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Surface states in doped polymers
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Surface states of doped polymers are investigated by means of the Green-function technique. %e con-

sider only the particular case in which the surface is created right next to the impurity. It is shown that

the surface state that resulted from cutting the double bond is qualitatively different from that created by

cutting the single bond. In the former case, there is a midgap state and two localized states outside the

energy bands, while in the latter case there are only two localized states, which may occur outside the

energy bands or in the energy band gap depending on the sign of the impurity potential.

I. INTRODUCTION

Intensive studies of conducting polymers in recent
years not only provide functional materials with
significant prospects for applications, ' but also develop
concepts in low-dimensional condensed-matter physics.
As is well known, pure polymers are insulators. Doped
polymers, however, may become good conductors. The
conductivity of transpolyacetylene, for example, have
overtaken that of copper. Doped polymers usually pos-
sess many other attractive properties as well. Further-
more, many polymeric devices involve the surface and in-
terfaces. It is, therefore, important to understand surface
states in undoped polymers.

The study of surface states dates back to the 1930's. '
For a linear chain of atoms arranged at equal distances,
various methods have been developed to calculate the
surface states. There are also more sophisticated
methods of calculation "designed to deal with realistic
features of surface states in various particular systems.
Such studies may apply to semi-infinite solids of periodic
structures, but cannot correctly describe one-dimensional
systems such as polymers. This is because of the dimeri-
zation of polymers due to the Peierl's instability. The
structure of single- and double-bond alternation is actual-
ly a remarkable characteristic of polymers, and the sur-
face created by cutting a single or double bond can be
qualitatively difFerent from each other.

The situation is further complicated by doping impuri-
ties near the surface. We investigate in this paper surface
states as well as states bound to an impurity atom in po-
lyacetylene in which the impurity is doped at either the
double or single bond. On the basis of the Su, Schrieffer,
and Heeger (SSH) model, ' the Green-function technique
is employed to calculate surface states under different cir-
cumstances. Our study differs from the existing work on
impurity efFects in doped conducting polymers. In Ref.

13, the conductivity and the phase transition between

semiconducting and metallic states in doped conducting
polymers are discussed, and the soliton band and gap
states are calculated for polymers with a random distri-

bution of impurities.
We first establish in Sec. II the Green-function formal-

ism of surface states for doped polymers with a surface
next to the dopant. The density of states localized next to
the surface is derived in Sec. III. Energy levels are calcu-
lated for various surface localized states in Sec. IV, and a
brief discussion of the results is then found in Sec. V.

II. GREEN-FUNCTION FORMALISM

%'e start with the SSH model'

Ho X J~+1 ~(c~+) ~cm ~+c~ ~c~+1 )

m, s

+—,
' g K (u +,—u ) + —,

' g Mu

where J +~ =Jp+J& with + and —signs correspond-

ing to the double (short) and single (long) bonds, respec-

tively. Other symbols are standard. Since the C-C bonds

are very strong, the impurity atom cannot replace a car-
bon atom and can only stay between chains. The carbon
atoms are labeled such that the 1th bond is between the

atoms I and k + 1. For simplicity, we assume that the im-

purity interacts only with the nearest carbon bond and

denote the interaction by a parameter Vp. Thus,

(1+1)I&I& (1)&=(1+1~V, y(c,', ,c„

+ci.ci+ i. ) ~1 ), ,

= Vp for the nearest bond,

(P (1+1)~V~/ (1))=0 otherwise .
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H =HO+ V . (3)

The Green function 6 with an impurity is given by the
equation

Consider a single impurity atom located near the Ith
bond. The Hamiltonian is

6(E;m, m') =60(E;m, m')

+Gc(E;m, l) V06(E;/+ l, m'},

where Go stands for the corresponding Green function
for a perfect infinite chain described by Ho. It has al-
ready been shown that'

1 2E exp[ika (m m'—)]
m —m'=even

(E+/5)' —E„'
60(E;m, m') =

2Ek exp[2ika(m —m')][ak+( —) iPk]
X m —m =odd .

(E +i5) Ek—

(5)

In Eq. (5), we have defined

Ec(k)
ak= '- 1+ '

k
(6a)

6(E;m, m'}=60(E;m, m')

VOGc(E; m, /)60(E;/+ 1,m')+'' ''
1 —

Vo Gc (E;1+ 1,/)
(10)

Pk =sgn(k) 1—

in which

Ec(k)
(6b)

The local density of states (LDOS} at m is given by

p(E, m )= ——ImG+(E; m, m),I
7r

and

Ek =QEO(k)+62(k),
where 6+ is defined by

6+(E;m, l)=6(E+i0+;m, l) . (12)

Inserting Eq. (10) in (11)and remembering (12},we find

Eo(k) =—2Jc cos(2n ka),

h(k) =2J, sin(2e. ka) .

Setting m =1+1in Eq. (4), we have

(8a)
p(E, m)=po(E, m)

(8b)
VOGO+ (E;m, /)Gc (E;1+1,m )

1 —
VOGO (E;/+1, 1)

6(E;1+l, m')

=Gz(E; / + 1,m ')l[1—VOGO(E;1 + 1,1)] .

Substituting (9) back in (4), we find

At the lattice point m = m'= 1, Eq. (10) becomes
(9) 6 (E;1,1)=Gc(E;1,1)/[1 —V060(E;/ + 1, /) ],

which, combined with Eqs. (11)and (12), yields

(13)

(14)

p(E;1)=po(E;/) li 1 —VOGc (E;1+1,1) i

Vo[ReGo+(E;1+1,l}ImGO (E;1,/}—ReGo (E;l,l)Im60 (E;1+1,l)]
~l 1 V060+ (E;1+1,—/) I'

(15)

The LDOS is a continuum function of E in the energy
band. But, at the impurity bound-state energy E~, it ex-
hibits the 5-function behavior. This is because the Green
function has a pole at the bound-state energy E=E .
Therefore, we have from Eq. (13)

VcGc(E~;m, l)60(E~;/+ l, m)

Go(Eq', /+1, /)—
(16)

where use has been made of the relation

5(x —x~ }5[f(x)]=g

When a bond of the linear chain is cut, surfaces are
created in the resulting semi-infinite chains. To represent
the effects of the surface on electronic states, a surface
potential Uo is introduced to compensate the bond cou-
pling, that is,
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U, =&y..(1)la, ly. (0) &,

U =((t (1)~—Q J +i (&
rn, s

+ct,c +, , )~P (0))
= —(JD+J, ),

in which the second term is positive for a double bond
and negative for a single bond. For definiteness, we as-
sume that the surface is located at m=0 if the double
bond is cut and at m = 1 if the single bond is cut.

Et is important to note that the process of creating a
surface will, in general, modify bonds near the surface as
the lattice is not rigid. Therefore, the chain length will
change accordingly due to the lattice relaxation. In the
SSH model, this may be determined by minimizing the
energy. On the other hand, it is not difBcult to see in the
SSH model that the lattice relaxation may change the
gap-state wave function appreciably, but not the energy
level that remains at the gap center. This suggests that
the lattice relaxation can change the wave function of a

UDG (E;m, O)
+

1 —UDG (E;1,0)
(20)

The diagonal matrix elements of 6' can be found after
some algebra. The results are expressed in terms of Go as
follows:

defect but not its energy. Since we are mainly discussing
the energy levels in the gap due to the surface and impur-
ity near the surface, the effect of lattice relaxation is not
important. Hence, the electron-lattice interaction is
neglected in our consideration.

In terms of 6 the Green function 6' describing the
impurity-doped semi-infinite chain satisfies the equation

O'=6+GU, G'.
It is understood that the condition 6'(E;m, m') =0 is im-
plied whenever m=O or m'=0. Solving Eq. (19) for
6'(E; l, m) and substituting back into (19), we obtain im-
mediately

6'(E;m, m')=6(E;m, m')

6(E;1,1)
1 —U06 (E;1,0)

60(E;1,1)[1—V060(E;/+1, /)]+ V060(E;1,/)60(E;/+1, 1)

[1—U060(E; 1,0)][1—V060(E;/+ 1,/)] —V0 U060(E; 1,/)60(E;/+ 1,0}

6 (E;m, m)=60(E;m, m)+ {V0[1—UDG0(E;1, 0)]60(E;m, /)60(E;/+ l, m)

+ U0[1 —V060(E;/+ I, /)]60(E;m, O)60(E; i, m)

+ U0 VQ[GD(E; m, O)60(E; 1,/)60(E;/+ 1,m)

+60(E;m, /)60{E;/+1,0)60(E, l, m)]]

X {[1—V060(E;/+1, /)][1 —U060(E;1,0)]
—VQU060{E;1,/)60(E;/+ 1,0)]

(21)

g2)

III. SURFACE LOCALIZED DENSITY OF STATES

There exist two types of electronic states in a semi-infinite linear chain, in general. The extended states appear within

certain ranges of energy. They form the energy bands and are characterized by step functions. The surface states, on
the other hand, are localized on the surface with amplitudes decaying exponentially as they extend into the bulk. Sur-

face states appear outside the energy bands at singular points of the Green function 6'(E;m, m), and hence are charac-
terized by the 5 function. We are mainly concerned in this paper with the surface states in the presence of an impurity

doped near the open end of the chain.
Two different kinds of surfaces can be created in a linear chain by cutting the double or single bond. We consider the

following two cases in our discussion of surface states: (a) The surface is created by cutting the double bond and an un-

purity is located at the next single bond, and (b) the single bond is cut to form the surface with an impurity sitting at the
next double bond. The situation is illustrated in Fig. 1.

To find the Green function for surface states, we look for singular points of 6 in Eq. (21), which correspond to the
surface-state energy levels. We denote the denominator of 6' by

F,(E;1,1)=[1—U 6 (E;/, 0)][1—V 6 (E;/+1, /)] —U VDG (E;1,/}6 (E;/+1,0},
and then expand the function F, around E =ED. Thus, Eq. (21) can be written as

Ge(E; I, I )[I—V060(E;/+ I, /)]+ V060(E; I, /)6 (E;/+ I, 1)
6'(E;1,1}=

F,(E0, 1,1)+(E ED)F,(E0,'l, l)—

(23)
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At the surface-state energy or when ED=E„we have F,(E,;1,1)=0. The LDOS for surface states can be written down
directly from Eqs. (11},(12), and (24). The result is

p'(E; 1, 1)= ——ImG'(E +i0+; 1, 1)
1

= [60 (E, +iO+;1, 1)[1—VOGO (E,;I+1,1))+VOGO (E,;1,/)60 (E„/+1,1)}5(E E,—)

X [
—UOGO(E, ;1,0)[1—V060(E, ;/+1, /)] —VOGO(E„1 +1,1)[1—UOGO(E, ;1,0)]
—Uo Vo [60(Eg, 1,l)60(E„'I + 1,0)+60(E„1,/)60(ES,'I + 1,0)]] (25)

IV. ENERGY LEVELS OF SURFACE STATES

In the following discussion of surface states, we take the midpoint of the energy gap to be the zero relative to which
surface-state energies are measured. Consider first the case in which the surface is created by cutting the short bond.
The Green function is given by Eq. (22), and the surface-state energy is determined by setting the denominator to zero.
As is shown in Fig. 1, there are two distinct cases. If we consider, for definiteness, the case illustrated in Fig. 1(a), we
can write the Green function simply be setting the I= 1 in Eq. (22), that is,

6'(E;m, m}=60(E;m,m)+ [ Vo[1—UOGO(E;1, 0)]60(E;m, 1)GO(E;2,m)

+ Uo[1 —VOGO(E;2, 1)]60(E;rn,O)60(E; l, rn)

+ Uo Vo[60{E;rn, O)60(E; 1,1)60(E;2, rn)+ 60(E;m, 1)60(E;2,0}60(E;1,m) ]]
X {[1—VOGO(E;2, 1)][1—UOGO(E;1, 0)]—Uo VOGO(E;1, 1)60(E;2,0)] (26}

Various Green functions that appeared in (26) are found as follows. Since all the Green functions depend explicitly on
the energy, we omit E in the foHowing just for simplicity in notation. Thus, we find from Eq. (5), by using the residue
theorem,

60(1,0)= j.

2(J —J )

Go(2, 0)=60(0,0)z f,
where z1 is defined by

4J2 E2
1

(Jo —J) )—Jo
4JO —E

60(0,2)=60(0,0)z i,

4J2 E2
' 1/2

+J1
4J —E

4

(2'I)

(28)

Z1

4J —E
4Jo-4J1

E —4J1
4J —4J

1/2 '
4J2 E2 1/2

1

4J —4J
' 1/2 '

4J2 E2
' 1/2

0

4JO2 —4J1

in the gap

in the band .
(29)

In a similar fashion we can, by applying the residue theorem to perform the integral over k, work out the relations

6 (m, O)6 (l, rn)=6 (0,0)6 (1,0)zf ", m &1,

Go(m, O)60(l, m)=60(0, 0)60(2, 1)z,' ", m &2,

60(m, l)60(2, m)=Go(0, 0)GO(1,0)z ~ m &3

Go(m, 1)60{2,rn}=GO(0, 0}60(2,1}z rrg &2,

60{m,O)60(1, 1)60(2,m )=60(0,0)60(1,0)z, '

6()(m, O)60(1, 1)6 (2,m )=6 (0 0)z ' ' m & 2

Go(m, 1 )GO(2, 0)GO( l, m) =603(0,0}z2&, rn & 3, for

60(m, 1 }GO(2,0)60( l, m) =Go(0,0)60(2, 1)z&'

for odd m,
for even m .
for odd m,
for even m .
m ~3, for odd m,
for even m .
odd m

m ~2, for even m .

(30)

(31)

(32)

(33)
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where 6 stands for ihe energy gap between the conduc-
tion and valence bands, and it is given by

5=4J1 .

%e first look for the midgap state by taking the limit
E~0+. From Eqs. (27)—(29) and (34), we find

(b)

FIG. 1. Schematic diagram showing the surface created by
cutting (a) the double (short) bond and (b) the single (long) bond.
The position of a doped impurity is indicated by an asterisk.

Jo+J1
G (1,0)~ = + (E+iO+)

Jo+Ji 16J~+~i

Jo-J1
Gii(2, 1)~E +=—

~ 2
(E+iO+)',E~o+ 16JP22

(37a)

(37b)

It is easy to see that when J, is replaced by —J„Eq.(27)
becomes Go(2, 1). Hence, we have

Gp(2 1)=Gp(1 0)~j j
Also it can be shown that'

(34)

[(4J2 E2)(E 2 +2)]1/2

Gp(E;m,m)=, , 0(iEi (6,
[(4J2 E2)(/2 E2)]i/2

Go(E'm m) z 2 z z i/2 '
E

[(E2 4J2 )(E2 g2)]i/2

(3&)

J —J
4J J(J+J )

G,(0,0)i. ..=G,(1,1)i. ..=—
0 1

and

{J,+J, )'
[1—(Jp+Ji)Gp(1, 0)]E p~=

q 2
(E+iO+)

16JiiJ,

(37c)

(37d}

(38)

Inserting the limiting results in Eq. (37) into Eqs. (30)-(33)and remembering Eq. (34), we obtain

Gp(m, O)Go(l, m)= '

'm —1Jo-J1
4J J (J +J ) J +J (E+lo') foroddm

J

m —1Jo-J1 Jo-J1
(E +i 0+ )' for even m,

64JoJi Jo+Ji

(39a)

1

4JoJi(Jo+Ji)
Go(m, l)Gp(2, m)= '

0 1 0 1

J,+J,

Jo-J1
(E +i0+ ) for odd m

0 1

m 2

(E+iO+) for even m .

Go(m, O)Gp(1, 1)Gp(2, m)= '

(E+iO ) for odd m
(Jo—J, ) Jo —J,
1024JoJ, Jo+Ji

Jo —J1 (E+iO+) for even m,
64J+33i Jo+Ji

(40a)

Jo J
J,+J,

Go(m, l)Gp(2, 0}Gp(l,m)= '
2

1024JpJ, Jo+Ji

(E+iO+) for odd m

(E+iO+) for even m .
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Substituting Eqs. (37)—(40) into (26) and making use of the limit Go(m, m)~ +~0 for m )0, we find after some alge-

bra the surface Green function
'm —1

4JoJ) JO —J)G'(E+iO+;m, m}=
(Jo+J) )'—(Jo —J) ) Vo Jo+Ji

G'(E+iO+;m, m) =0, for even m,
and the LDOS

(E+iO+) ' for odd rn,

(41)

4JoJ) JO —J)
p'(E; m, m)=

(Jo+Ji }'—(Jo —Ji }Vo Jo+Ji
p'(E;m, m}=0, for even m .

5(E) for odd m,
(42}

In reaching the resulting surface Green function (41), we
have made use of the fact that Go(m, m)~E o+~0,
which follows from Eq. (35).

Equations (41) and (42) clearly indicate that there ex-
ists, for odd m, a midgap state at E=O, which is localized
at the surface. Its LDOS decays into the bulk of the
chain. Furthermore, the DOS of this state vanishes at
even sites. This feature is the signature of a soliton.
Thus, a broken double bond creates an edge soliton,
which represents the surface state at the midgap.

There are additional discrete states localized near the
surface. They are determined by the singular points of
Eq. (26), or by the equation

[ 1 —Uo Go(E; 1,0)][1—Vo Go(E;2, 1)]

—UoVoGo(E;1, 1}Go(E;2,0)=0. (43)

To find the energy for these states, we introduce the new
variable y such that

Equation (44), together with Eqs. (27)—(29) transforms Eq.
(43) to

J) [ Vo
—(Jo +J) ) ]y —(Jo +J) )[ Vo

—(J—J) }]y

+Jo( Vo+Jo+Ji )=0, (45)

which is then solved numerically. We find that there are
two localized states. One sits above the conduction band
and the other below the valence band. These states also
decay towards inside of the chain. In fact, they can be
identified as the electronic bound states around the im-

purity, ' which is located next to the surface. The results
are illustrated in Fig. 2 in which the dependence of the
surface-state energy on the parameter Vo is shown.

Similarly, if we set 1=2 in Eq. (22}, we find the Green
function for the case of a broken long bond shown in Fig.
1(b) as

y =(4J E)/(4J, —E) . — (44)

Ec

2JO

E

2J0

E=O

VO -2J,
V0

FIG. 2. Energy levels of surface states for the case of a bro-
ken short bond. The midgap state exists for the impurity poten-
tial energy Vo &Jo J] only.

FIG. 3. Energy levels of surface states for the case of a bro-
ken long bond. The midgap state appears only when
~o=Jo+Ji.
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G'(E;m, m) =Go(E;m, m)+ [ Vo[1—UoGo(E; 1,0)]Go(E;m, 2)Go(E;3, m)

+ Un [1—Vo Go(E; 3,2) ]Go(E;m, 1)Go(E;2, m }

+ UoVo[Gp(E m 1)G o(E 2 2)Go(E 3 m)+Go(E m 2)G o(E'3 1)G o(E'2 m)]]

X [[1 VoG o(E'3~2)][1 UoG o(E 2 1)] Uo VoGo( Ei2 2)G o( Ei3 1)]

If we take the limit E~0+, we find instead of Eq. (38)

[1—(Jo —J, )Go(2, 1)]

(J J )2
=1+ (E+t'0+)2

16JoJf
(47)

There is no singularity at E=O, and hence the surface at
a broken single bond does not possess a midgap state.
Consequently, there is no edge soliton in the case shown
in Fig. 1(b).

Because of the impurity, however, there still exist lo-
calized bound states. They can be found by solving the
equation

[1—Uo Go(E; 2, 1)][1—VoGo(E; 3,2) ]

—Uo VoGo(E;2, 2}Go(E;3,1)=0 . (48)

In terms of the variable y defined in (44), Eq. (48) be-
comes

J,(Jo —J, —Vo)y +(Jo—Ji )(Jo+Ji —Vo)y

+Jo(Jo —Ji+ Vo)=0 . (49)

Numerical calculation shows that there are two sets of
solutions corresponding to the + signs of the potential
parameter Vp. They are the localized states bound to the

impurity. The results are shown in Fig. 3. For positive

Vp these states fall inside the energy gap; and for nega-

tive Vp, they appear outside the energy bands.

V. CONCLUSION

We have shown that two din'erent kinds of surfaces can
be created in a polymer chain due to the dimerization.
When an impurity atom is doped next to the surface, we
have found qualitatively different surface states as well as
states bound to the impurity. For the case shown in

Fig. 1 (a), the surface is formed by cutting the short band
and the impurity is located at the long bond. There
occurs an edge soliton represented by the midgap surface
state, as indicated by the thick line in Fig. 2, for
Vo &Jo —J, . This state disappears when Vo =Jo —J„be-
cause of the cancellation of the impurity potential energy

by the hopping energy —(Jo —Ji ) in the long bond. The
result of this cancellation is equivalent to a broken long
bond, and hence the edge soliton disappears. In addition,
there are also impurity-bound states with energies outside
the energy bands.

For the other case of a surface at the broken long bond
as in Fig. 1(b}, the edge soliton does not appear unless

Vp =Jp+J]~ This is because the impurity potential ener-

gy is completely canceled by the hopping energy
—(Jo —J, ) in the short bond. The result is, therefore,
equivalent to a broken short bond and hence the appear-
ance of the midgap state as discussed above. Other
impurity-bound states are depicted in Fig. 3. There are
localized states in the energy gap as well as outside the
bands.
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