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The orbital magnetic susceptibility of ballistic rnicrostructures is considered within the independent-
electron model. Using semiclassical theory, specifically Gutzwiller s trace formula, the finite-size correc-
tions to the Landau susceptibility are expressed in terms of the classical periodic orbits. It is found that
these finite-size corrections can be much larger than the bulk susceptibility in the quantum-coherent re-

gime. It is demonstrated that the orbital susceptibility is a sensitive probe of quantum chaos, having a
larger amplitude in integrable than in completely chaotic ballistic microstructures. The approach is ap-
plied to the square billiard. Voile the predictions for the amplitude and the magnetic-field dependence
are consistent with recent experimental results by Levy et al. , the theory predicts a faster decrease with

temperature than observed experimentally.

I. IIVTRODUCTION

In a recent experiment Levy et al. ' measured the or-
bital magnetic susceptibility of an ensemble of 10 isolat-
ed GaAs squares at subkelvin temperatures. The suscep-
tibility was found to exhibit a paramagnetic zero-field
peak whose height exceeds the Landau susceptibility by
two orders of magnitude, and whose width corresponds
to roughly one flux quantum threading each square.
With temperature the peak decreases on a scale of about
0.5 K. Motivated in part by this experiment, this paper is
concerned with quantum-coherence corrections to the
Landau susceptibility within the independent-electron
model.

Theoretical work on finite-size corrections to Landau
diamagnetism has a long history. Landau showed that
the bulk orbital susceptibility of free electrons is indepen-
dent of magnetic field for temperatures large compared to
the spacing of Landau levels. For lower temperatures (or
stronger magnetic fields) the susceptibility exhibits de
Haas-van Alphen oscillations. Subsequently, Hund ar-
gued qualitatively that in finite-size systems there are os-
cillatory contributions to the susceptibility even for weak
magnetic fields. These oscillatory contributions were cal-
culated by Dingle for a cylinder threaded by an axial
magnetic field. Treating the magnetic field perturbative-
ly, he found that the spectrum of the susceptibility oscil-
lations is determined by the flux threading arbitrary regu-
lar polygons inscribed into the circular cross section of
the cylinder. Motivated by experiments on clusters,
similar (numerical) perturbative calculations for simple
geometries were performed by van Ruitenbeek and van
Leeuwen. Smooth, nonoscillatory finite-size corrections
to the Landau susceptibility were discussed by Robnik.
A number of authors "considered the orbital magnetic
response of mesoscopic samples in the diffusive regime.

Recently, it was shown both theoretically' and experi-
mentally' that the conductance of ballistic microstruc-
tures is sensitive to whether the classical dynamics is inte-
grable or chaotic. It is an interesting question whether

this is also true for the susceptibility. This question was
first addressed by Nakamura and Thomas, ' who calcu-
lated the susceptibility fluctuations numerically for a
family of billiard systems, and argued that they are larger
in chaotic than in integrable billiards. Their conclusions
were criticized by Nemeth, ' who found large oscillations
in a simple, integrable model.

My purpose in this paper is to explain how semiclassi-
cal methods can be used to calculate oscillatory contribu-
tions to the susceptibility analytically for a large class of
ballistic microstructures. ' ' The results generalize those
obtained by Dingle for the cylinder geometry. In partic-
ular, the approach is first applied to calculate the meso-
scopic susceptibility for the ideal square billiard, and the
results are compared with experiment. Second, the con-
troversy concerning the amplitude of the susceptibility
fluctuations in chaotic and integrable billiard systems is
resolved.

The susceptibility is defined in terms of the grand-
canonical thermodynamic potential 0 as

BQ
BB2

where B denotes the magnetic field. At zero temperature
and within the independent-electron picture, 0 can be ex-
pressed in terms of the spectral density
p(E)=X„5(E—e„)(the e„denoting the single-particle
eigenenergies) as

Q(p)= I dE(E p)p(E) . —
0

Semiclassically, the smooth, energy-averaged spectral
density (p(E) )= I/6 is determined by the classical
phase-space volume (one state per Planck cell). In meso-
scopic systems the discrete nature of the spectrum be-
comes important, and hence deviations 5p(E) from the
average spectral density must be considered. General
semiclassical formulas, which express 5p(E) in terms of
classical periodic orbits, were derived by Gutzwiller' for
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chaotic and by Berry and Tabor' for integrable systems.
The resulting periodic-orbit contributions to the suscepti-
bility 6g oscillate as a function of magnetic field and
chemical potential. Reflecting the quantum-interference
nature, the contribution of a particular periodic orbit is
significant only if the orbit length is shorter than the
phase-coherence length L+ and the thermal length LI.
In the following, the periodic-orbit contributions are also
referred to as mesoscopic susceptibility.

The semiclassical approach becomes particularly sim-
ple for classically weak magnetic fields, for which the cy-
clotron radius 8, is much larger than the phase-
coherence length L+. In this limit the magnetic field
does not affect the geometry of the periodic orbits which
contribute to the mesoscopic susceptibility. Instead, it
enters the thermodynamic potential only through the
Aharonov-Bohm phase proportional to the area enclosed
by the orbit. For weak magnetic fields the periodic-orbit
contributions to the susceptibility are entirely analogous
to mesoscopic persistent currents, ' except that the sus-
ceptibility is not perfectly periodic with flux because
different periodic orbits enclose different areas. A corre-
sponding semiclassical theory of persistent currents was
recently developed. '

It is sometimes assumed that the important energy
scale for quantum-size effects on the magnetization is the
level spacing. The semiclassical approach shows that,
instead, the relevant energies are the orbit correlation en-
ergies h /T~ ( T~ is the traversal time of the orbit), which
are usually much larger than the level spacing. In partic-
ular, the orbit correlation energies determine the depen-
dences on the chemical potential, inelastic scattering, and
temperature.

The semiclassical approach allows one to draw general
conclusions about the mesoscopic susceptibility in inte-
grable and completely chaotic billiard systems. For our
purposes the main difference between integrable and
chaotic systems lies in the nature of the classical periodic
orbits. Whereas they form continuous families in the in-
tegrable systems, almost all orbits are isolated and unsta-
ble in chaotic systems. In particular, I refer to systems as
completely chaotic if all periodic orbits are isolated and
unstable. The contribution to the susceptibility of con-
tinuous families of periodic trajectories is enhanced by
constructive interference, and hence the mesoscopic sus-
ceptibility of integrable microstructures is larger than
that of completely chaotic ones. This result contradicts
the conclusions of Nakamura and Thomas. ' Universal
amplitudes are derived for integrable and completely
chaotic billiards which determine the mesoscopic suscep-
tibility up to (nonuniversal) functions of ratios of
geometric length scales. Analogous results were previ-
ously obtained for the persistent-current amplitude.
Experimentally, the susceptibility is more easily accessi-
ble.

Interestingly, I find that the mesoscopic susceptibility
typically increases faster with system size than the bulk
Landau susceptibility. Even though this result may seem
puzzling at first because the mesoscopic susceptibility is
derived &om corrections to the bulk thermodynamic po-
tential, it can be understood as a direct consequence of

phase coherence. The Aharonov-Bohm phase couples
the magnetic field to the area of the sample, leading to
additional "volume" factors in the susceptibility. One
may ask whether there are also significant finite-size
corrections to the Pauli spin susceptibility. These can
be computed within the same semiclassical approach, and
one finds that they are much smaller than the orbital sus-
ceptibility (Appendix A).

The meso scopic susceptibility is sample specific,
reflecting the details of the periodic orbits of the system,
and changes sign as function of magnetic field and chemi-
cal potential. This leads to ensemble-averaging questions
which are analogous to those for the mesoscopic per-
sistent current. In the ballistic regime one considers an
ensemble of systems with different chemical potentials
and geometric parameters. The typical mesoscopic sus-
ceptibility measured in an experiment on a single sample
(e.g., a single square) is characterized by the rms average
( 5g ) ' . The experiment by Levy et al. ' was performed
on an ensemble of 10 squares. Hence it requires one to
calculate the ensemble-averaged mesoscopic susceptibili-
ty (5&). As for the persistent current, the mesoscopic
susceptibility is vanishingly small when averaged in the
grand-canonical ensemble (fixed chemical potential p). '
However, the average is nonzero and paramagnetic for
small values of B, if it is performed in the canonical en-
semble (fixed number of electrons N). ' '

Motivated by the experiment of Ref. 1, I calculate the
mesoscopic susceptibility of the ideal square billiard.
This simple model of the experimental sample neglects
deviations from the ideal geometry, scattering due to
boundary roughness and residual disorder, which affect
the geometry of the periodic orbits, and electron-electron
interactions, which may lead to an additional contribu-
tion to the susceptibility in analogy to the average per-
sistent current in the diffusive regime. The theoretical
predictions for the amplitude and the magnetic-field
dependence are consistent with the experimental results
of Ref. 1. However, the theoretical result for the suscep-
tibility decreases much faster with temperature than the
experimental one.

This paper is organized as follows. The semiclassical
approach is developed in Sec. II A. The susceptibility is
related to classical periodic orbits, and it is shown that
the approach becomes particularly simple in the weak-
field limit, where the magnetic field enters predominantly
through the Aharonov-Bohm phases. The approach is
applied to the square billiard in Sec. II 8. The periodic
orbits of the square billiard and their contributions to the
spectral density are discussed in Sec. II B 1. The typical
mesoscopic susceptibility is computed in Sec. II 82. The
ensemble-averaged susceptibility relevant to the experi-
ment by Levy et al. is calculated and discussed in Sec.
IIB3. The predictions are compared with the experi-
ment in Sec. II 84. General intregrable and chaotic bil-
liards are considered in Sec. II C. The results are summa-
rized and discussed in Sec. III. Various details are con-
sidered in three appendices. Appendix A deals with
finite-size corrections to the spin susceptibility. The
semiclassical spectral density of the square biBiard in the
absence of a magnetic field is computed in Appendix B.
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Finally, the formula for the average mesoscopic suscepti-
bility in the canonical regime is justified carefully in Ap-
pendix C.

II. SEMICLASSICAL APPROACH

A. General formulation

In this section the mesoscopic susceptibility is related
to the classical periodic orbits. It is shown that the semi-
classical approach becomes particularly simple in the
weak-field limit, where the magnetic field enters the
periodic-orbit contributions to the thermodynamic poten-
tial 0 only through the Aharonov-Bohm phase. First the
thermodynamic potential is considered in the absence of
the magnetic field. The leading contribution to 0 derives
from the energy-averaged spectral density (p(E)). In
mesoscopic systems the discrete nature of the spectrum
leads to quantum-coherence corrections 5Q to the ther-
modynamic limit. At finite temperature one has within
the independent-electron model

5Q= ——J dE 5p(E)ln I 1+exp[ P(E —p—)]}
0

E NE pE (3)

where the deviations from the smooth spectral density
are defined as 5p(E) =p(E) (p(E) }.—Furthermore,
P= 1/k~ T denotes the inverse temperature, f„(E)is the
Fermi function, and 5N(E}=fOdE'5p(E'} It is a c. en-

tral result of semiclassical theory that 5p(E) can be ex-
pressed as a sum over classical periodic orbits y
(Gutzwiller's trace formula) '9

5p(E) = g A exp —S (E)1

gv
y

(4)

Inserting this expression into Eq. (3) and linearizing the
action around the chemical potential p, one has

A
5Q=—,g exp fik~L ]

where

X J dE exp i (E —p) f„(E),(6)
0

r

Here S»(E) denotes the classical action of the periodic
orbit. For billiards it is given in terms of the length Ly of
the orbit, S» =AkL». The exponent v and the amplitude
A „depend on the type of periodic orbit. While
v=(d+1)/2 for the nonisolated periodic orbits of inte-
grable systems (d denotes the dimensionality of the sys-
tem), one has v= 1 for the unstable and isolated periodic
orbits of chaotic systems. Useful expressions for the am-
plitude Ay were derived by Gutzwiller' for chaotic and
by Berry and Tabor' for integrable systems. From Eq.
(4) one finds

Ay5N(E)=, g exptikL

dS

dE

denotes the orbit traversal time. The energy integral in

Eq. (6) is evaluated by contour integration. The Fermi
function has poles at E=@+i(2n +1)n/P . with residues
—1/P. Since only energies close to the chemical poten-
tial are relevant, one can extend the lower limit of in-

tegration to —ao. Hence one finds

r

~Ty ~Ty
5Q=

2 g "expIikzL»I sinhfi-'
y T',

The contribution of each periodic orbit oscillates with
chemical potential with a period equal to the orbit corre-
lation energy ii/T»=huz/L». In general, there are
infinitely many classical periodic orbits which contribute
to Eq. (8). Its usefulness derives from the fact that finite

temperature and inelastic scattering rapidly restrict the
number of orbits that must be considered. A periodic or-
bit contributes significantly only if the orbit length Ly is

of the order of or shorter than both the thermal length

Lz =AU+/k~ T and the phase-coherence length L~.
Next, I discuss the effect of the magnetic field. It

affects the periodic-orbit contributions to the susceptibili-

ty in two ways. The difference in the corresponding
magnetic-field scales leads to an important simplification
in the weak-field limit. Between reflections from the
boundaries of the ballistic microstructures, the (classical}
electronic trajectories in a magnetic field are circular arcs
of cyclotron radius R, = mu /eB. The corresponding clas-

sical field scale can be defined by Ly =R„or,equivalent-

ly, in terms of the flux P threading the billiard,
P=(kzL/2n)(L/L»)$0 (here $0 denotes the flux quan-

tum and L a typical linear dimension of the billiard}. The
magnetic field also enters through the Aharonov-Bohm
phase proportional to the magnetic flux enclosed by the
periodic orbit. The corresponding quantum scale is
much smaller than the classical one, roughly one flux

quantum threading the sample. Hence, in the limit

R, »min(L&„Lz ) one may neglect the bending of the
classical periodic orbits by the magnetic field and retain
only the magnetic-field dependence of the Aharonov-
Bohm phases.

8. The square billiard

1. Periodic orbits

Motivated by the experiment by Levy et al. ' I illus-
trate the general approach outlined in Sec. II A by calcu-
lating the mesoscopic susceptibility of the square billiard
in the weak-field limit. The primitive periodic orbits (sin-

gle traversals) of the square of side L can be labeled by
two (coprime) integers o =(m „rn2)corresponding to the
winding numbers of the orbit parallel to the sides of the
square. This is shown in Fig. 1. The number of retrac-
ings is labeled by p. The lengths of the primitive orbits
are
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(a)

FIG. 2. Areas enclosed by the periodic trajectories contained
in the (1,1) orbit of the square billiard. The parameter x denotes
the "distance" from the self-retracing orbit (dashed line). The
analogous construction for more complicated orbits is tedious

but straightforward.

FIG. 1. Primitive periodic orbits of the square billiard, la-
beled by two (coprime) integers o =(m1, m2) corresponding to
the winding numbers in the vertical and horizontal directions:
(a) (1,0), (b) (1,1), (c) (2, 1), and (d) (3,1). Only orbits with both
m

&
and m2 odd enclose area and contribute to the susceptibili-

ty.

Here the maximum enclosed area is A =L /2m, m2.
The area vanishes for x =0 and x = L/( mf +mz)'~ .
For retracings of primitive orbits the enclosed area is
multiplied by a factor p.

In the absence of the magnetic field the amplitudes of
the contributions to the spectral density due to these
periodic orbits can be obtained from the general expres-
sion due to Berry and Tabor. ' However, for this simple
geometry they can also be found by direct computation
based on the exact spectrum. I find

cos(pkL n'/4 )—
L =2L "}/ m +m (9)

A (x)=4A 1—
x~

(10)

For the square geometry different periodic trajectories
belonging to a nonisolated periodic orbit enclose different
areas. One finds that primitive orbits with either m1 or
m2 even enclose zero area and therefore do not contrib-
ute to the susceptibility. For orbits with both m, and m2
odd, the periodic trajectories are labeled by their distance
x from the self-retracing trajectory as illustrated in Fig. 2.
For the areas enclosed by the trajectories one finds by e1e-

mentary geometry that

where 6 denotes the average leve1 spacing, and the factor
5 stands for

2
if m1=0 or m2=0

1 otherwise . (12)

Details of the calculation are shown in Appendix B.

2. Typical mesoscopic susceptibility

Combining Eqs. (8) and (11) and multiplying the con-
tributions of the periodic orbits by the corresponding
Aharonov-Bohm phases, one finds for the thermodynam-
ic potential of the square billiard

cos(pkzL —~/4)
, zz

—g p g', f dx cos[2mpBA (x)/Po] . (13)

The prime restricts the sum over cr to periodic orbits
whose contribution depends on the magnetic field. The
contribution of each orbit is determined by the average
spectral density 1/6, the factor (A/T ) originating from
the energy integral in Eq. (2}, and the cylindrical wave
amplitude (kzL )

' . For simplicity, Eq. (13}is shown
for zero temperature. However, it should be kept in
mind that, strictly speaking, the calculation is valid only
for finite temperature or finite inelastic scattering length
to satisfy the condition R, »minI LT,L& J. This leads to
an exponential suppression of the contributions of long
orbits (large L ) and of multiple traversals (large p), cf.

cos(pkFL —~/4)

(k,r..)'"
4~A.

f(2pBA /ko) (14)

I

Eq. (8). The effect of finite temperature is included in the
final result (19). Equation (13) yields, for the susceptibili-

ty,

211/2
~x= 1/2
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where the magnetic-field dependence is described by the
function

AUFk~T'=
4W2&L

(20)

1

f(q&)=30f dxx (1—x) cos[4m(px(1 —x)],
0

(15)

'4
ooxg-

p=1 I ~(1,1

1

) k~L() ))
~ 4

f (2pBA(), ))/(I)o) .
0o

(16)

Here the average is taken over an ensemble of systems
with difFerent chemical potentials. I assumed that the
distribution of chemical potentials is sufficiently wide
that the nondiagonal terms in the sum over periodic or-
bits are suppressed. As it stands, the zero-field suscepti-
bility diverges. However, as emphasized above and in
footnote, an exponential cutofF factor of the sum over p
due to finite temperature and inelastic scattering is impli-
cit in Eq. (16). Accounting for inelastic scattering in a
phenomenological manner, one has roughly

exp( —2pL(») /Lz, )
5X' —g

p=1
r

1 if L(1 1) L@

ln(L@/L() )) ) if L(( )) «L~ «R, .

For the experiment by Levy et al. ', L(») =Le,. For this
reason only the (1,1) orbit is retained in the following:

with f (0)= 1. The sum over periodic orbits is dominated
by the (1,1) orbit and its retracings. The contributions of
other orbits are reduced because they are longer and en-
close less area. For example, one readily estimates that
the contribution of the (3,1) orbit to the susceptibility is
approximately 25 times smaller than that of the (1,1) or-
bit. Thus the typical mesoscopic susceptibility can be ap-
proximated by retaining only the (1,1) orbit and its retrac-
ings:

2

(5 2) 32 1

1/2 g2

Thus the typical mesoscopic susceptibility is semiclassi-
cally larger than the Landau susceptibility and exhibits
damped oscillations as a function of the magnetic field as
shown in Fig. 3. The magnetic-field dependence of the
square billiard is dominated by a single period. The con-
tinuous set of areas enclosed by the different periodic tra-
jectories belonging to the (1,1) orbit leads mainly to a
damping of the oscillations.

One may ask whether the results change significantly if
the high degree of symmetry of the square is broken by
deforming it into a rectangle. Clearly, the relevant
periodic orbits change continuously from square to rec-
tangle and, hence, qualitatively diff'erent behavior is not
expected.

3. Average susceptibility

The experiment by Levy et al. ' performed on an en-
semble 10 squares requires one to calculate the average
mesoscopic susceptibility. Whereas the average vanishes
when performed in the grand-canonical ensemble, it is
nonzero and paramagnetic for small magnetic fields when
performed in the canonical ensemble. A straightforward
extension" of previous work on the average persistent
current in the canonical ensemble' ' yields

2

(5y) = —
—,'6 2 f dE 5p(E)f&„&(E) . (21)

dB

A discussion of the limits of validity of this equation in
the ballistic regime is presented in Appendix C. In the
following this expression is evaluated for the square bil-
liard. For simplicity, the calculation is presented for
T =0. Finite temperature is reinstated in the final result,
Eq. (25).

Using Eq. (11) one finds for the magnetic-field depen-
dent fluctuations of the particle number at fixed chemical
potential

( 5+2) )/2 32 1 A 1

15m ~ T(), () (kFL() )))
2

27rA (,
~f(2B~(( ()/4'o)~ .

4o
(18)

The result written in this form is useful because the phys-
ical origin of each term remains transparent. It can be
expressed more compactly by comparing the amplitude
to the bulk Landau diamagnetism gL„d,„=—(Ms/3b
(here p,s =e()'t/2m is the Bohr magneton)

25/4

5~'"

0

CA

lA

-0.5—

—I.O
0

I

I
\ I

'L I

I 1 I I ) ( I I I l I ( l I 1 ( ( (

I 2 3

)3L /$,
X

~f (BL '/y, )
~
.

sinh( T/T )

Here the temperature dependence (8) is included with
characteristic temperature

FIG. 3. Magnetic-field dependence of the typical (full line)
and the average (dashed line) mesoscopic susceptibility for the
square billiard, according to Eqs. (19) and (25), respectively.
The susceptibilities are normalized to their values for 8 =0.
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sin(pk~L ~/4)
»2

—g p g', f dx cos[8nyBA x(1—x)/Po] .

Following the calculation for the typical mesoscopic susceptibility only the contribution of the (1,1) orbit is retained.
Combining Eqs. (21) and (22) one has

2
V2 1 &vF 1

15m b, L kpL
2 L

g(&L'/4o) .
0

The function g (y) with g (0)= 1 describes the magnetic-field dependence

g(y)=30 f dx cos[4mpx(1 —x)]f dx x (1—x) cos[4mtpx(1 —x)]— f dx x(1—x)sin[4myx(1 —x)] . (24)
0 0 0

In terms of the Landau susceptibility the average meso-
scopic susceptibility becomes

T T'2
sinh (T/T )

(25)

Here the temperature dependence is included. The
magnetic-field dependence is plotted in Fig. 3. Even
though the average mesoscopic susceptibility is smaller
than its typical value, it is still semiclassically larger than
the Landau susceptibility.

4. Comparison with experiment

Levy et al. ' measured the magnetic susceptibility of an
array of 10 isolated GaAs squares at subkelvin tempera-
tures. The two experimental samples S1 and S2 were
patterned from high-mobility and high-carrier-density
GaAs heterostructures. The squares were 4.5 pm on the
side and the elastic mean free path was estimated to be
l, ~

=5 pm (10pm) for Sl (S2). The electron wavelengths
are A,F--80 nm (45 nin) for Sl (S2), and hence kzL =350
(600). I note that the number for kFL given in the experi-
mental paper is incorrect (assuming that the quoted num-
bers for L and A, F are correct). The dispersion in size
across the array is 30% (10%) for Sl (S2). The bound-
ary roughness is estimated from electron micrographs to
be less than 50 nm, which is roughly the electron wave-
length. The inelastic-scattering length is expected to be
between 1.5 and 3 times the elastic mean free path.

The basic observations are as follows. The susceptibili-
ty exhibits a paramagnetic zero-field peak whose height is
100X ~gi,„d,„~ (accurate to within a factor of 2) and
whose full width at half maximum is 2.9 Oe, correspond-
ing to roughly one and a half flux quanta threading the
square. The peak height decreases with temperature on a
scale of 0.5 K.

For the magnetic field 8 =go/L, which sets the scale
of the experimental field dependence, the cyclotron ra-
dius &, /L=kFL/2m=60 (100) for $1 (S2) is much
larger than the linear dimension of the billiard and the

phase-coherence length. Hence the results obtained in
Sec. II 8 3 for the weak-field limit apply. A detailed com-
parison of the experimental results with Eq. (25) is com-
plicated by the unavoidable fluctuations of the geometry
of the experimental "squares" and the residual disorder
scattering. In fact, the elastic mean free path quoted in
Ref. 1 is shorter than the length of the periodic orbit, on
which Eq. (25) is based. Thus the actual periodic orbits
of the experimental squares differ from those of the ideal
square, and one expects qualitative but not quantitative
agreement between experimental and theoretical results.
The theoretical prediction Eq. (25) for the amplitude of
the average susceptibility in the square billiard is

4i/2 140 for Sl
240 for S2,(kFL)= '

which is slightly larger than the experimental result
100~pi,„d,„~(within a factor of 2). This is consistent with
the expectation that residual disorder tends to reduce the
susceptibility. The magnetic-field dependence is based on
the precise area enclosed by the periodic orbits and
should be sensitive to deviations from the perfect square
geometry. It is reasonable to assume a statistical distri-
bution of the areas enclosed by the dominant periodic or-
bits of the experimental squares. The corresponding
average damps the oscillatory field dependence for the
ideal square geometry, cf. Fig. 3, and leads to a single,
paramagnetic zero-field peak. The average mesoscopic
susceptibility (25) has its first zero at a field correspond-
ing to less than half a flux quantum through the sample.
This field is somewhat smaBer than the typical field scale
of the experimental samples. Thus the dominant periodic
orbits of the experimental samples typically enclose less
area than the periodic orbit of the ideal square billiard,
which is physically reasonable. A similar damping of the
magnetic-field dependence due to a distribution of areas
should not occur for measurements on single samples,
and an oscillatory dependence is predicted by theory.

%'hereas the predictions for the amplitude and
magnetic-field dependence seem consistent with experi-
ment, the temperature scale is not. Prom the theoretical
result Eq. (25) one finds that the peak height decreases
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with temperature by a factor of 2 for T/T' = 1.5. For
the experimental parameters of Ref. 1 this corresponds to
a temperature T=0.05 K which is an order of magnitude
smaller than the experimental temperature scale 0.5 K.

C. Integrable and chaotic billiards

The periodic orbits of the square billiard consist of a
continuous family of trajectories. This situation is typical
of integrable systems. By contrast, almost all periodic or-
bits of chaotic systems are isolated and unstable. In par-
ticular, a system is completely chaotic, if all periodic or-
bits are isolated and unstable. An example of such an or-
bit is shown in Fig. 4 for the Sinai billiard. In this section
I derive universal amplitudes of the weak-field suscepti-
bility of integrable and completely chaotic billiard sys-
tems. Closely analogous results were recently derived for
the persistent current. The results for the susceptibility
can be tested more readily experimentally, because it does
not require doubly connected geometries threaded by an
Aharonov-Bohm Aux.

Consider the general periodic-orbit expression for the
mesoscopic susceptibility,

2mA r5y= gA

Xexp ~ S'r '(p, )—+i2nBA /po . (27)

Here S&
' denotes the action of the orbit in the absence of

a magnetic field. The areas enclosed by the periodic or-
bits are denoted by Ar. If the different periodic trajec-
tories contained in a nonisolated periodic orbit enclose
different areas as for the square billiard, this formula in-
volves an additional integration. I assume that the
inelastic-scattering length or the thermal length is of the
order of the system size as for the experiment of Ref. 1.
Then only the shortest periodic orbits contribute

FIG. 4. Sinai-billiard geometry. A marginally stable periodic
orbit [cr= (1,1)] (full line) and an isolated and unstable periodic
orbit (broken line) are also shown. The susceptibility exhibits a
"semiclassical phase transition" as function of R, since only un-
stable and isolated periodic orbits contribute to the susceptibili-
ty for R &R, =L/2&2. For R &R, the susceptibility is dom-
inated by the contributions from the marginally stable orbits.

& ~x') '"-Ix~.m. l

( k~L )' '~ integrable
X '

(kFL) d completely chaotic.
(28)

Here L denotes a characteristic linear dimension of the
billiard. It follows from dimensional analysis that this re-
sult fixes the typical mesoscopic susceptibility up to func-
tions of ratios of geometric length scales. If the billiard
geometry is defined by a single length scale (e.g., the
square or the circular billiard), this expression determines
the amplitude up to numerical factors. Analogously, one
finds for the average mesoscopic susceptibility in the
canonical ensemble that (By) -u~", and hence

&~x)- lx...,.l

(kzL ) integrable
X z(2 —d)(kzL) ' ' completely chaotic. (29)

In the semiclassical limit the mesoscopic susceptibility of
integrable billiards is much larger than that of completely
chaotic ones. The relative order of magnitude compared
to the Landau susceptibility depends on the sample
dimensionality. Generally, the mesoscopic susceptibility
is more important for smaller sample dimensionalities.
Integrable and completely chaotic billiards form only a
subset of all possible billiards. One expects that, generi-
cally, billiards exhibit mixed dynamics, with both regular
and chaotic regions in phase space. The amplitude of the
mesoscopic susceptibility of these systems is an interest-
ing open question. Physically one expects that the results
for the completely chaotic case also apply to the diffusive
regime. Indeed, the scaling (29) of (5y) in completely
chaotic billiards is consistent with results obtained for the
diffusive regime in Ref. 11.

Nakamura and Thomas' inferred from numerical cal-
culations for a family of billiard systems that the devia-
tions from the Landau susceptibility are larger for chaot-
ic than for integrable classical dynamics, in direct con-
tradiction to the result of this paper. These authors use
an incorrect scheme to extract the susceptibility from
their numerical data. In the integrable limit Nakamura
and Thomas' calculate the susceptibility separately for
each symmetry class of the spectrum, and subsequently
add them to obtain the susceptibility of the full system.
In this fashion they avoid the numerous level crossings as
function of the magnetic field, which, when included, lead
to divergences in the susceptibility. Nevertheless, these
level crossings must be taken into account. To see this,
imagine that a small but finite amount of disorder is in-

significantly, and it is suScient to consider the scaling of
individual terms in the sum over periodic orbits.

The spectral density of billiard systems satisfies
p(E)=(i/A )f(E/R ), which implies for the amplitude
Ar(E)-E'" ' . Here v=(d+I)/2 in integrable bil-
liard systems and v= 1 in completely chaotic ones.
Hence for the dependence of the typical mesoscopic sus-
ceptibility on the Fermi velocity one finds (y )'~ -v~.
Noting that yL,„d,„-vg (d is the dimensionality of the
billiard) this can be written as
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troduced into the system, which splits the level crossings.
As a result, the level curvature is large but finite. In the
limit of zero disorder, the level spacing goes to zero and
the level curvature does indeed diverge.

The diferent contributions to the susceptibility from
isolated and nonisolated periodic orbits lead to an in-
teresting "semiclassical phase transition" of the suscepti-
bility in the Sinai-billiard geometry shown in Fig. 4. The
classical dynamics of the Sinai billiard is ergodic for any
nonzero value of the disc radius R [30j. However, the
Sinai billiard is not completely chaotic because there are
two types of periodic orbits. There are an infinite num-
ber of isolated and unstable periodic orbits which scatter
from the disc, and a Pnite number of marginally stable
ones which do not. The marginally stable orbits are rem-
nants of the periodic orbits of the square billiard, and
thus they can also be labeled by two integers. Increasing-
ly many of them disappear as the disc radius is in-
creased. ' The last marginally stable orbit enclosing
magnetic Aux [the (1,1) orbit] is destabilized at the "criti-
cal radius" R, =L/2&2. Therefore I find that due to the
existence of marginally stable periodic orbits the per-
sistent current scales as in integrable billiards for R & R, .
For R &R, only isolated and unstable periodic orbits
contribute to the susceptibility, and the results for com-
pletely chaotic billiards apply. For the typical suscepti-
bility in the semiclassical limit, this implies

(kFL), R (R,
i. da (kL) R (30)

The analogous result for the persistent current was sup-
ported by numerical calculations in Ref. 22.

III. SUMMARY AND DISCUSSION

In this paper the susceptibility of ballistic microstruc-
tures has been studied within the independent-electron
model. At low temperatures, quantum coherence leads to
significant corrections to the thermodynamic limit, if the
sample dimensions are of the order of or smaller than the
electronic phase-coherence length. Indeed, in this regime
the finite-size contributions to the susceptibility studied
in this paper can be much larger than the Landau suscep-
tibility.

Semiclassical theory, specifically Gutzwiller's trace for-
rnulas, has been used to express the finite-size contribu-
tions to the magnetization (mesoscopic magnetization) of
ballistic microstructures in terms of the classical periodic
orbits. The contribution due to a particular periodic or-
bit oscillates with chemical potential with the period
given by the orbit correlation energy h/Tr (T is the
traversal time of the orbit), and hence the orbit correla-
tion energies determine the scale on which the meso-
scopic susceptibility decreases with both temperature and
inelastic scattering. The periodic-orbit sum for the
mesoscopic susceptibility becomes particularly simple in
the weak-field limit, where the cyclotron radius is much
larger than the phase-coherence length. In this limit, the
periodic orbits can be approximated by those for zero
field and the magnetic field enters only through the

Aharonov-Bohm phase threading the orbits. In the
weak-field limit, the rnesoscopic susceptibility is very
closely analogous to mesoscopic persistent currents.

Extending previous work on mesoscopic persistent
currents I have derived universal dependences of the
mesoscopic susceptibility on the Fermi velocity, which fix

the amplitude up to functions of ratios of geometric
length scales. The mesoscopic susceptibility is much

larger for integrable than for completely chaotic billiard
systems. This result is in direct contradiction with a
claim by Nakamura and Thomas based on numerical cal-
culations for a particular family of billiards. I have
shown that these authors eliminate the divergent contri-
butions from level crossings in the integrable case
without justification. So far, to my knowledge, no experi-
ment has been performed which measures the mesoscopic
susceptibility of a completely chaotic ballistic microstruc-
ture.

The mesoscopic susceptibility of the Sinai billiard ex-
hibits a "semiclassical phase transition" between the two
universal Uz dependences. For disc radii R smaller than a
"critical" radius R„marginally stable periodic orbits
contribute to the susceptibility and lead to a dependence
equal tv that of integrable billiards. For R )R, only iso-

lated and unstable periodic orbits contribute, and the re-
sults for completely chaotic billiards apply.

Motivated by a recent experiment by Levy et ah.

measuring the magnetization of an ensemble of 10 GaAs
squares, I have studied the mesoscopic susceptibility of
the square billiard in detail. The results for amplitude,
magnetic-field dependence, and temperature dependence
are compared with experiment. The comparison is com-
plicated by the fact that the classical periodic orbit on
which the calculation is based is longer than the experi-
mental elastic mean free path. The theoretical results for
amplitude and magnetic-Geld dependence are consistent
with experiment, if one invokes the residual disorder
scattering to explain that only a single zero-field peak of
the susceptibility is seen experimentally. By contrast, a
much faster decrease with temperature is predicted than
observed experimentally.

The calculation neglects electron-electron interactions,
boundary roughness, and residual disorder scattering. By
analogy with mesoscopic persistent currents, there may
also be a contribution to the ensemble-averaged meso-

scopic susceptibility due to interactions. The partial
disagreement between theory and experiment emphasizes
the need for further theoretical work in this direction. It
is interesting to compare the experiment by Levy et al.
to the closely related experiment by Mailly, Chapelier,
and Benoit measuring persistent currents in a single

GaAs ring. While it was also concluded in the latter case
that the experimental results for amplitude and field

dependence are consistent with the predictions of the
independent-electron model, the temperature dependence
has not yet been measured.
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spectral density

p(E)= g g 5(E —e, )

n& =1 n2=1
(B2)

APPENDIX A: THE SPIN SUSCEPTIBILITY

can be expressed as a sum over periodic orbits by per-
forming the sum over n using Poisson summation,

p(E) —
4 f dn, dn2expIi2n(m, n)+m2n2)l

In this appendix I estimate the mesoscopic corrections
to the spin susceptibility. Motivated by the experiment
by Levy et a/. ' it is assumed that the inelastic mean free
path L@ is of the order of the system size. Denoting the
grand potential in the absence of spin interactions as
Qo((M), one has

m m1' 2

X5 E — 2tn, +nzl
2mL

(B3)

1 BL
pgB =

4o

hUp

L
huF

kFL L
(A2)

Thus one has

«p) =Qo(p) ,'paB'p(I —) —. (A3)

The first term leads to the orbital susceptibility. Replac-
ing the density of states in the second term by its average,
one recovers the standard expression for the Pauli
paramagnetism. The mesoscopic corrections due to the
discreteness of the spectrum are

Q(p) = ,' [Qo((—u+pttB)+Qo()M pttB—)],
where (uz=eA'/2m denotes the Bohr magneton. The
mesoscopic contributions to the grand potential oscillate
as a function of p with a period of the order of the corre-
lation energy hu~/L. (Shorter periods are suppressed by
inelastic scattering). We can expand to leading order in

p&B because

It is not difficult to show (e.g., by direct computation)
that the neglected terms make contributions of higher or-
der in Planck's constant fi. In cylindrical coordinates the
integration becomes elementary, and the result can be ex-
pressed in terms of the Bessel function Jo(z),

L2 cc 00

p(E)=, g 7 Jo(kL(~ )»
m = —aom

1 2

(B4)

APPENDIX C: THE AVERAGE MESOSCOPIC
SUSCEPTIBIL1TY IN THE CANONICAL ENSEMBLE

where L~ with 0 =(m&, m2} denotes the length of the
periodic orbits, cf. Eq. (9},and the wave number k was in-

troduced through k =2mE/A. The well-known aver-

age spectral density is recovered by the term m, =m2 =0,
(p(E) )=I/d=mL /2m% . All other terms in the sum
over (m&, mz) oscillate as a function of k. In the semi-

classical limit A~O, the wave number becomes large and
the Bessel function may be approximated by its asymp-
totic form. As a result one obtains Eq. (11).

=pa 5p(p)+2B 5p(p)+ —,'B (A4)

APPENDIX B:THE SPECTRAL DENSITY
OF THE SQUARE BILLIARD

In the weak-field limit the magnetic field enters Sp(p}
only through the Aharonov-Bohm phase factor. Hence
one has d5p/dB -(L /Po)5p. For the experiment of Ref.
1 the magnetic field corresponds to roughly one Aux

quantum threading the sample. As a result, the meso-
scopic corrections to the spin susceptibility are of order
55p(p), a quantity which is semiclassically small.

In the original works on the average persistent current
in the difFusive regime, ' ' the approximations leading to
the analog of Eq. (21) for the average current were made
without careful justification. For the difFusive regime,
Altland et al. 3 showed that these approximations can be
circumvented if one averages over both disorder and
filling. Here the formula is justified carefully in the ballis-
tic regime, where one averages only over filling.

In the canonical ensemble the magnetization can be ob-
tained from the total energy

E(N)= f dEEp(E),
0

where the field-dependent chemical potential is defined by
the constant-N constraint

The spectrum of the square billiard in the absence of a
magnetic field is given by N= f dE p(E) . (C2)

e =,jn, +n', l,
2mL

(B1)

where n=(n&, nz) and n, and n2 run from 1 to ao. The

Differentiating both E (N) and N with respect to the mag-
netic field and using that dN/dB =0, one obtains the fol-
lowing exact formula for the magnetization:
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M(N)=-
as [E (N) —

& p &N]
a

= —
—,'p(p) (5p)' —f &E(E —&p&) p(E) f—"dE(E —&p&) p(E) .

aa &„& aa o aa

Here & p & is defined through the constant-N constraint

N= f dE&p(E) &, (C4)
0

where p{E)= & p(E) &+5p(E). After performing the
average over N (or, equivalently, & p & ), the last term in
(C3) is negligible because it corresponds to the average
mesoscopic susceptibility in the grand-canonical ensem-
ble. Below it is shown that the first term also factorizes
to leading order and that the second term is negligible,

(M(&))~= ,'(p(p't—)(—&&(6v)') . (C&)

The expression (21) for the average susceptibility follows
after relating 5p and 5N = Io" dE Sp(E) by means of the
constant-W constraint,

f dE&p(E)&+ f dE5p(E)=0. (C6)
&p& 0

One may be tempted to conclude that Eq. (21) follows by
expanding to first order in 5p=p —&p&. However, this
expansion is problematic, because by definition 5p has
singularities at the (semiclassical) eigenenergies. Hence it
is at best a smooth function on scales smaller than the
level spacing. Since it turns out that 5p is much larger
than the level spacing, we cannot simply expand in Eq.
(C6). The way out of this dilemma is suggested by re-
phrasing the problem in semiclassical language. Semi-
classically, 5p(E) is expressed as a sum over periodic or-
bits. Long orbits give rise to contributions which are
only weakly suppressed and which oscillate as function of
energy with "frequency" TN/h. Hence an expansion in

5p breaks down for the contributions of orbits with
Tz) h/5p. Their contributions become negligible only
if one introduces a cutoff due to inelastic scattering (or
finite temperature) such that 5p«h/T@ Under thi. s

condition, one may expand to leading order in 5p, yield-
ing 5p= b5N, and hence (—21). I stress that the cutoff
introduced here is different from that introduced by
Altshuler, Gefen, and Imry' and Schmid.

The required inelastic scattering cutoff depends on the
precise geometry. For the square geometry one estimates

« (kFL)'/ L. This inequality is satisfied for the parame-
ters of the experiment of Ref. 1.

Now the terms in Eq. (C3), which were neglected in ob-
taining (C5), can be estimated. Expanding the second
term in (C3) in 5p, , one finds that the leading term before
averaging is quadratic in 5p,

(Cg)

This is much smaller than the leading term {C5)because

&5 2&1/2 «1T@
(C 10)

and

&5p'&'"«&p(&p&)& . (C 1 1 }

Finally, we need to show that the average of the first term
in Eq. (C3) can be factorized. It turns out that correc-
tions to the factorized average are of the same order as
(C9),

1 8 p 1—p(p) 5p =—
& p(p, ) & 5p

2 8+ 2 Btp

(C12)

Hence the corrections to the factorized average are ap-
proximately

2
—5) (& p&) 5p,

'
Bg

+ —5p 5p(&~&) 5p,
1 8 5
2 8 p Bg

(C13)

However, after averaging, this contribution is exceeding-

ly small, because the average is over an odd number of
oscillating functions. Hence the leading correction after
averaging comes from the third-order term,

1—5p (& &) « 5 2&3/2 ~
&5 2&1/2Tp

3 B&p& Bq)

(C9)

&UF 1 h

(k L)' (C7)

Thus the phase-coherence length must satisfy L+

The first term is vanishingly small because the average is

over three oscillating functions. The second is of the
same order as (C9). This completes the justification of
(C5}under the condition that Te, « h /& 5p, &

'
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