

npll bnp J=OJ =0
II z

as the paraexciton of o polarization (o =L,Z, T). The
other quantities in (17) are given by [in (21), o =L,Z,
while in (20), o includes also S and T]I
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F„'„,'(pii, 1„„.) =2L„L X„'„'(pii,d„„)i@zD(0)i (21) 8„(pii,d )

H —E](p[()P]p P]p P]p +Ez(p[[)P~p Pzp
II II II

+F(P]&d )[P]+]& Pzr +Pzr P]]& ] .
II II II II

(22)

Here, F—=F,2 =F2& and d =—d )2 =d2, . In the next sec-
tion, we will couple the exciton to an external light field.
The phonon does not distinguish between the wells and
interacts with the eigenstates of the coupled DQWS rath-
er than with individual excitons in separate wells. In this
case, the eigenstate of the coupled DQWS can be ob-
tained by taking into account the interwell interaction to
all orders. This is done by the following transformation:

(23)

with me], =m, m~/(m, +m], ), Ry the 3D Rydberg,
@zD(0)=2&2l(&maz]) the real-space exciton envelope
function at the origin, and a& the 3D Bohr radius. From
(17), we see that the interwell hoppinglike (i.e., Forster-
type) terms, which are proportional to F„]„'(nAn'), ap-
pear from the long-range electron-hole exchange interac-
tion, i.e., from the last multiple sum in (3). The exciton
now can hop from well to well and by this energy can be
transferred from well to well, too. However, such a kind
of energy transfer does not mean a real-space escape of
exciton between wells, i.e., a free-carrier transfer itself or
transfer of excitons as a whole. Without tunneling, the
exciton remains completely confined in one well. Yet,
thanks to the Forster-type coupling the energy of annihi-
lation of an exciton in one well, say, well n, can be "uti-
lized" to create another exciton in any other well, say,
well n', which can be far from the initial well n. Such
virtual hoppings connect all wells of the MQWS and one
can no longer distinguish an individual well. Since
X]„]=0 (nAn'), neither orthoexcitons nor paraexcitons
with T polarization participate in hopping. So, being in-
terested in the hopping mechanism, we are left with the
paraexciton with L and Z polarization only. For a given
polarization, we can suppress the index 0. and, to further
simplify notations without loss of generality, we have
chosen to treat a double-quantum-well structure
(DQWS), the Hamiltonian of which reads

+( 1) /[E (p)]) E (p~[)] +4F (p] d)j

(26)

C„and B„(B+) describe the elementary excitation of the
coupled DQWS, which we refer to as "true" excitons. As
a rule, these true excitons belong to the whole structure
and are delocalized over the two wells. Within this
unified picture it makes no sense to speak of "left well, "
"right well, " "narrow well, " or "wide well, " etc. It is
these true excitons to which the light will be coupled in
the next section.

III.POLARITONS

The optical properties of a material are mainly deter-
mined by the interaction of photons with the respective
elementary excitations. In semiconductors the photon-
exciton interaction is always of central interest. In bulk
crystals the translational symmetry implies that each k
exciton is converted into only one-photon mode with pre-
cisely the same wave vector k, and vice versa. Hence, the
corresponding eigenmode, the polariton, is stable and
cannot decay, unless other kinds of interaction are added.
When the dimensionality is reduced, however, the sym-
metry is reduced too, and the selection rule becomes
eroded. In quantum-well structures, breakdown of the
translational symmetry in the growth direction causes
serious consequences in many physical phenomena, in
particular, for the stability of polariton. Here, in quan-
tum wells, an exciton with kll is allowed to interact with
an infinite number of photon modes characterized by
q (qual q]) where ql II

but q, is arbit~a~y. This arbi-
trariness of q~ defines a continuum to which the
quantum-well exciton is coupled. This is the physical
reason why the polariton in quantum wells can be radia-
tively unstable even without any anharmonicity.

To show this in detail, let us start from the interaction
between photons and quantum-we11 carriers,

where the coefficients u„are determined as

F (p]&d)
u„,(p~~, d ) =a„~ z z

' 1/2
e 2'

ll~ll'-

1 /2

(eII„)

X [e ], ~,h„+„~,c],+H.c. ] . (27)

H = + @.(Pt, d )B+ B
~II ~ll

~ll

(25)

with

with a» =a22= a,2= —
a2& = 1 chosen to recover the un-

coupled situation when the hopping disappears, i.e.,
B„~P„when F~0. The Hamiltonian (22) is now diago-
nal in B operators,

In (27), m is the free-electron mass, L, is the z direction
periodic length for the photon, e=e],(c„) is the photon
unit polarization vector (annihilation operator) and, II„ is
the interband matrix element of the momentum operator
in well n We now ag.ain apply (14) and the excitoniza-
tion technique. ' With the sum over s giving &25zo
(i.e., only paraexcitons are coupled to phonons}, the sum
over

p~~ yielding L„L~C&zD(0}, and with II„replaced by

imE„@le, (27) finall—y reads
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H.t= g g. (k(~ ki)[c~ ~.~ —~.~c~] ."II "II
nkIIk~

Here,

(28) Using (39) to replace y in (38), we get the equations for
X

~Q 8 (k~[ d)+R (k~~ Q d)] (k~~ d)

'jT

g„(kt), kj ) =2i
eL, k

(ep)Z„(k~, )e, (0)G„(k, )
+R (k~(, Q, d ) (k~~, d )=0, (40)

with
I /2 ik z

G„(kj )=f dzIP'"'(z)I e
n

For an infinite barrier potential, (30) is evaluated as

R„(k„,Q, d ),.(k„,d )+ [Q—~,(k„,d )
(29)

+R22(k~) Q d )]xp (k~~ d ):0 (41)

The 8„~ are defined as

R.„,(k„,Q, d ) X
f,(kt, k~, d)f .(k},k~, d)

k,
8m sin(kjl„/2)

G„(k~ )=
k~1„(4n k I—}

(31) = y u„,(kl, d )u„„(k)~,d )
nn'

where

f,(k~~, kj, d)= gg„(k~~, kj)u„„(k[~ d) n:1 2 (33)

The Heisenberg equations of motion for the photon-true
exciton system are written as

which tends to unity for kj 1„~0. Note that in (28) we

again have dropped the polarization index cr for brevity.
Next, when (23) is used in (28), we get the photon-true ex-
citon interaction Hamiltonian, which for a DQWS is of
the form

H;„,= g f„(k~~~,k~, d)[cqB„q —B„+qcq], v=1, 2 „v
II II

vkIIk

(32)

X =„„.(k
ii
)Q(k ii, Q ),

where use of (31) and (27) has been made and

(kii)= 2l 'e,',(0)Z (kii)E (k

while

(e po)'
a«)(Q) = f «i i o=~&i

The integral (44) derives from the usual replacement

g~f dk, .
o

L

Nontrivial solutions for (40) and (41) result if

(45)

iB„& =8„(k~~,d)B„& —g f„(kl,k~, d)ck,
II

(34)
[Q —6,(k~, ,d)+R „(k„,Q, d)]

icq=kcq+ Qf„.(k~~, k~, d }B,q, v'=1, 2 .
V

V

(35) X [Q—6,(k~, , d )+R»(k~~, Q, d )]=R»(k~, Q, d )

(46)
As discussed at the beginning of this section, the sum
over kj in (34) will be of crucial importance in treating
quantum-well polaritons. To solve for the eigenmode
problem, we transform from the exciton and the photon
to the polariton as follows (% and S+ stand for polari-
tons):

B,„=gx, (k„,d) (36)

ck= gy„(k, d)X „
II

(37)

where x and y are functions yet to be determined. Re-
quiring S and %+ to be operators of the system eigen-
mode with the eigenvalue 0 yields the following set of
equations:

Q„(ki, ,d)=6', (kii, d)x, (k„,d)

g f„(k,i, k, ,d)y (k, d)
k~

For uncoupled wells the right-hand side (rhs) of (46} is
zero, so that an analytical solution can then be found
(see also Refs. 25 and 26 where the SQWS solution is ob-
tained by means of Maxwell equations with a suitable
nonlocal response function for the electric susceptibility).
For coupled wells an analytical solution is impossible
even for a DQWS as specified in (46). However, Eq. (46)
can be solved semianalytically in the sense that we first
carry out exact integration for Q defined by (44) and then
use the result in (46) for a subsequent numerical calcula-
tion.

At this moment it is necessary to have a closer look at
the polarization situations of interest, o. =L and Z. As
elk, we have

for o =L and

Qy (k, d)=ky (k, d)= gf„(k„,k,d) ~ (k„,d) .
kII((eI,)') =

2k
(48)

(39) for cr=z, where ( ) means an angular average. Using



POLARITONS IN SEMICONDUCTOR MULTIPL~UANTUM-. . . 17 261

( (ego) ) instead of (eye), we can integrate (44) exactly
to get

Q(k Q) =— (Qk' —Q' —k )
—1n 2n

(49)

for cr =L and

Q(k, Q)=- mkll kll
1 — +1

k
II

(50)

for o =Z. From (49) and (50) it follows that Q is real for
Q & k

l and complex for Q & k l. A complex Q being used
in (46) via R „. adds an imaginary part to Q, which is
nothing else but the radiative decay rate I of the polari-
ton. Note that this mathematical reason of the appear-
ance of polariton radiative damping comes here in a
quite natural way without assuming I &&Q. Such an as-
sumption has often been made in the literature
because this allows application of the formula
1/(z —a ki 0)=P[1/(z —a ) ] % 5(z —a ). In fact we do
not use this formula, and the assumption of I &&0 is not
so good here, especially for the Z polarization, as will be
seen later. The physical reasoning at the beginning of
this section is of course more convincing.

Another figure of merit of our semianalytic approach is
that (49) and (50) also establish a mathematical criterion
for the stability of polariton: the condition 0=k

II

separates radiatively unstable and stable polaritons. We
now explain this criterion physically. The finite radiative
decay rate of a polariton means that the polariton has a
finite probability to be converted into the photon outside
the sample, if energy allows. Since outside the sample the
photon energy is co=k =1/ kl+kj, the energy conser-
vation allowing real polariton-to-photon conversion im-
plies

In (53), h „=fbiTa~m, s/m characterizes dependence
on the well material parameters while h„,„, is a factor
characterizing dependence on the geometry of the hetero-
structure which, can be tailor made. For CdS material
parameters (e=8, m, /m =0.198, ms/m =0.782,
E =2.58 eV, E„T=2 meV, and a~=3 nm)

h,„=75.8384 meV A, whereas for GaAs this quantity
equals 6.9981 meV A. We have thus chosen CdS for our
numerical calculation.

The numerical results for solving Eq. (46) is represent-
ed in Figs. 1-8. Figure 1 shows dispersions of the L po-
lariton, for a CdS coupled DQWS with /i = 13 nm, l2 =7
nm and d =10 nm. The two radiatively damped polari-
tons are drawn by solid curves on the left-hand side (Ihs)
of the curve Q=kll and those two undamped ones by
short-dashed curves on the rhs of 0=k II. They "continu-
ously" cross the curve Q=kl because Q in (49) has no
singularity. The damping of the lhs polariton branches
depends on k

II
but must vanish at kll

=0 to match the rhs
ones. This is seen in Fig. 2, where the lower polariton
branch gets more damping than the upper one. The un-
coupled wells calculation (not shown) yields practically
the same dispersions as in Fig. 1 because here,
hl = ~l2

—I, ~

=6 nm is quite large resulting in weak hop-
ping. Furthermore, the damping in the case of uncoupled
wells (not shown either) does not feel the difference in
well widths: both wells, though with different widths,
possess the same damping, which is here close to the
solid curve in Fig. 2. The interwell coupling, thus,
"splits" the damping in the uncoupled wells case and
"redistributes" it so that the lower branch gets a larger
damping rate. All this is exhibited more pronouncedly
for smaller b, l, as shown in Figs. 3 and 4, where b l =0. 1

nm. The dispersions are now modified strongly (Fig. 3) as

Q=co —=+k~, +k (51) 2.50

From (51) it is clear that for Q & ki, there are real ki that
satisfy (51) and the photon can leave the sample: the po-
lariton is damped radiatively. On the other hand, if
Q & kl, no real ki can fulfill the energy conservation (51),
and thus the real polariton-to-photon conversion is for-
bidden energetically: the polariton is radiatively un-
damped.

From Sec. II, we know that the eSciency of interwell
hopping depends on barrier width d, well widths l„and
also on well material parameters. It is more efBcient for
stronger hopping strength F and smaller energy
difference bE=~E2 E, ~

(we only de—al with a DQWS
here). Therefore, using (20), (21), and the relation

)~ 2.49

~ 2.48

O
~ 2.47

O
I~ 2.46

p 4~(e, (0}~' ' (52)
I I I I I I i I I I I I I I I I i I I I I I I I I I } I I I I I ! I I I

i
I I I I I I I I I

2 4 6 8 10
iN —PLANE WAVEVECTQR (50000/cm)

h,z=consth „hst~, . (53)

with KENT being the 3D exciton longitudinal-transverse
splitting, 43D(0)=1/Qn. a~ the 3D real-space exciton
envelope function at the origin, we can factorize the hop-
ping eff'Iciency h,z as

FIG. 1. L-polariton energy, in eV, versus in-plane wave vec-
tor kl, in units of 5 X 10 cm ', for a CdS coupled DQWS with
well widths 1& =13 nm, l2=7 nm and barrier width d=10 nm.
The vertical long-dashed line is the curve of Q=kll. The solid
curves on the lhs of Q=kII are the dispersi. ons of radiatively
damped polaritons, while the short-dashed curves on the rhs of
0=

kll are those of undamped polaritons.
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FIG. 2. L-polariton damping, in meV, versus in-plane wave
vector kII, in units of 5 X 10 cm ', for a CdS coupled DQWS
with well widths 1& =13 nm, /2=7 nm, and 1=10 nm. The
solid (dashed) curve is for the lower-branch (upper-branch) po-
lariton in Fig. 1.
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FIG. 5. Same as in Fig. 1, but for the Z polaritons.
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FIG. 6. Same as in Fig. 2, but for the Z polaritons in Fig. 5.

FIG. 3. Same as in Fig. 1, but with l, =7. 1 nm.
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FIG. 4. Same as in Fig. 2, but with /, =7.1 nm. The corre-
sponding polaritons are in Fig. 3.

FIG. 7. Same as in Fig. 1, but with l, =7.1 nm and for the Z
polaritons.
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10- to.true excitons and, (iii} transforming to polaritons. Step
(i) leads to

E 8-
C3z:
CL

C3

O

O
CL

0 l I I I I I I I I l I I I I I I I I I ) I I I I I 1 I g I

0 1 2 3
IN —PLANE WAVEVECTOR ( 50000/cm }

FIG. 8. Same as in Fig. 2, but with I
&
=7.1 nm and for the Z

polaritons in Fig. 7. The values of the dashed curve have been
multiplied by a factor of 100.

is of deformation potential type for the longitudinal
acoustic (L A) phonon mode with p being the mass densi-
ty, v the sound velocity, D, (Dz ) the electron (hole) defor-
mation potential, G„given by (30), and

1
Xr ~ (Pll+qll ~(PII (56}

(54)

where j labels the phonon modes described by the opera-
tors a'J', a' 'q+, which may be of bulk or confined
type. In (54) the matrix element

1/2

M(LA)(ql, ql) = G.(ql)
2pULx LyLx

X [ Y( —
ri„ql, )D, Y(rl,—qll )D„] (55)

compared to the case of uncoupled wells (in which case
the two dispersions are of the same shape and just as a
whole shifted from each other to different efFective band
gaps). The damping redistribution is more "biased": the
lower polariton branch gains much more possibility for
radiative decay than the upper one does (Fig. 4).

Figure 5 is the same as in Fig. 1 but for the Z polari-
tons. Here, at k(I=A, there is a discontinuity between
damped and undamped polaritons because of the singu-
larity in Q [see (50)] at these points. This discontinuity is
associated with the impossibility to obey Maxwell bound-
ary conditions at the barrier-well interfaces for the Z po-
lariton (for more details see Ref. 25, which discusses this
peculiarity for a SQWS). Due to the said singularity in Q,
the damping for Z polaritons diverges at kll =0 (Fig. 6).
At kll=0 the Z-polariton damping vanishes since for
these polaritons, kll is a measure of photon-exciton in-
teraction, as seen from (48). When the well width
difference decreases, the dispersion reconstruction and
damping redistribution become drastic for the Z polari-
tons, too (Figs. 7 and 8).

IV. DEPHASING BY PHONONS

Casting the sum in (56) into its corresponding integral,
and with y(p )ll=~2nas/(1+a~p2ll /4)3i gives

Y(q )= 1
2

g ~

4 Q&q
I(

4+3a q
(57)

which approaches unity for azqII tending to zero. For
the longitudinal-optical (LO) phonon mode, we use the
Frohlich interaction

21Tcoz o

z y z

' 1/2

G„(qj )

[Y( g qll) Y(g qll)] (58)

where uzi is the frequency of a LO phonon and
1/e'=1/e„—1/eo with e„(eo) the high- (low-) frequen-
cy dielectric constant. For CdS p=4. 8 g/cm, v =5 X 10
cm/sec, D, =3.1 eV, Di, = —6.5 eV, coLo=35 meV,
E =5.61, and co=9.35. After steps (ii) and (iii) are per-
formed, the polariton-phonon interaction Hamiltonian
becomes

HI„= g g A~p(qll, q„kll, d )SzQ +q
II II

II Ilqi

The radiative decay mechanism is independent of tem-
perature and thus is the main mechanism of polariton de-
cay at low temperature. Only polaritons with k(I &0 can
decay radiatively. So, any process scattering the polari-
tons into the region of k(I )Q quenches the polariton ra-
diative decay. At high temperature the decay is
influenced by phonon scattering that destroys the phase
of the initial polariton. Therefore, there exists a cross-
over temperature T, above which the scattering by pho-
nons is predominant over the radiative decay process.

The polariton-phonon interaction in a coupled MQWS
can be derived from the carrier-phonon one in three
steps: (i) Applying the excitonization procedure, (ii) going

II
q

where

JK' p(qll, q, kll, d ) = g x' (kll+qll, d )x„.p(kll, d )
VV

XM .(qll, q, kll, d ),
and

.(qll, qi, kll, d ) = g g„„(kll+qll, d )u„„,(kll, d }

XM„"(qll,q„kll) .

(59)

(60)

(61)
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(63)

X21

where

k)
—4

) /2

4—4)
(65)

In (60) and (61), the u„„functions are determined by (24)
while the x are given by

g)(1 —g2)
X11— (62)

k(1 —
4) )

12

0.

~ 0.4
&C

OI—
(-L 0.2
O
CL

I

j/
-/

-/

-/

-/

rZ
I:

0.04
/'
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O. QC'
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Q, —82(p(), d )+R22(p((, Q„,d )

Q —8)(p(),d )+R „(p)),Q„,d )

0 20 4-0 60 BO
TEMP ERATUR E ( K)

'I 00

(66}

Note that in (54) excitons before and after a scattering ac-
tion remain in one and the same well, because (54) is, in
fact, for uncoupled wells. If step (ii) is suppressed, i.e., if
we directly approach step (iii) from step (i), we also have
a picture of multibranch polariton, but interbranch tran-
sitions are prohibited, since the branches are independent
in uncoupled wells. It is the Forster-type coupling that
mixes the wells and makes polariton interbranch transi-
tions allowed. In the following, we will deal with
phonon-assisted dephasing of kI~=0 I. polaritons in a
CdS coupled DQWS tailored as in Figs. 1 and 3. Assum-
ing confined phonons, ' the dephasing rate from the
polariton k~~

=0 state on branch a to another state on
branch P is evaluated as

r'.p"(0)=2 g l~'.J)I(q)( O, o, d)l'[N (q)) )+ ]

FIG. 9. Damping, in meV, of the k~~=0 upper-branch L-
polariton versus temperature, in K, for diferent mechanisms
and well parameters. The upper horizontal line and the long-
dashed (short-dashed) line represent the temperature-
independent radiative decay rate and the scattering rate due to a
single-LA-phonon emission (absorption) for a CdS coupled
DQWS with I, = 13 nm, 12 =7 nm, and d = 10 nm. Similar pro-
cesses are, respectively, represented by the lower horizontal line
and the dot-dashed (dotted) line for the same DQWS but with
l

&
=7.1 nm. The inset is the plot near the origin.

dashed curve. The crossover temperature here is T, =85
K. Similar scatterings but for the structure parameters
underlying Fig. 3 are depicted, respectively, by dotted
and dot-dashed curves in Fig. 9. In this case, the scat-
tered polariton lies on the lower branch (p= 1):

12+, '(0)=0.05198[N' '(qI, T)+1] meV,

xs[Q~(q)) }+~")(q))}—Q.(o)],
for a single-j-mode phonon emission and

r'.—,J'(o)=2 g lu'j~(q„, o, o, d)I'N"'(q)»

(67) qi~
=7.5X10 cm ', (7l)

r', " '(0)=0.08545N'" '(qI, T) meV,

qi) =1X10 cm ' . (72)

I 22" (0)=0.5227[N" (qI, T)+1] meV, (69)

where
q~~

=2.4647 X 10 cm ' is determined from the en-

ergy conservation. The same process but due to a single-
LA-phonon absorption,

r(2-LA)(0) =0.6535N(LA)(qi( T) meV, (70)

with q~'~ =2.7558 X 10 cm ', is represented by the short-

X5[Qp(q)) )
—co( '(q)) )

—Q (0)], (68)

for a single-j-mode phonon absorption, co'J'(q() )=uq)) for
j=LA and co'J)(q )=coLo for j=LO. N(~)(q)(, T) is the
Bose-Einstein distribution function for the j phonon for
temperature T. In Fig. 9 the long-dashed curve is for po-
lariton scattering from the k~I=0 state on the upper
branch (a=2) in Fig. 1 to a qI state on the same branch
(p=2) due to a single-LA-phonon emission,

Because the radiative decay rate of the upper branch in
Fig. 3 is small, T, is only a few K. Figure 10 shows
phonon-assisted dephasing of polaritons within the lower
branch (a=p= 1). The style of dashing is the same as in
Fig. 9. The long-dashed curve is due to

r'11" '(0)=0.00282[N' '(q'„, )+1] meV,

qlI
=2.4647X10' cm ', (73)

the short-dashed curve

r(, —, "")(0)=0.003 52N(LA)(qil T) meV,

q ()

=2.7558 X 10 cm

the dot-dashed curve

I', '(0}=0.00779[N' '(q' T)+1] meV,

1.51X10 cm ', (75)
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FIG. 10. Same as in Fig. 9, but of the k~~
=0 lower-branch L

polaritons.

V. DISCUSSION AND CONCLUSION

The polariton theory in a SQWS (Refs. 23—26) has just
recently been tested experimentally ' in GaAs quantum
wells. Reference 27 has used time-resolved luminescence
spectroscopy to measure the exciton radiative lifetime
when the wells are excited in close resonance with the ex-
citon. The fast component of the measured luminescence
decay curve is interpreted as the polariton effect in the
volume limited by the quantum-well size. In Ref. 28, in-
stead, the stationary photoluminescence spectrum has
been measured at different angles of incidence of the ex-

and, the dotted curve

I', " '(0) =0.008 75N' '(q ll, T) meV,

q~~
=1.6X10 cm ' . (76}

Because of the damping redistribution discussed in the
previous section, the lower polariton branch has a shorter
radiative lifetime than the upper one. This yields

T, =400 K for the parameters underlying Fig. 1 and

T, =170 K for the parameter underlying Fig. 3. A mes-

sage worth noticing is that all the
q~~

values evaluated
above are on the rhs of the curve 0=k~~, revealing that
the scattered polariton no longer has the ability to decay
radiatively. So it is dificult to observe this decay at high
enough temperatures. At room temperature (T=300 K}
the radiative decay for the coupled DQWS under con-
sideration is completely quenched by phonons, except for
the decay channel from the lower branch in Fig. 3.

Concerning LO phonons, their contribution is negligi-
ble here. We have on purpose tailored the DQWS in Fig.
1 so that the polariton energy separation at k~~

=0 is close
to toto (here, for CdS, it is of 35 meV). In spite of that,
the smallness of

q~~ satisfying energy conservation makes
the quantity in the square brackets in (58}very small.

citing laser beam, which is then fit theoretically by using
analytic expressions for polariton radiative damping in a
simple model of rate equations. As the authors claim,
their observation is the first, though indirect, experimen-
tal confirmation of the finite polariton radiative lifetime
in a uncoupled MQWS. No attention has been drawn to
interwell coupling in the above experiments. To the best
of our knowledge, no theory has dealt with polaritons in

coupled MQWS's as yet. The interwell coupling, as we

discussed in our paper, would lead to a branch-dependent
damping rate.

Optical excitation of a coupled MQWS generates the
polaritons which do not belong to any individual well but
are characteristic of the whole coupled structure. In a
coupled DQWS, say, there are two-polariton branches:
the upper and the lower one. Here, one can by no means

say that the upper branch is narrow-well-like and the
lower one is wide-well-like because it turns out to be
wrong in the case of two identical wells (i.e., a symmetric
DQWS) where two distinct true excitons appear~o and
thus two distinct polariton branches result, though the
two wells are indistinguishable. Since interwell coupling
allows polariton. interbranch transition, when a given
branch is excited, one could observe luminescence from
another branch which has not directly been excited or,
one could also expect the Stokes/anti-Stokes line result-

ing from Raman scattering due to a polariton interbranch
jumping. Such effects are a manifestation of energy
transfer in a MQWS via a dipole-dipole exciton-exciton
interaction in different wells. Recently, the authors of
Refs. 15 and 17 have reported on observations of energy
transfer between quantum wells separated by a thick bar-
rier which, as they claim with a question mark, should be
due to the Foster-type coupling mechanism. We do not
attempt to explain this experiment because this scenario
is still quite unclear especially with respect to the report-
ed independence of both temperature and barrier thick-
ness. We would just like to say that the polariton ap-
proach should be appropriate and the barrier-
temperature dependence should be somehow displayed.
This is because the barrier thickness enters explicitly in
the hopping strength and, when the wells are not biased
by an applied field to align the energy sublevels in
separate wells, the polariton interbranch transition ener-

gy conservation would most likely require phonon parti-
cipation, which gives rise to a temperature dependence.
Is it conceivable that the energy-transfer process ob-
served in Refs. 15 and 17 is caused by another mecha-
nism not yet identified at present?

In conclusion, we have theoretically developed a pic-
ture of polaritons in a coupled MQWS, when tunneling is
ignored. The interwell coupling considered here is of the
Forster type, which occurs via the dipole-dipole exciton-
exciton interaction in different wells. This exciton-
exciton coupling, in turn, originates from the long-range
electron-hole exchange interaction. As an example, we
have carried out numerical calculation in the case of a
CdS coupled DQWS for the dependence of both polariton
energy and radiative damping on the in-plane wave vec-
tor. The calculated results have shown interesting
features as compared to the uncoupled wells case.
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