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We study the Laughlin wave function on the cylinder. We find it only describes an incompressible
fluid when the two lengths of the cylinder are comparable. As the radius is made smaller at fixed area,
we observe a continuous transition to the charge-density-wave Tao-Thouless state. We also present
some exact properties of the wave function in its polynomial form. We then study the edge excitations of
the quantum Hall incompressible fluid modeled by the Laughlin wave function. The exponent describ-

ing the fluctuation of the edge predicted by recent theories is shown to be identical with numerical calcu-
lations. In particular, we obtain the occupation amplitudes of edge state n (k) for four to ten electron-
size systems. When plotted as a function of the scaled wave vector they become essentially free of finite-

size effects. The resulting curve obtains a very good agreement with the appropriate infinite-size

Calogero-Sutherland model occupation numbers. Finally, we numerically obtain n (k) of the edge exci-
tations for some pairing states which may be relevant to the v= —, incompressible Hall state.

It is now well-established that the quantum Hall effect
(QHE) in the spin-polarized two-dimensional (2D) elec-
tron liquid at Landau-level filling factor v= 1/q results
from an incompressible correlated electron state which is
very well described by the simple model wave functions
introduced by Laughlin. ' This has been verified by ex-
tensive numerical studies of systems of a finite number N
of electrons which have been carried out in two popular
geometries: spherical and periodic, or toroidal. '

These geometries are convenient for obtaining bulk
properties by extrapolation to the thermodynamic limit
as they do not introduce edges. In the most symmetric
spherical geometry, the geometry is fully specified by the
requirements of translational and rotational symmetry; in
the periodic case, rotational symmetry is absent, and
while the area of the elementary cell is fixed by the in-
tegrally quantized number of magnetic-Qux quanta that
pass through the surface, the Bravais lattice of transla-
tions in which physical (gauge-invariant) quantities are
formulated can be continuously varied. When the shor-
test of these translations has a length comparable to or
shorter than a magnetic length (or than the mean bulk in-
terparticle spacing) one may expect that the results of the
finite-size calculation are no longer representative of the
bulk physics.

There are other geometries in which the QHE has been
discussed; in particular, cylindrical geometry appears well
suited for studies of edge states associated with the boun-
daries of a region of incompressible Quid. In this
geometry, there are two characteristic lengths in the N-
electron system: one is the periodic repeat distance (cir-
cumference of the "cylinder" ) which plays the role of the
shortest translation in the periodic system; the other is
the width of the finite strip of incompressible Quid that

results when the electrons are confined in the well of a
potential that varies in the direction parallel to the axis of
the cylinder. When this length becomes small, there are
interactions between the two edges of the Quid, and cal-
culations in this limit (unlike the case of small periodic
repeat distance} are presumably relevant to the physics of
the QHE in narrow channels.

In this paper, we describe the properties of the Laugh-
lin wave function on the cylinder as the circumference of
the cylinder is varied at fixed particle number (i.e., fixed
surface area of the incompressible fluid} and study its'
edge excitations. As usual, we only consider electrons re-
stricted to states within the lowest Landau level.

The Laughlin wave function on the cylinder for
v= l/m is given by

iyz, /t iyz /I —
y, /2l2

i (j l

where y=1/R, l =(fi/eB)' is the magnetic length, and
R is the radius of the cylinder. The complex coordinate z
is x +iy, where x is the periodic coordinate along the cir-
cumference of the cylinder and y is along the axis.

The periodicity in the x direction means that the al-
lowed pseudomomentum k of each particle is quantized:
k„=n/R, where the integer n labels the conventional
basis of single-particle "Landau-gauge" states. We allow
the range of y to become infinite, but "compress" the
electrons by restricting them to the Landau-gauge states
with n in the range 0, 1,2, . . . , 1V&. Just as in the spheri-
cal geometry, the Landau-level degeneracy is equal to
NL =N&+1, which is proportional to the area available
for the guiding center motion.

It is important to note that the study of many-particle
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(d) C{[m;])=0 if Im, ] is not a permutation of [m,o]
or a configuration obtained by successive "squeezing'* of
[m,o].

The squeezing operation (without reordering)
[m; I

—+[m ] is defined for some pair jWk with m. )mk
and a positive integer n by

rn =m, if i', k

m'=I —n,
mk =mk+n,

where 0 & n & m —~k.
Note that

g (m; —mj ) ) g (m —m~')
i&j i&j

= g (m, —
m~. } +2nN[n —

(m~
—mk)] .

i &j

Since every occupation state with nonzero amplitude can
be squeezed from the TT state and, since within con-
stants, g,.n, is related to g; & (n; n/), it can—be seen
from Eq. (4) that the above inequality implies that the TT
state will dominate the wave function as y ~ ao. In prac-
tice, this condition is realized for y 1, see Fig. 2.

We have also empirically verified the following for up
to N =8 electron systems, the proof of which we leave as
an open problem:

(1) The filled level droplet has the highest amplitude.
(2) A(filled level droplet) = (( —1) ' + ' '~ "}[[(m

+ I)/2]N]!)/[N![(m +1)/2]! ].
(3) The total normalization is ![ql() = )mN)!/

(N![m!] }.
The first four items (a) —(d) are also valid for bosons ex-

cept of course the wave function is now symmetric. The
last three items {1)—(3) are however only valid for fer-
mions.

If should be noted here that in the squeezed limit, the
appropriate 1D Hamiltonian for which the v= —,

' Laugh-
lin state is an exact zero-energy ground state is

82
H(x»x2, . . . , x~)= —g 5(x; —x, } .

Bxi

This result also noticed by Wen is an obvious limit of the
full two-dimensional hard-core potential. '

Before we study edge states, we would like to make a
few comments. The period of the oscillation of the densi-

ty near the edges in the Quid phase is determined by the
bulk density-density response function which is dominat-
ed by a single mode, namely, the magnetoroton. ' As
such, it is similar to the impurity screening (or the lack of
it) by the incompressible fiuid. The period at the edge is
comparable to that of the density oscillations near an im-

purity. " In the limit of large aspect ratios, the system
makes a transition to a "stripped Wigner Crystal" phase
where the number of peaks in the density is equal to num-
ber of electrons. This same limit, but for the Coulomb in-

teractions, has been studied by Chui' in connection with
narrow channels. However, he used toroidal boundary
conditions. It is not surprising to see gapless modes" (as
we see) in this limit. In the opposite limit, e.g., small y,
the gap survives at least for the hard-core repulsion and

may be the more appropriate limit for narrow channel
geometries. Whether or not QHE can be ruled out for
very narrow channels has not yet been addressed in our
study and needs further investigation.

We next turn to the discussion of edge excitations of
the Laughlin droplet (or ribbon in our case). Again, the
most interesting limit turns out to be the completely
squeezed cylinder (y =0). In this limit, there is no bulk
in the usual sense and only edge excitations remain.
Wen' has used current algebra techniques to study edge
states with the same results as here. One of us' has in-

terpreted the edge states as "generalized Fermi-surface
singularities, " obeying a generalized Luttinger' theorem.
Here we follow that formalism.

Consider first a free Fermi gas with a momentum space
energy surface E (k) having the topology shown in Fig. 4.
In terms of the Fermi points kf, we have the Luttinger
theorem for the total number of particles N and the total
momentum of the system P:

L
N = g hvkf',

2m

t
k f

I

PEG. 4. An arbitrary energy versus momen-
tum dispersion relation E(k) for a 1D Fermi
gas. The Fermi energy is shown by the hor-
izontal line and the Fermi points are labeled.
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P= g bv;(kf')
L

(9) =kf(x)Bx
(2O)

&p(x ) = g b v;5kf'(x ),1

2m;
(10)

where Av=n(kf e—) n—(kf+e} is the jump across the
Fermi point, and L is the length of the system. One can
generalize these expressions to contain local deviations of
the Fermi points 5kf (x) from their uniform value kf ..

2mp;(x)=kf'+
hv;

{21}

hv;
[p, (x),p (x')]=5; [5(x —x')],2' dx

(22)

which is the "chiral constraint. " Next, from the above
equations, we obtain the commutation rules (CR}:

EII(x)= g hv;kf'5kf'(x)+ g Av;(5kf'(x))1;; 1

2K; 4m.
p, (x), , =5, [5(x —x')],(}P(x') d

Bx dX
(23)

where

2np;(x)
kf (x)=kf +

hv;

1V
p(x) =—,

L

(12)

(13)

[P;(x},pj(x')]=i5; 15(x —x'),

P;(x), , =2mib, v; 5; j5( x—x'),{}P(x')
8

[P,.(x),P (x') ]= 5; jsgn(x —x'),
Av,

(24)

(25)

(26)

P11(x)=—.
L

(14)

H( '= f dx g vf'hv;(5kf'(x))2,(0) (15)

where vf's are the Fermi velocities. It is possible to in-
clude interactions terms between these fluctuations as in
Fermi-liquid theory but such terms are not relevant to
this work and will not be pursued here. We next proceed
to quantization.

It is well known that for 1D Fermi gas, ' the Fourier
components of the density operators (Tomonaga bosons)

1p'(x ) =— g e 't"p'

Iql &g

satisfy the Kac-Moody algebra:

The local description is valid only if for any pair of in-
dices i,j the condition {kf —kf }g»1 is satisfied. Here, g
is an inverse momentum cutoff measured from the Fermi
points.

Similarly the Hamiltonian for edge deformation can be
expressed in terms of the local fluctuations of the Fermi
wave vector:

where sgn denotes the sign function. Thus P and p {or
the derivative of ()(}) are conjugate fields. Using these
CR's and

[N, @t(x)]=%t(x},
it can be seen that

(%'t(x }(p,(x') =qi, (x')%t(x }e

(27)

(28}

For the fields to obey Fermi statistics, we must require
that 1/hv be an odd integer km. We also note that the
choice

in /2+ sgn(i j.)N-
A,. =e (29)

[P(x ),P(x') ]QHE
—[P(x),P(x ') ]„,

1

m
(30)

Following standard treatment of the Luttinger model, '

except here one needs to consider only a single branch of
fermions (for example the right moving one), the single-
particle Green's function is

makes the Fermi fields for different sectors (iAj) an-
ticommute as well.

The usual results for the 1D Fermi gas are recovered
when hv= 1. On the other hand, applying this formalism
to the quantum Hall effect, we obtain b,v=1/m. The
CR's for the Bose fields iP}(x) in these two cases are there-
fore related by

qL
[p,

'
p', 1=~v;5;,, 2 5,+, , 0 ek«1. (17) 6 (x x', t t')— —

i P,-(x)= A,-e (19)

Furthermore, Bosonizations of Fermi fields in 1D give
X

I d 'kf'(x')
qi;(x)= A;e (18)

'm
1 imk (x —x')

e
x x' vf(t t')—— — (31)

Fourier transforming the equal time Green's function, we
obtain the average occupation:

where A;, to be given shortly, are operators which make
qi's anticommute, and p,.(x) is the canonical Bose field.
From these and Eq. (12), we obtain

(k —mkf )
n (k}=C +n "s(k},

lk —mk, l

(32}
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1.5—
l

!
!

FIG. 5. The average occupation of n(k)
versus k for the Laughlin state at —,

' 6ling for

up to ten electron-size systems. The k axis has
been normalized by kf so that k/kf =2m;/N,
m; = —m (N —1)/2, . . . , m (N —1)/2. The
solid curve is the exact n (k) for the Calogero-
Sutherland model.

0.0
k/k,

where C is a numerical coefficient and n "s(k) is the non-
singular part of n(k). The average occupation of the
edge excitations must therefore exhibit a power-law
singularity at mkf with exponent m —1. We next
present numerical results. From here on we will only
consider the completely squeezed geometry y =0.

Figure 5 shows n (k) for up to ten electron-size systems
for v= —,'. As can be seen, there is a remarkable degree of
convergence and the shape of n(k) is already clear. We
have defined kf(N} for each size by having exactly N
states between —kf ~ k ~ kf. For each size, we have re-
scaled k in Fig. 5 by kf. The solid curve is n (k) of the
Calogero-Sutherland' model. It was obtained from a
conjecture by Haldane' giving the full analytical expres-
sion of the retarded Green's function for the Calogero-
Sutherland model at integer coupling (A, =m for
v = 1/m ). Haldane's expression reduces to the equal time
Green's function recently calculated by Forrester.
Note that in Fig. 5, there appears to be a weakly singular
pseudo-Fermi surface at kf. The singularity of interest,

however, is not at kf but at mkf, i.e., 3kf in this case.
Unfortunately, even %=10 is not sufficiently large to
make a direct extrapolation of the exponent possible (see
below, however). That is, we have not approached the
k =3kf suSciently closely (see Fig. 5). However, we ex-

tract the exponent as foHows: we observe that the last
possible k for which n (k) is nonzero satisfies

(k,„—3kf )-1/N (see caption to Fig. 5}. Now if
n(k}-(k —3kf) then n(k, „)-1/N, which implies

that, in the thermodynainic limit the quantity N n (k,„)
should extrapolate to a finite value. Figure 6 shows such
an extrapolation clearly demonstrating the (k —3kf)
dependence. The value of this exponent has also been
confirmed in the planar disk geometry. '

At first sight, the data in Fig. 5 seems to be size in-
dependent and to exactly form a universal curve. This is
not so, there are extremely small finite-size eFects. In
fact, we have empirically obtained the exact expression
for the last 4 of n (k} in the tail of the distribution as a
function of system size:

0.':3')

Nnik „)

0.;~0—

0.",.)
io'

6

FIG. 6. The plot of N n(k, „)versus 1/N.
An estimate of X n (k,„)as N ~~, based on
the extrapolation of the data, yields 0.22.

0.'~0
0.0 0.30 ) /'y, 0.40
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np—

n

n

n

2
+9N (N —1)

18(N —1)
[2+9N (N —1)][1+3(N —2) ]

36(N —1)(9N —30N +22)
[2+ 9N (N —1)][2+9(N —1)(N —2) ][1+3(N —3)]

4[2+3(N 3)—](405N 29—70N +7425N 75—54N +2698)
[2+9N (N —1)][2+9(N —1)(N —2) ][2+9(N —2)(N —3 ) ][1+3(N —4) ]

where no= n—(k,„},n, =n(—k,„,), etc. One might
wonder if there is a pattern to be used for constructing
successively higher terms. While the factors in the
denominator appear to follow a simple pattern, it is clear
that the one polynomial in the numerator rapidly be-
comes complicated and is not easily generalized. Howev-
er, it should be noted that, as N ~~, the ratio of these
coefficients become very simple:

np

n =3
np

n =6,
np

(33)

(34)

(35)

np
=10 . (36)

"—p (p + 1)(p +2)
2np

This particular increasing sequence has also been noticed
by Wen. We note in passing that the simple extrapola-
tion procedure in Fig. 6, where we essentially extend the
line connecting the points N =10 and 9, out to N = ~,

This sequence makes it clear that these ratios are just the
expansion coefficient of (1—x) 3. That is,

2kf
n (k) =C'e(2kf —k }ln

k
(37)

where C' is another constant and e is the step function.
Note that the logarithmic dependence upon k predicts a
linear relation between n (k) and k —2kf, which is clear-
ly seen in Fig. 7. It should also be noted that the increase
of n (k) with size at k =0 is highly suggestive of a weak
singularity, consistent with the logarithmic form in Eq.
(33). This singularity is however an artifact of the
squeezed limit and will disappear for nonzero y as will

the singularity at kf in the Fermi case.
There are, in the realm of the quantum Hall efFect, oth-

er states with perhaps more interesting edge excitations.
We will not address all such states here but con6ne our
attention to the pairing ones which have been proposed
as candidates for the v= —,

' Hall state. First, a spin-singlet

I

gives the value of 0.22 for the coefficient of N, which is
remarkably close to the exact —,'answer. It should also be

noted here that one can directly extract the exponent
from the analytical expression of np by using the identity

k —mkf m
(m =3)

kf N

to eliminate N in favor of k —3kf.
We have also calculated the average occupations for

the boson Laughlin state at v= —,'. Here, the exact analyt-

ical form of n (k) is known

I I I I I I I I I I I I I I I I I

1.0—

FIG. 7. Same as Fig. 5, but. for bosons at
v= ~. Here there is a hint of the logarithmic
singularity in the exact result for N~ ~ (see
text) at k =0. The logarithmic dependence
yields a linear exponent at 2kf which can be
seen in this plot.

p p
—2 —1 0 k/k,
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~Pirl ~lr) plBt.

FIG. 8. Same as Fig. 5, except for the spin-
singlet pairing state of Eq. (38). n (k) is similar
to the single-particle occupation in the BCS
ground state with no singularity at kf.

oo I-
I

J.

0.0 1.0 k/kr 2.0

state was proposed by us:

=II( '

X g (z, ' —z,')'

X II (z;1 —z t) Det.
(z,' —z,' )'

(38)

+MR II (Z
'(J Zl Zi

(39)

where Pf denotes the Pfaffian. Both the determinant and
the PfafBan act to create pairs and are closely related to
BCS wave function for singlet and triplet pairing respec-

where Det stands for the determinant.
The other a spin-polarized state was proposed by

Moore and Read and later studied by Greiter, %en, and
Wjlczek.

tively. One, therefore, might expect as in BCS theory a
smoothly falling n (k) with no semblance of any singulari-

ty at kf that was seen for the —,
' state. This is clearly

borne out in Fig. 8 showing n (k) for the spin-singlet state
for up to eight electrons. There is indeed a marked
difference from that of the Laughlin wave function.
There is evidently, as before, a reasonable degree of con-
vergence already with these small sizes.

Analogous results for the spin-polarized Pfaffian
state ' is shown in Fig. 9. There is a rather sharp drop
at kf possibly indicating a weak singularity, i.e., a
pseudo-Fermi surface, which is probably an artifact of
the squeezed limit. In addition, it shows a very slight dip
at k =0. Despite their common pairing nature, the two
n (k) of Figs. 8 and 9 appear to be different. Presumably
because of the differences in even (spin-singlet) or odd
pairing states of the two. A more detailed understanding
of these differences will probably have to await until a
more precise analytical expression for n (k) is obtained.

In closing we emphasize again that while for conveni-
ence we have studied the edge states in the squeezed limit

~pir) — 1-'oI'.tr izc-.'d ~ 10

w~' '~w

FIG. 9. Same as Fig. 8, but for the Pfaffian
pairing state.

l.o k, '1 „z 0
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y =0, our results on the edge singularity remain valid for
all aspect ratios yAO so long as the bulk is an incompres-
sible fluid. As stated earlier only the apparent singulari-
ties at k =kf for fermions and k =0 for bosons are
washed out at nonzero y.

below). There is another more direct way of seeing this
which also will prove point e. We expand the polynomial
in the following manner:

g (z,.—z. ) = g (z,. —z. +mX„.)

This work was supported by NSF Grants DMR-
9113876at CSULA, and DMR-922407 at Princeton Uni-
versity.

APPENDIX

The first property follows from the antisymmetry of
the wave function. We find the state with the smallest
amplitude by choosing the configuration with lowest
power of z„then lowest power of z2, etc. We obtain

X g(z, —z, )+m gG„. (A5)

The first term is the TT state with a coef5cient of unity.
X; . and 6, . are appropriate remainder terms. It can be
seen from the binomial expansion that a factor of m mul-
tiplies X;j and hence g; (JG;J. This proves point c.

To establish the "squeezability" we write
'm

(A6)

n N N
)1(( ~ m ~ m. . . m(N —1)

( )jV ~ m(j —1)

J=2 J=3 J=2

(Al)

Note the prefactor is related to a similar expression
given above Eq. (7) by the permutation

T

1 2 S
From this we immediately pick out the occupation

numbers:

( 1 for j =O, m, 2m, . . . , Nm,
n ='

0 otherwise

(A2)

(A3)

Thus, every mth orbital is occupied, which is the TT
state. Note that TT state in configuration space can be
obtained by antisymmetrization of this expression (see

E E —1 . 1

with the correct sign ( —), and thus it describes the TT
state. Now consider any pair k, l with k ) l, since in the
prefactor zi is raised to a higher power than zk, but in the
product g; j(l —z;/z ),j is greater than i, it then fol-
lows that the power of zi will increase while the power of
zk will decrease, indicating the pair is being squeezed to-
gether.
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